千题百炼——高中数学100个热点问题(三):第85炼 几何概型
- 格式:pdf
- 大小:333.11 KB
- 文档页数:5
专题18 立体几何空间距离与截面100题任务一:空间中的距离问题1-60题一、单选题1.《九章算术·商功》:“斜解立方,得两塹堵,斜解塹堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以基,其形露矣.”文中“阳马”是底面为长方形且有一条侧棱与底面垂直的四棱锥.在阳马P ABCD -中,侧棱PA ⊥底面ABCD ,且1PA =,2AB AD ==,则点A 到平面PBD 的距离为( )A .3 B C D2.已知直线l 过定点()2,3,1A ,且方向向量为0,1,1s,则点4,3,2P 到l 的距离为( )A B C D3.在ABC 中,5AB AC ==,8BC =,若PA ⊥平面ABC ,4PA =,则点P 到BC 的距离是( )A B .5 C .D .4.在四面体P ABC -中,P A ,PB ,PC 两两垂直,设PA PB PC a ===,则点P 到平面ABC 的距离为( )A B C .3a D5.已知直线l 的方向向量为()=1,0,1a ,点()1,2,1A -在l 上,则点()3,1,1P 到l 的距离为( )A .B .1C .3D .26.已知棱长为2的正方体1111ABCD A B C D -,E ,F 分别为1A B 和11B D 的中点,则点B 到EF 的距离为( )A B C .2 D7.若平面α的一个法向量为()1,2,2n →=,点()3,0,2A ,()5,1,3B ,A α,B α∈,A 到平面α的距离为( )A .1B .2C .3D .48.已知(2,1,0),(1,0,1),(3,2,3)A B C ,则点A 到直线BC 的距离为( )A B C D9.如图,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为( )A BC D 10.如图所示的三棱锥P ABC -,PA ⊥平面ABC ,π2ABC ∠=,若PA a =,AB c =,10PB =,BC =ac 取最大值时,点A 到平面PBC 的距离为( )A B C .D .511.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,E 为A 1B 1的中点,下列说法中正确的是()A .ED 1与B 1C 所成的角大于60°B .点E 到平面ABC 1D 1的距离为1C .三棱锥E ﹣ABC 1D .直线CE 与平面ADB 1所成的角为4π12.如图,正方体1111ABCD A B C D -的棱长为2,M 为棱11D C 的中点,N 为棱1CC 上的点,且(02)CN a a =<<,现有下列结论: ①当23a =时,//AM 平面BDN ;②存在(0,2)a ∈,使得MN ⊥平面BDN ;③当1a =时,点C 到平面BDN ;④对任意(0,2)a ∈,直线AM 与BN 都是异面直线.其中所有正确结论的编号为( )A .①②B .①③C .②④D .③④13.重心是几何体的一个重要性质,我国的国宝级文物东汉铜奔马(又名:马踏飞燕)就是巧妙利用了重心位于支点正上方这一性质而闻名于世.已知正三棱锥的重心是其每个顶点与其所对的面的三角形重心连线的交点.若正三棱锥H ABC -的底面边长为2,侧棱长为G 到底面的距离为( )A B C D14.三棱锥S ABC -中,SA ⊥底面ABC ,4SA =,3AB =,D 为AB 的中点,90ABC ∠=︒,则点D 到面SBC 的距离等于( ) A .125 B .95 C .65 D .3515.在棱长为a 的正方体1111ABCD A B C D -中,E ,F ,G 分别是AD ,1AA ,11A B 的中点,则点B 到平面EFG 的距离为( ).A .12a B C .a D16.已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E 、F 分别是AB 、AD 的中点,则点B 到平面GEF 的距离为( )A B C D17.如图,在长方体1111ABCD A B C D -中,4AB =,2BC =,12CC =,E 是CD 的中点,求D 到面1D EB 的距离为( )A BC D18.如图,在长方体1111ABCD A B C D -中,2AB BC ==,1AA E ,F 分别是平面1111D C B A 与平面11BCC B 的对角线交点,则点E 到直线AF 距离为( )A B C D 19.已知AB ⊥平面α,垂足为点B ,且AO 与α相交于点O ,60AOB ∠=︒,射线OC 在α内,且30BOC ∠=︒,6OA =,则点A 到直线OC 的距离是( )A .6BC D .20.