2013年春-西南大学《线性代数》作业及答案
- 格式:doc
- 大小:461.00 KB
- 文档页数:12
一、填空题(每小题3分,共15分)1.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛100012021,B =⎪⎪⎪⎭⎫⎝⎛310120001,则A + 2B =⎪⎪⎪⎭⎫⎝⎛. 2.设向量⎪⎪⎪⎭⎫ ⎝⎛=1111α,⎪⎪⎪⎭⎫ ⎝⎛=0112α,⎪⎪⎪⎭⎫ ⎝⎛=0013α,⎪⎪⎪⎭⎫ ⎝⎛=110β,则β由α1,α2,α3线性表出的表示式为( ).3.设α1,α2是非齐次线性方程组Ax = b 的解,k 1,k 2为常数,若k 1α1+ k 2α2也是Ax = b 的一个解,则k 1+k 2 = ( ).4.设A 为n 阶可逆矩阵,已知A 有一个特征值为2,则(2A )-1必有一个特征值为( ). 5.若实对称矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛a a a 000103为正定矩阵,则a 的取值应满足( ).二、单选题(每小题3分,共15分)1.设行列式2211b a b a = 1,2211c a c a = 2,则222111c b a c b a++ = ( ).(A) -3 (B) -1 (C) 1(D) 32.设A 为2阶可逆矩阵,且已知(2A )-1 =⎪⎪⎭⎫⎝⎛4321,则A = ( ).(A) 2⎪⎪⎭⎫⎝⎛4321(B) 214321-⎪⎪⎭⎫⎝⎛(C) ⎪⎪⎭⎫⎝⎛432121 (D) 1432121-⎪⎪⎭⎫⎝⎛ 3.设向量组α1,α2,…,αs 线性相关,则必可推出( ).(A) α1,α2,…,αs 中至少有一个向量为零向量 (B) α1,α2,…,αs 中至少有两个向量成比例(C) α1,α2,…,αs 中至少有一个向量可以表示为其余向量的线性组合 (D) α1,α2,…,αs 中每一个向量都可以表示为其余向量的线性组合4.设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3. 则|B -1| = ( ).(A) 121 (B) 71(C) 7 (D) 125.设3阶实对称矩阵A 与矩阵B = ⎪⎪⎪⎭⎫ ⎝⎛-200010001合同,则二次型x T Ax 的规范形为( ).(A) 2322212z z z ++- (B) 232221z z z ++- (C) 232221z z z +- (D) 232221z z z -+ 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设矩阵A ,B ,C 为同阶方阵,则(ABC )T = A T B T C T . ( ) 2.设A 为3阶方阵,且已知|-2A | = 2,则|A | = -1. ( )3.设A 为m×n 矩阵,则齐次线性方程组Ax = 0仅有零解的充分必要条件是A 的列向量组线性无关. ( )4.设A 为3阶矩阵,且已知|3A+2E | = 0,则A 必有一个特征值为32. ( )5.二次型312123222132142),,(x x x x x x x x x x f ++++=的矩阵为⎪⎪⎪⎭⎫ ⎝⎛104012421. ( )四、 (10分) 求4阶行列式1111112113114111的值. 五、(10分) 设2阶矩阵A 可逆,且A -1 = ⎪⎪⎭⎫⎝⎛2121b b a a ,对于矩阵P 1 = ⎪⎪⎭⎫⎝⎛1021,P 2 = ⎪⎪⎭⎫⎝⎛0110,令B = P 1AP 2,求B -1.六、(10分) 设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=31111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=15312α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=21233t α,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=t 10624α,试确定当t 为何值时,向量组α1,α2,α3,α4线性相关,并在线性相关时求它的一个极大线性无关组.七、(15分) 设线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321ax x x x ax x a x x x(1) 问a 为何值时,方程组有无穷多个解.(2) 当方程组有无穷多个解时,求出其通解(要求用它的一个特解和导出组的基础解系表示).八、(10分) 设p1,p2依次为n阶矩阵A的属于特征值λ1,λ2的特征向量,且λ1 ≠λ2. 证明p1- p2不是A的特征向量.。
===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。
线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解D.2η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值C.Aの2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1C.A-1=A TD.Aの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。
2013年春季1答案一、1. (1)6mn -; 2. 、 2 ; 3. 3 ; 4. 1/3 ; 5. 105 ;6.QP . 二、1、D ; 2、B ; 3、A ; 4、C ; 5、D ; 6、D. 三、1、因为0(,1,2,3)ij ij a A i j +==,所以,ij ij A a =-故,T A A *=-有23,0,1A A A A -===-有或,当0,0A A ==有,矛盾 所以1A =-2、2. 设12311,,23ααα到133221,,αααααα+++的过渡矩阵为A ,即()12233112311,,,,23A ααααααααα⎛⎫+++= ⎪⎝⎭因为()1231231111,,,,23213αααααα⎛⎫ ⎪⎪⎛⎫⎪= ⎪⎪⎝⎭ ⎪ ⎪⎝⎭()()122331123101,,,,110011ααααααααα⎛⎫⎪+++= ⎪ ⎪⎝⎭因此()()1223311231231111,,,,,,23213A A αααααααααααα⎛⎫ ⎪⎪⎛⎫⎪+++== ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭这说明11011110201113A ⎛⎫ ⎪⎛⎫⎪⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭因此111011101101111021102202011301103313A -⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪⎪=== ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭3. 设()1,,s B ββ=,因此()()110,,,,s s AB A A A ββββ===,这说明10s A A ββ===,即1,,s ββ是0Ax =的解,因此可以被0Ax =的基础解系线性表出,因此(){}()1,,s r B n r A ββ=≤-秩,即()()r A r B n +≤4. 因为()1234152515251525152536330991801120112,,,2215012315009900111011051600440000αααα--------⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪-----⎪ ⎪ ⎪ ⎪=→→→⎪ ⎪ ⎪ ⎪---- ⎪ ⎪⎪⎪----⎝⎭⎝⎭⎝⎭⎝⎭因此{}1234,,,3αααα=秩,一个极大线性无关组为123,,ααα,化为行简化形式为()123410020101,,,0011000αααα⎛⎫⎪-⎪→ ⎪⎪⎝⎭因此41232αααα=-+四、证明:因为(113221,,,,αααααααα++++-n n n )=(n ααα,,,21 )⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11111AB = 因为det(B)=1+n +-1)1(,所以,当n 为奇数,det(B)≠0,,,21αα…,n α线性无关。
一、填空题(每小题3分,共15分)1.设B 为方阵,且|B | = 3,则|B 4| = ( 81 ).2. 设A ,B 为6阶方阵,且秩R (A ) = 6,R (B ) = 4,则秩R (AB ) = ( 4 ).3. 已知3阶方阵A 的特征值为1,-3,9,则A31 = ( -1 ).4. 设A 为3阶方阵,若|A T | = 2,则|-3A | = ( -54 ).5. 已知向量α = (1,2,-1)与向量β = (0,1,y )正交,则y = ( 2 ). 二、单项选择题(每小题3分,共15分)1. 设A 为n 阶方阵,若A 3= 0,则必有( D ).(A) A = 0 (B) A 2 = 0 (C) A T = 0 (D) |A | = 02. 设A 为5×4矩阵,若秩R (A ) = 4,则秩R (5A T)为( C ).(A) 2(B) 3(C) 4 (D) 53. 设向量α = (4,-1,2,-2),则下列向量中是单位向量的是( B ).(A) 31α (B) 51α (C)91α(D)251α4. 设矩阵A = ⎪⎪⎭⎫⎝⎛3421,则矩阵A 的伴随矩阵A *= ( B ).(A) ⎪⎪⎭⎫⎝⎛1423 (B) ⎪⎪⎭⎫⎝⎛--1423 (C) ⎪⎪⎭⎫ ⎝⎛1243 (D) ⎪⎪⎭⎫⎝⎛--1243 5. 设矩阵A =⎪⎪⎪⎪⎪⎭⎫⎝⎛300130011201111,则A 的线性无关的特征向量的个数是( D ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分) 1. 设A ,B 都是n 阶方阵,且|A | = 3,|B | = -1,则|A T B -1| =-3. ( √ )2. 设A 为5阶方阵,若秩R (A ) = 3,则齐次线性方程组Ax = 0的基础解系中包含的解向量的个数是2. ( √ )3. 向量空间W ={(0, x , y , z ) |x + y = 0}的维数是3. ( × )4. 设A ,B 分别为m ×n 和m ×k 矩阵,向量组(I)是由A 的列向量构成的向量组,向量组(II)是由(A ,B )的列向量构成的向量组. 若(I)线性无关,则(II)线性无关. ( × )5. 二次型f (x 1, x 2) = 522213x x +的规范形是y 21+y 22. ( √ )四、(10分) 计算行列式D =5333353333533335.解:.五、(10分) 设A = ,⎪⎪⎪⎪⎭⎫ ⎝⎛-2100110011B = ⎪⎪⎪⎭⎫ ⎝⎛011021,又AX = B ,求矩阵X . 解:因为, 所以. 由可知.六、(15分) 用正交变换化二次型f (x 1,x 2,x 3) =32312123222124444x x x x x x x x x ---++为标准形,并给出所用的正交变换、判别其正定性.解:所给二次型的矩阵.,令得出A 的所有不同的特征值为(二重根)和(单根).当时,齐次线性方程组0的系数矩阵可化为.令,得基础解系为.将正交化. 取,.再将单位化,得,.当时,齐次线性方程组0的系数矩阵可化为.,同解的齐次线性方程组为令,得基础解系为,单位化得.令,则P 是正交矩阵且,因此f 不正定.七、(10分) 求方阵A =⎪⎪⎪⎭⎫⎝⎛30320321的特征值和特征向量. 解:因为,所以A 的特征值为1,2,3.当时,齐次线性方程组的基础解系为,于是对应于的特征向量为,.当时,齐次线性方程组的基础解系为,于是对应于的特征向量为,.当时,齐次线性方程组的基础解系为,于是对应于的特征向量为,.八、(10分) 设向量组α1,α2,α3线性无关,证明:向量组α1 + 2α3,α2 - α3,α1 + 2α2线性相关.证明:假设,于是.因为线性无关,所以. 由于,所以存在不全为o的数使得成立,因此α1 + 2α3,α2 - α3,α1 + 2α2线性相关。
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。
(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。
(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。
(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。
(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。
若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。