定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在棱长为1的正方体1111ABCD A B C D -中,直线AC 与1BC 之间的距离是( )A .2 B C .12 D .1321.如图,在正方体1111ABCD A B C D -中,M 、N 、P 、Q 分别是所在棱的中点,则下列结论不正确的是( )A .点1C 、1D 到平面PMN 的距离相等B .PN 与QM 为异面直线C .90PNM ∠=D .平面PMN 截该正方体的截面为正六边形22.正方体1111ABCD A B C D -的棱长为2,G 为1AA 的中点,则直线BD 与平面11GB D 的距离为( )A B C D23.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为11A D 的中点,Q 为11A B 上任意一点,E ,F 为CD 上两个动点,且EF 的长为定值,则点Q 到平面PEF 的距离( )A B .和EF 的长度有关C D .和点Q 的位置有关24.如图所示,在棱长为2的正方体1111ABCD A B C D -中,M ,N 分别为11C D ,1C C 的中点,其中正确的结论是( )A .直线MN 与AC 所成的角为45°B .直线AM 与BN 是平行直线C .二面角N BD C --D .点C 与平面MAB25.在三棱锥P ABC -中,AB BC ⊥,AB BC ==PA =O 是AC 的中点,OP ⊥底面ABC ,则点O 到平面PAB 的距离为( )A B C D26.如图,已知在长方体1111ABCD A B C D -中,14,8AB BC AA ===,点H 在棱1AA 上,且12HA =,在侧面11BCC B 内作边长为2的正方形1,EFGC P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 的距离等于线段PF 的长,则当点P 在侧面11BCC B 上运动时,2HP 的最小值是( )A .12B .24C .48D .6427.如图所示,ABCD —EFGH 为边长等于1的正方体,若P 点在正方体的内部且满足321432AP AB AD AE =++,则P 点到直线BC 的距离为( )A .34BC .45 D28.若正四棱柱1111ABCD A B C D -的底边长为2,13B AB π∠=,E 是1D D 的中点,则11A C 到平面EAC 的距离为( )A B .C D 29.已知正方体1111ABCD A B C D -的棱长为1,点P 为线段1AC 上一点,1PA =,则点P 到平面ABCD 的距离为( )A .BC .3D .430.已知△ABC 在平面β内,不重合的两点P ,Q 在平面β同侧,在点M 从P 运动到Q 的过程中,记四面体M -ABC 的体积为V ,点A 到平面MBC 的距离为d ,则可能的情况是( )A .V 保持不变,d 先变大后变小B .V 保持不变,d 先变小后变大C .V 先变大后变小,d 不断变大D .V 先变小后变大,d 不断变小二、多选题31.已知四面体ABCD 的每个顶点都在球O (O 为球心)的球面上,ABC 为等边三角形,M 为AC 的中点,2AB BD ==,AD AC BD ⊥,则( )A .BM ⊥平面ACDB .O ∉平面ABCC .O 到ACD .二面角A CD O --32.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,4AB =,12BC CD D C ===,1D C ⊥底面ABCD ,则( )A .BC ⊥平面1ACDB .直线1DD 与底面ABCD 所成的角为4πC .平面11ABCD 与平面ABCD 夹角的余弦值为7D .点C 到平面11ABC D 33.如图,在正方体1111ABCD A B C D -中,点O 在线段AC 上移动,点M 为棱1BB 的中点,则下列结论中正确的有( )A .1//D O 平面11A BCB .1D OM ∠的大小可以为90°C .异面直线1D O 与11A C D .存在实数[]0,1λ∈,使得()111312D M C B D C AB λλ---=成立34.在直三棱柱中,13AA AB BC ===,2AC =,D 是AC 的中点,下列判断正确的是()A .1BC ∥平面1A BD B .面1A BD ⊥面11AAC CC .直线1B C 到平面1A BDD .点1A 到直线BC35.关于棱长为()0a a >的正方体1111ABCD A B C D -,下列结论正确的是( )A .11AB AD ⊥ B .点C 到平面1A BDC .异面直线1BD 与1C D 所成的角是60︒D .二面角11A BD C --的余弦值为1336.如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1A O ⊥平面ABCD ,1AB AA = )A .1B 坐标是()1,1,1B .平面1OBB 的法向量()1,1,1n =-C .1A C ⊥平面1OBBD .