线性代数习题和答案第一部分 选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a a a a 11122122=m ,a a a a 13112321=n ,则行列式a a a a a a 111213212223++等于( )A. m+nB. -(m+n)C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( )A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A =312101214---⎛⎝ ⎫⎭⎪⎪⎪,A *是A の伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ+λ2β2+…λsβs=01β1B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1=0 D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值の2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1=A Tの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为( ) A.2334⎛⎝⎫⎭⎪B.3426⎛⎝⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二部分 非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。
线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是()A.η1+η2是Ax=0の一个解B.12η1+12η2是Ax=bの一个解C.η1-η2是Ax=0の一个解η1-η2是Ax=bの一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1=0 D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确の是()A.如存在数λ和向量α使Aα=λα,则α是Aの属于特征值λの特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是Aの特征值の2个不同の特征值可以有同一个特征向量D.如λ1,λ2,λ3是Aの3个互不相同の特征值,α1,α2,α3依次是Aの属于λ1,λ2,λ3の特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵Aの特征方程の3重根,Aの属于λ0の线性无关の特征向量の个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误の是()A.|A|2必为1B.|A|必为1=A Tの行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()与B相似B. A与B不等价C. A与B有相同の特征值D. A与B合同14.下列矩阵中是正定矩阵の为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确の答案写在每小题の空格内。
《线性代数》习题集(含答案)第一章【1】填空题 (1) 二阶行列式2a ab bb=___________。
(2) 二阶行列式cos sin sin cos αααα-=___________。
(3) 二阶行列式2a bi b aa bi+-=___________。
(4) 三阶行列式xy zzx y yzx =___________。
(5) 三阶行列式a bc c a b c a bbc a+++=___________。
答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。
【2】选择题(1)若行列式12513225x-=0,则x=()。
A -3;B -2;C 2;D 3。
(2)若行列式1111011x x x=,则x=()。
A -1, B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。
A -70;B -63;C 70;D 82。
(4)行列式00000000a ba b b a ba=()。
A 44a b -;B ()222a b-;C 44b a -;D 44a b 。
(5)n 阶行列式0100002000100n n -=()。
A 0;B n !;C (-1)·n !;D ()11!n n +-•。
答案:1.D ;2.C ;3.A ;4.B ;5.D 。
【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。
【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。
答案:(1)τ(134782695)=10,此排列为偶排列。
西南交大线性代数习题参考答案第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。
(2) i = ,j = 时,排列1274i 56j 9为偶排列。
(3) n 阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n 元排列。
若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。
(4) 在6阶行列式中,含152332445166a a a a a a 的项的符号为,含324314516625a a a a a a 的项的符号为。
2.用行列式的定义计算下列行列式的值 (1) 11222332330000a a a a a 解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。
(2) 12,121,21,11,12,1000000n n n n n n n n n n n n nna a a a a a a a a a ------L L MM M M L L 解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。
3.证明:在全部n 元排列中,奇排列数与偶排列数相等。
证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。
对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。
4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111a bc a b c。
西南大学线性代数作业答案第一次行列式部分的填空题1.在5阶行列式ija 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。
2.排列45312的逆序数为 5 。
3.行列式25112214---x 中元素x 的代数余子式是8 .4.行列式102325403--中元素-2的代数余子式是—11 。
5.行列式25112214--x 中,x 的代数余子式是 —5 。
6.计算00000d cba = 0行列式部分计算题 1.计算三阶行列式38114112--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。
3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。
解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为33113002104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则 η1-η2或η2-η1 是其导出方程组的解。
0044 20201单项选择题1、....2、矩阵A与B相似,则下列说法不正确的是().style="text-indent:32px">A与B有相同的特征值... A = B..R(A) = R(B)3、....4、....5、....6、.必有r个列向量线性无关.任意r个列向量都构成最大线性无关组.任何一个列向量都可以由其它r个列向量线性表出.任意r个列向量线性无关7、.0.1..0或1..8、.2.4..19、. C. 必有一列向量可有其余列向量线性表示.必有两列元素对应成比例.任一列向量是其余列向量的线性组合.必有一列元素全为010、. D. A有n个互异特征值.A是实对称阵.A有n个线性无关的特征向量.A的特征向量两两正交判断题11、. A.√. B.×12、. A.√. B.×13、. A.√. B.×14、. A.√. B.×15、. A.√. B.×16、. A.√. B.×17、. A.√. B.×18、. A.√. B.×19、. A.√. B.×20、设A、B为两个不可逆的同阶方阵,则|A|=|B| (). A.√. B.×21、转置运算不改变方阵的行列式、秩和特征值. ( ) . A.√. B.×22、. A.√. B.×23、. A.√. B.×24、. A.√. B.×主观题25、参考答案:26、参考答案:27、设三阶方阵A的三个特征值为1,2,3,则|A + E| = ( ).参考答案:2428、参考答案:29、参考答案:30、参考答案:31、参考答案:k>132、参考答案:333、参考答案:34、参考答案:35、参考答案:36、参考答案:237、参考答案:38、设线性方程组A x =0,A是4×5阶矩阵,如果R(A)=3,则其解空间的维数为( ).参考答案:239、参考答案:40、参考答案:41、参考答案:42、参考答案:43、参考答案:44、参考答案:45、参考答案:46、参考答案:47、参考答案:48、2.参考答案:49、参考答案:50、参考答案:51、参考答案:52、1.参考答案:53、参考答案:54、参考答案:55、参考答案:56、参考答案:57、参考答案:58、参考答案:59、参考答案:60、参考答案:。
2013年春 西南大学《线性代数》作业及答案(共5次,已整理)第一次作业【单选题】9.下列n 阶(n>2)行列式的值必为0的有: B:行列式非零元素的个数小于n 个。
【单选题】1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是: B:1【单选题】2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11【单选题】3.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:B:-1【单选题】4.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:C:5【单选题】5. 行列式A 的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A 的值等于0,则k 的取值应是:C:k=3或k=1【单选题】6. 6.排列3721456的逆序数是:C:8【单选题】7. .行列式A 的第一行元素是(-3,0,4),第二行元素是(2,a ,1),第三行元素是(5,0,3),则其中元素a 的代数余子式是:B:-29【单选题】8.已知四阶行列式D 中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D 的值等于. C:-15【论述题】行列式部分主观题 行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。
2.排列45312的逆序数为 5 。
3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。
5.行列式25112214--x 中,x 的代数余子式是 —5 。
6.计算00000d c b a = 0行列式部分计算题 1.计算三阶行列式38114112--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列.解:i =8,j =5。
2021秋西南交通大学?线性代数?在线作业三参考答案一、单项选择题(只有一个选项正确,共8道小题)1.设A 为n 阶方阵,且A2+A-5E=0,那么(A+2E)-1=().(A)A-E(B)A+E(C) 1 3 ( A-E )(D)1 3 ( A+E )你选择的答案:C [正确]正确答案:C解答参考:A 2 +A-5E=0 ? A 2 +A-2E=3E ? ( A+2E )(A-E)=3E ? ( A+2E ) -1 =1 3 (A-E)2.假设n维向量a 1, a 2 , ? , a统性相关,0为任一n维向量,贝U ()<(A) a 1 , ?% 2 , n线惟相关;(B) a 1 , ?w 2 , n线惟无关;(C)既定能由a 1 , ?, 2 %统性表小;(D) a 1, ?, 2 , n的用关性无法确定.你选择的答案:A [正确]正确答案:A解答参考:3.设线性方程组( 3 x 1 + x 2 =1, 3 x 1 +3 x 2 +3 x 3 =0 ,5 x 1 -3 x 2 -2 x 3 =1 } 那么此方程组.(A)有唯一解(B)有无穷多解(C)无解(D)有根底解系你选择的答案:A [正确]正确答案:A解答参考:4.设n维向量组a 1, o?2,a假设任一维向量都可由这个向量组线性表出,必须有 .(A)s= n(B)s< n(C)s> n(D)s> n你选择的答案:D [正确]正确答案:D解答参考:5.设a 1 , a 2 , a 3,6 , 丫都是4维歹0向量,且4阶行歹0式| a 1 , a 2 , a 3,6 |=a , | y ,a 1 , a 2 ,a 3 |=b ,那么4 阶行歹0式| a 1 , a 2 , a3,6 + 丫|=(A)a+b(B)-a-b(C)a-b(D)b-a你选择的答案:C [正确]正确答案:C解答参考:6.