点A 到平面1OBB 37.正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为11,,BC CC BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为92D .点C 到平面AEF 的距离为2338.如图所示,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,侧面P AD 是边长为面ABCD 为矩形,且CD =Q 是PD 的中点,则下列结论描述正确的是( )A .CQ ⊥平面P ADB .B ,Q 两点间的距离等于C .DC 与平面AQC 所成的角为60°D .三棱锥B AQC -的体积为1239.如图,在菱形ABCD 中,AB =60BAD ∠=︒,沿对角线BD 将ABD △折起,使点A ,C 之间的距离为P ,Q 分别为直线BD ,CA 上的动点,则下列说法正确的是( )A .当AQ QC =,4PD DB =时,点D 到直线PQB .线段PQC .平面ABD ⊥平面BCDD .当P ,Q 分别为线段BD ,CA 的中点时,PQ 与AD40.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( )A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCDC .AB CD ⊥D .四面体ABCD第II 卷(非选择题)三、填空题41.已知正方体1111ABCD A B C D -的棱长为1,异面直线1BB 与AC 的距离为____________.42.已知直线l 过点(0,0,0)A ,点(1,1,0)B ,则点(0,1,1)C 到直线l 的距离是_________.43.如图,正三角形ABC 的边长为2,P 是三角形ABC 所在平面外一点,PA ⊥平面ABC ,且1PA =,则P 到BC 的距离为___________.44.平面α的法向量是()2,2,1n =--,点()1,3,0A -在平面α内,则点()2,1,4P -到平面α的距离为______.45.在直三棱柱111ABC A B C -中,1AC BC ==,AB =,12AA =,则点C 到平面1ABC 的距离为____________.46.如图,已知,,60,1AP BP AP PC ABP ACP BAC PA ⊥⊥∠=∠=∠=︒=,D 是BC 中点,则点B 到平面APD 的距离是___________.47.在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1A C 的距离为___________.48.如图所示,正方形ABCD 和正方形ABEF 的边长都是1,且它们所在平面互相垂直,若点M 在线段BF 上运动,记BM a =,则当=a ___________时,点M 到直线AC 的距离有最小值.49.如图,已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点,点1C 到平面1AB D 的距离为_____________.50.已知正方体1111ABCD A B C D -的棱长为2,点E 为11A D 中点,点P 、M 在四边形ABCD 内(包括边界),点P 到平面11ABB A 的距离等于它到点D 的距离,直线1//MB 平面1EC D ,则PM 的最小值为___________.四、解答题51.如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=,30BAC ∠=,1A AC 是边长为2的等边三角形.(1)求二面角1A BC A --的大小的正切值;(2)求直线11B C 到平面1A BC 的距离.52.如图,在四棱锥E ABCD -中,底面为菱形,已知60DAB BAE ∠=∠=︒,2AD AE ==,DE =(1)求证:平面ABE ⊥平面ABCD ;(2)求点B 到平面AED 的距离.53.在长方体1111ABCD A B C D -中,12,1AB BB BC ===,E 是面对角线1CD 上一点,且145CE CD =.(1)求证:1AE CD ⊥;(2)设异面直线1AB 与1BD 所成角的大小为α,求cos α的值. (3)求点A 到平面1BCD 的距离.54.如图,在三棱锥D ABC -中,AB BD ⊥,BC CD ⊥,M 、N 分别是线段AD 、BD 的中点,1MC =,AB BD ==(1)证明:平面MNC ⊥平面BCD ;(2)若60CBD ∠=︒,求点B 到平面MNC 的距离.55.如图,三棱柱111ABC A B C -的所有棱长都是2,1AA ⊥平面ABC ,M 为AB 的中点,点N 为1CC 的中点.(1)求证:直线//MN 平面11A BC ;(2)求直线MN 到平面11A BC 的距离.56.