设B,C 为4 阶矩阵,A=BC , R(B)=4 , R(C)=2,且a 1, a 2 , a 3 是线性方程组Ax=0的解,那么它们是(A)根底解系(B)线性相关的(C)线性无关的(D)A,B,C都不对你选择的答案:B [正确]正确答案:B解答参考:7.设n 维列向量a = ( 1 2 ,(?,0, 1 2 ) T ,矩阵A=I- a a T B=I+2 a a T 那么AB=(A)0(B)-I(C)I(D)I+ a a T你选择的答案:C [正确]正确答案:C解答参考:8.设矩阵A mx n的秩r(A)=m<,下述结论中正确的选项是>(A)A的任意m个歹U向量必线性无关(B)A的任意一个m阶子式不等丁零(C)齐次方程组Ax=0只有零解(D)齐次方程组Ax=0只有零解你选择的答案:D [正确]正确答案:D解答参考:二、判断题〔判断正误,共5道小题〕9.设A? ,B是同阶方阵,WJ AB=BA.你选择的答案:说法错误[正确]正确答案:说法错误解答参考:10.n维向量组{ a 1 ,a 2 ,a 3 ,a 4 }线性相关,贝U {a 2 , a 3 , a4 }线性无关.你选择的答案:说法错误[正确]正确答案:说法错误解答参考:11.假设方程组Ax=0有非零解,那么方程组Ax=b 一定有无穷多解. 你选择的答案:说法错误[正确]正确答案:说法错误解答参考:12.假设A? ,B均为n阶方阵,那么当| A |>| B |时,A? ,B 一定不相似.你选择的答案:说法正确[正确]正确答案:说法正确解答参考:相似矩阵行列式值相同13.设A是m x n阶矩阵且线性方程组Ax=b有惟一解,贝U m>n.你选择的答案:说法正确[正确]正确答案:说法正确解答参考:。
第一次行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。
2.排列45312的逆序数为 5 。
3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。
5.行列式25112214--x 中,x 的代数余子式是 —5 。
6.计算00000d c ba = 0行列式部分计算题 1.计算三阶行列式381141102--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。
3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。
解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则 η1-η2或η2-η1 是其导出方程组的解。
(精选)线性代数课后作业及参考答案《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003,则A-1等于()A.130012001B.100120013C. 1 3 00 010 00 1 2D. 1 2 00 10013.设矩阵A=312101214---,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解2η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<n< bdsfid="226" p=""></n<>B.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
2013—2014学年第一学期线性代数课程期末考试试卷参考答案(A 卷)一、(每小题2分,共8小题)1 错;2 对;3 对;4 C ;5 B ;6 B ;7 A ;8 B二、行列式计算 (本题共14分,第1小题6分,第2小题8分)1、计算四阶行列式1110110110110111D =.解:根据行列式的性质,原行列式等于:1(234)21311/3414*3/211103333110111012101110110111011111111111110100103*3*21011010001111003*(1)*1*(1)*(1)*(1)32r r r r r r r r r r r D +++---==-==--=----=-分分分2、计算n 阶行列式11111222(2)1233123n n>.解:根据行列式的性质,原行列式等于:12111110111001100011n n r r r r ---==原式6分2分三、矩阵X ,A ,B 满足3AX X B =+,其中 (本题共8分)301050303A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111222369B -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求矩阵X 。
解:由 3AX X B =+ 可得:(3)A E X B -= 2分又因为 0010203003A E ⎛⎫⎪⎪ ⎪⎝⎭-= 且它是可逆矩阵 1分所以 1(3)X A E B -=- 1分通过计算可得:1001/301/20100(3)A E -⎛⎫⎪= ⎪ ⎪⎝⎭- 2分所以 123111111X ⎛⎫⎪-- ⎪ ⎪-⎝⎭= 2分四、当a 取何值时,线性方程组:1232312343133(1)0x x x ax x x x a x ---+==+++=⎧⎪⎨⎪⎩无解,有惟一解,有无穷多解?并在方程组有无穷多解时求其通解。
(本题14分) 解:方程组的增广矩阵为:⎪⎪⎪⎭⎫ ⎝⎛+---01313301141a a 。
[0044]《线性代数》网上作业题答案第一次作业[论述题]线性代数模拟试题一参考答案:线性代数模拟试题一参考答案一、填空题1、k >1.2、-4.3、3.4、-1, -2, 1.5、⎪⎪⎭⎫⎝⎛1020091. 二、单选题1—5: ACCBA 三、判断题1—5: √√√√×四 Solution 根据1T 1)2(--=-C A B C E ,得1T 1)2(--=-CC A B C E C ,于是E A B C =-T )2(,所以1T )2(--=B C A . 由于⎪⎪⎪⎪⎪⎭⎫⎝⎛=-10002100321043212B C ,因此()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=--100021001210012121B C , 故 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1210012100120001A . 五、Solution 令()⎪⎪⎪⎭⎫ ⎝⎛==011111110321αααP ,则⎪⎪⎪⎭⎫⎝⎛-=-1000200021PAP .由于⎪⎪⎪⎭⎫⎝⎛--=-0111110111P,于是⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛-=-2443543321221P P A .六、Solution 由于432,,ααα线性无关,3212ααα-=, 所以R (A ) = 3, 因此4元线性方程组Ax = 0的基础解系中只有一个解向量.由3212ααα-=, 即0=+-3212ααα,得0=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0121),,,(4321αααα,因而⎪⎪⎪⎪⎪⎭⎫⎝⎛-0121是Ax = 0的基础解系.又因为4321ααααb +++=,所以b A αααα=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11111111),,,(4321, 于是⎪⎪⎪⎪⎪⎭⎫⎝⎛=1111*η是Ax = b 的特解,故Ax = b 的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-11110121k ,其中k 为任意常数.七、Proof 因为0=2A ,于是,3)()(≤+A A R R 因此223)(<≤A R . 又因为A ≠ 0,所以1)(≥A R , 所以1)(=A R .八、Solution 2)3(111111111λλλλλ+=+++=A .(1) 当03≠-≠λλ且时,有0||≠A ,方程组有唯一解.(2) 当3-=λ时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----=000021103211321131210112B . 于是2)()(==B A R R ,方程组有无穷多解,解为⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛=021111k x ,(k 为任意常数)(3) 当0=λ时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=000010000111011131110111B ,由此可知)()(B A R R ≠,原线性方程组无解.第二次作业 [论述题]线性代数模拟试题二参考答案:线性代数模拟试题二参考答案一、填空题 1. 2.2. y x 23≠.3. s r ≤.4. -4.5. 0. 二、单选题 1—5: DDCBA 三、判断题 1—5: × √ √ √ √四、Solution 显然|A | = 1 ≠ 0,于是A 可逆,因为E AB A =-2,所以AB E A =-2,两边左乘1-A ,得1--=A A B . 由于()⎪⎪⎪⎭⎫ ⎝⎛--−−→−⎪⎪⎪⎭⎫⎝⎛-−−→−⎪⎪⎪⎭⎫ ⎝⎛-=-++-100100110010211001100100110010101011100100010110001111,211323r r r r r r E A所以⎪⎪⎪⎭⎫ ⎝⎛--=-1001102111A,进而⎪⎪⎪⎭⎫ ⎝⎛-=000200320B .五、Proof 若x Ax λ=,则x x x x A x A x A A ⎪⎭⎫ ⎝⎛+=+=+=+--λλλλ11)(221212,所以λλ12+是12-+A A 的特征值.六、Solution 12345(,,,,)3R ααααα=,123,,ααα为一个极大无关组,41232133αααα=++,512311033αααα=-++.七、Solution 由于 ()2110||430(2)(1)(3)4(2)(1)102A E λλλλλλλλλ---=--=----+=---,于是A 的所有特征值为1, 2.当1=λ时,解线性方程组0=-x E A )(,得基础解系为⎪⎪⎪⎭⎫ ⎝⎛--121, 对应的所有特征向量为⎪⎪⎪⎭⎫ ⎝⎛--1211k ,其中01≠k 为任意常数.当2=λ时,解线性方程组0=-x E A )2(,得基础解系为⎪⎪⎪⎭⎫ ⎝⎛100, 对应的所有特征向量为⎪⎪⎪⎭⎫ ⎝⎛1002k ,其中02≠k 为任意常数.八、Solution 由于⎪⎪⎪⎭⎫⎝⎛+++---→⎪⎪⎪⎭⎫ ⎝⎛--+--→⎪⎪⎪⎭⎫ ⎝⎛-k k k k k k k k k k k k k k k k k k )3()3)(2(0021021124102102110122121122222 (1) 当2≠k 且3-≠k 时,线性方程组有惟一解.(2) 当2=k 时,有,3)(,2)(==B A R R 原线性方程组无解.(3) 当0)3(=+k k 时, 有),()(B A R R =原线性方程组有解.当0=k 时,⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛020002100211001200210211, 这时线性方程组只有零解. 当3-=k 时,⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-000065103211651065103211091293213211, 这时方程组有无穷多解.第三次作业[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案一、填空题 1. 2. 2. 2.3. ⎪⎪⎭⎫⎝⎛--O A B O 1211. 4. a = 0, b = 2/1. 5. =a -2. 二、单项选择题 1—5:ACBDA 三、1—5: ××√√√四、Solutiony y y x x y y x xr r --+-+=-+-++-001111111111111111111111111111431yx xy y y x xc c 11011011)1)((00111101*********4-+--=--+=++-22233]1)1)(1[(1111)1()(y x x x y xx y y =--+-=-+--=+.五、Solution 因为04111111111||≠=---=A , 所以A 可逆. 由于E E A AA 4||*==, 根据X A X A 21*+=-,有)2(1*X AA X A A +⋅=⋅-,进而AX E X 24+=. 于是E X A E =-)24(,因而1)24(--=A E X .由于⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛=-2222222221111111112100010001424A E ,所以⎪⎪⎪⎭⎫⎝⎛=-=-10111001141)24(1A E X .