如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证://BF 平面CDE ;(2)求点D 到平面BEF 的距离.57.如图所示的四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,//AD BC ,90BAD ∠=︒,2PA AB BC AD ===,点E 为PB 的中点.(1)求证://AE 平面PCD ;(2)若四棱锥P ABCD -的体积为2,求点A 到平面PCD 的距离.58.如图所示,边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE =//ED AF 且90DAF ∠=︒.(1)求BD 和面BEF 所成的角的正弦; (2)求点C 到直线BD 的距离;(3)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值:若不存在,说明理由.59.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,2AP AD ==,60ABC ∠=︒.点E ,F 分别在棱P A ,PB ,且//EF AB .(1)求证://EF CD ;(2)若直线PD 与平面CEF (i )求点P 与到平面CEF 的距离;(ii )试确定点E 的位置.60.如图,已知在四棱锥P ABCD -中,PA ⊥平面ABCD ,点Q 在棱PA 上,且44PA PQ ==,底面为直角梯形,90CDA BAD ∠=∠=︒,2AB =,1CD =,AD =M ,N 分别是PD ,PB 的中点.(1)求证://MQ 平面PCB ;(2)求点A 到平面MCN 的距离.任务二:几何体截面问题1-40题一、单选题1.已知正方体1111ABCD A B C D -的棱长为1,P 是空间中任意一点,有下列结论:△若P 为棱1CC 中点,则异面直线AP 与CD ;△若P 在线段1A B 上运动,则1AP PD + △若P 在以CD 为直径的球面上运动,当三棱锥P ABC -体积最大时,三棱锥P ABC -外接球的表面积为2π;△若过点P 的平面α与正方体每条棱所成角相等,则α 其中正确结论的个数为( ) A .4 B .3 C .2 D .12.已知正方体1111ABCD A B C D -,平面π和线段1AA ,1BB ,1CC ,1DD 分别交于点E ,F ,G ,H ,则截面EFGH 的形状不可能是( ) A .梯形 B .正方形 C .长方形 D .菱形3.如图正方体1111ABCD A B C D -,棱长为1,P 为BC 中点,Q 为线段1CC 上的动点,过A 、P 、Q 的平面截该正方体所得的截面记为Ω.若1CQ CC λ→→=,则下列结论错误的是( )A .当102λ∈⎛⎫⎪⎝⎭,时,Ω为四边形B .当12λ=时,Ω为等腰梯形C .当3,14λ⎛⎫∈ ⎪⎝⎭时,Ω为六边形D .当1λ=时,Ω4.如图,在正方体1111ABCD A B C D -中,M 、N 、P 分别是棱11C D 、1AA 、BC 的中点,则经过M 、N 、P 的平面与正方体1111ABCD A B C D -相交形成的截面是一个( )A .三角形B .平面四边形C .平面五边形D .平面六边形5.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,则过三点A 、D 1、E 的截面过( )A .AB 中点 B .BC 中点 C .CD 中点 D .BB 1中点6.正方体1111ABCD A B C D -的棱长为2,E 是棱1DD 的中点,则平面1AC E 截该正方体所得的截面面积为( )A .5B .C .D .7.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为( )A .B .C .D .8.在立体几何中,用一个平面去截一个几何体得到的平面图形叫截面.平面α以任意角度截正方体,所截得的截面图形不可能为( ) A .等腰梯形 B .非矩形的平行四边形 C .正五边形 D .正六边形9.如图,正方体111ABCD A B C D -的棱长为1△P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S . ①当102CQ时,S 为四边形; ②当34CQ 时,S 与11C D 的交点R 满足113C R ; ③当314CQ时,S 为六边形;④当1CQ =时,S 则下列选项正确的是( )A .①②③B .①②④C .①③④D .②③④10.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面记为S .则下列命题中正确命题的个数为( )①当102CQ时,S 为四边形; ②当12CQ 时,S 为等腰梯形; ③当34CQ 时,S 与11C D 的交点1R 满足1113C R =;④当314CQ时,S 为六边形;A .1B .2C .3D .411.