六、Solution 由于⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=210000321000213121642000210000213121431121636242213121B ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→210000101000300121210000321000750121 于是R (A ) = R (B ) = 3. 又因为n = 5,对应的齐次方程组的基础解系含5-3 = 2个解向量,可分别取为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00101,00012.而原线性方程组的特解可取为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-21003,因此,原线性方程组的通解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2100300101000122154321k k x x x x x (21,k k 为任意常数).七、Solution 由于A 与B 相似,于是E B E A λλ-=-,由此可得出x = 2,进而A 的特征值为0, 3, 2.当0=λ时,A 对应的特征向量为0,01111≠⎪⎪⎪⎭⎫⎝⎛-k k 。
===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。
2013年春 西南大学《线性代数》作业及答案(共5次,已整理)第一次作业【单选题】9.下列n 阶(n>2)行列式的值必为0的有: B:行列式非零元素的个数小于n 个。
【单选题】1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是: B:1【单选题】2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11【单选题】3.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:B:-1【单选题】4.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:C:5【单选题】5. 行列式A 的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A 的值等于0,则k 的取值应是:C:k=3或k=1【单选题】6. 6.排列3721456的逆序数是:C:8【单选题】7. .行列式A 的第一行元素是(-3,0,4),第二行元素是(2,a ,1),第三行元素是(5,0,3),则其中元素a 的代数余子式是:B:-29【单选题】8.已知四阶行列式D 中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D 的值等于. C:-15【论述题】行列式部分主观题 行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。
2.排列45312的逆序数为 5 。
3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是 —11 。
5.行列式25112214--x 中,x 的代数余子式是 —5 。
6.计算00000d c b a = 0行列式部分计算题 1.计算三阶行列式38114112--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列.解:i =8,j =5。
3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000z y x z y x z y x λλ 有非零解,求λ。
解:()211110100011111111-=--==λλλλλD由D=0 得 λ=15.用克莱姆法则求下列方程组:⎪⎩⎪⎨⎧=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=⨯-⨯=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D 因此,根据克拉默法则,方程组的唯一解是: x=27,y=36,z=—45第二次作业【论述题】矩阵部分主观题 矩阵部分填空题1.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---453641126= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---126641453 2.已知矩阵A=(1,2,3),则=A A T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 3.若4阶方阵A 的行列式|A|=2,则|A 3|= 8 。
4.设A 为3阶矩阵,若已知=-=mA m A 则,4m -.5. 矩阵⎪⎪⎭⎫ ⎝⎛-2311的伴随矩阵是2131⎡⎤⎢⎥-⎣⎦ 6.设A 是3阶方阵,且A 2=0,则A 3= 0 . 7.设A 为2阶方阵,|A|=2,则=-1A 12矩阵部分计算题1.已知矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2110154214321,求矩阵A的秩. 解:对矩阵作以下初等变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2110154214321A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---228011404321 →791012342211110101444404110000⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎢⎥⎢⎥⎣⎦可以看出:r (A )=22.设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡120340005,求1-A 解:A =11500420435(1)5(2)10031021+=⨯-=⨯-=-≠,所以A 可逆。
111143(1)221A +=-=-,121204(1)002A +=-=,131304(1)002A +=-=, 同法可得:210A =,225A =,2310A =-,310A =,3215A =-,3320A =.112131122232132333200051501020A A A A A A A A A A *-⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦12001105151001020A A A -*-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦=100513022012⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦ 3.设A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡543022001,求A *和A -1解:100220100345A ==≠,所以A 可逆。
易得:1110A =,1210A =-,132A =, 210A =,225A =,234A =-,310A =,320A =,332A =。
于是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=*24205100010A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==*-51525102110012420510001010111A A A 4.设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡312021001,求A -1。
解:10012060213A ==≠,所以A 可逆。
易得:116A =,123A =-,133A =-,210A =,223A =,231A =-, 310A =,320A =,332A =。
于是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=*213033006A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==*-316121021210012130330066111A A A 5.设)(ij a A = 为三阶矩阵,若已知|A|=2,求||A|A|. 解:162443===⋅=A A A A A第三次作业【单选题】11. 矩阵A适合下面哪个条件时,它的秩为r.B:A中线性无关的列向量最多有r个。
【单选题】10.矩阵A的第一行元素是(1,0,5),第二行元素是(0,2,0),则矩阵A乘以A的转置是:C:第一行元素是(26,0),第二行元素是(0,4)。
【判断题】9. 若矩阵A的行数不等于矩阵B的列数,则矩阵A乘以B没有意义。
正确答案:错误【多选题】8. 齐次线性方程组AX=0是线性方程组AX=b的导出组,则C:u是AX=0的通解,X1是AX=b的特解时,X1+u是AX=b的通解。
D:V1,V2是AX=b的解时,V1-V2是AX=0的解。
【多选题】7. n阶矩阵可逆的充要条件是:A:r(A)=n B:A的列秩为n。
【多选题】6.向量组a1,a2,...,as的秩不为零的充分必要条件是:A:a1,a2,…,as 中至少有一个非零向量。
D:a1,a2,…,as中有一个线性无关的部分组。
【多选题】5. 向量组a1,a2,...,as线性相关的充分必要条件是:C:a1,a2,…,as 中至少有一个向量可由其余向量线性表示。
D:a1,a2,…,as中至少有一部分组线性相关【单选题】4. 矩阵A为三阶矩阵,若已知|A|=m,则|-mA|的值为C:-m*m*m*m【判断题】3.若矩阵A可逆,则它一定是非奇异的。
正确答案:正确【多选题】1. 向量组a1,a2,...,as线性无关的必要条件是:A:a1,a2,…,as都不是零向量。
C:a1,a2,…,as中任意两个向量都不成比例D:a1,a2,…,as中任一部分组线性无关【判断题】2. 若矩阵A的列数等于矩阵B的行数,则矩阵A乘以B有意义正确答案:正确【论述题】关于线性方程组的主观题线性方程组部分填空题1.设齐次线性方程组A x=0的系数阵A的秩为r,当r= n 时,则A x=0 只有零解;当A x=0有无穷多解时,其基础解系含有解向量的个数为n-r .2.设η1,η2为方程组A x=b的两个解,则η1-η2或η2-η1是其导出方程组的解。
3.设α0是线性方程组A x=b的一个固定解,设z是导出方程组的某个解,则线性方程组A x=b的任意一个解β可表示为β= α0+z .4.若n元线性方程组A x=b有解,R(A)=r,则当[r=n时,有惟一解;当,r<n时,有无穷多解。
5.A 是m ×n 矩阵,齐次线性方程组A x =0有非零解的充要条件是 R (A )<n .6.n 元齐次线性方程组Ax=0仅有零解的充分必要条件是 |A|不等于0 。
7 线性方程组Ax =b 有解的充要条件是r (Ab )=r (A ) 。
8.设1u 是线性方程组A x =b 的一个特解,r n v v v -,,,21 是其导出组的基础解系,则线性方程组A x =b 的全部解可以表示为u = r n r n v c v c v c u --++++ 221111.求线性方程组⎪⎩⎪⎨⎧-=++-=+-+-=+-22334731243214321421x x x x x x x x x x x 的通解.答案:通解为:x=k 1),(001010110121212R k k k ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ 2.求齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系. 答案:基础解系为v 1=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1001,00122v3.求非齐次线性方程组的通解⎪⎩⎪⎨⎧=+++=-++=+-+322212432143214321x x x x x x x x x x x x 答案:同解方程组为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-=+121023123434241x x x x x x ,通解为)(21330101R k k x ∈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4 求方程组的通解⎪⎩⎪⎨⎧-=+-+=-+-=--+2534432312432143214321x x x x x x x x x x x x 答案:化为同解方程组⎪⎩⎪⎨⎧-=--=+-757975767171432431x x x x x x通解为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=00757610797101757121k k x 5.已知线性方程组1324321=+++x x x x 4324321-=-++x x x x 4234321-=---x x x x 6324321-=--+x x x x(1)求增广矩阵(Ab )的秩r (Ab )与系数矩阵A 的秩r (A ); (2)判断线性方程组解的情况,若有解,则求解。