正方体1111ABCD A B C D -的棱长为1,E 、F ,G 分别为BC ,1CC ,1BB 的中点,有下述四个结论,其中正确的结论是( )①直线1GA 与平面AEF 平行;②平面AEF 截正方体所得的截面面积为98;③直线1A G 与直线EF 所成的角的余弦值为; ④点C 与点B 到平面AEF 的距离相等. A .①④ B .①②C .①②④D .①②③④12.如图,正方体1111ABCD A B C D -中,点E ,F ,分别是AB ,BC 的中点,过点1D ,E ,F 的截面将正方体分割成两个部分,记这两个部分的体积分别为()1212,V V V V <,则12:V V =( )A .13B .35C .2547 D .7913.如图,在正方体1111ABCD A B C D -中,点P 为线段11A C 上的动点(点P 与1A ,1C 不重合),则下列说法不正确的是( )A .BD CP ⊥B .三棱锥C BPD -的体积为定值C .过P ,C ,1D 三点作正方体的截面,截面图形为三角形或梯形 D .DP 与平面1111D C B A 所成角的正弦值最大为1314.正方体1111ABCD A B C D -的棱长为4,12B P PC =,113D Q QC =,用经过B ,P ,Q 三点的平面截该正方体,则所截得的截面面积为( )A.B .C D .15.如图,ABCD A B C D ''''-为正方体,任作平面α与对角线AC '垂直,使得α与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l ,则( )A .S 为定值,l 不为定值B .S 不为定值,l 为定值C .S 与l 均为定值D .S 与l 均不为定值16.如图,在正方体1111ABCD A B C D -中,AB =2,E 为棱BC 的中点,F 为棱11A D 上的一动点,过点A ,E ,F 作该正方体的截面,则该截面不可能是( )A .平行四边形B .等腰梯形C .五边形D .六边形17.如图,在棱长为2的正方休1111ABCD A B C D -中,E ,F ,G 分别为11A D ,11A B ,1BB ,的中点,过E ,F ,G 三点的平而截正方休1111ABCD A B C D -所得的截面面积为( )A .4B .CD .18.正方体1111ABCD A B C D -的棱长为2,,,E F G 分别为11,,BC CC BB 的中点.则下列说法错误的是( )A .直线A 1G 与平面AEF 平行B .直线DD 1与直线AF 垂直C .异面直线A 1G 与EFD .平面AEF 截正方体所得的截面面积为9219.如图所示,在正方体1111ABCD A B C D -中,4AB =,M 、N 分别为棱11A D 、11A B 的中点,令过点B 且平行于平面AMN 的平面α被正方体的截面图形为Ω,若在Ω内随机选择一点P ,则点P 在正方体1111ABCD A B C D -内切球内的概率为( )A .427π B .1681πC .827π D .3281π20.已知正方体1111ABCD A B C D -内切球的表面积为π,P 是空间中任意一点: △若点P 在线段1AD 上运动,则始终有11C P CB ⊥; △若M 是棱11C D 中点,则直线AM 与1CC 是相交直线; △若点P 在线段1AD 上运动,三棱锥1D BPC -体积为定值;△E 为AD 中点,过点1B ,且与平面1A BE 以上命题为真命题的个数为( ) A .2 B .3 C .4 D .5二、多选题21.已知正方体1111ABCD A B C D -的棱长为1,下列结论正确的有( ) A .异面直线1CA 与11B D 所成角的大小为π3B .若E 是直线AC 上的动点,则1DE ∥平面11A BCCD .若此正方体的每条棱所在直线与平面α所成的角都相等,则α22.如图,棱长为1的正方体111ABCD A BC D -中P 为线段1A B 上的动点(不含端点)则下列结论正确的是( )A .直线1D P 与AC 所成的角可能是6π B .平面11D A P ⊥平面1A AP C .三棱雉1D CDP -的体积为定值D .平面1APD 截正方体所得的截面可能是直角三角形23.如图,在正方体1111ABCD A B C D -中,点E ,F 分别为11A B ,BC 的中点,设过点E ,F ,1D 的平面为α,则下列说法正确的是( )A .1EFD △为等边三角形;B .平面α交正方体1111ABCD A BCD -的截面为五边形;C .在正方体1111ABCD A B C D -中,存在棱与平面α平行; D .在正方体1111ABCD A B C D -中,不存在棱与平面α垂直;24.(多选)已知正方体1111ABCD A B C D -,若1AC ⊥平面α,则关于平面α截此正方体所得截面的判断正确的是( )A .截面形状可能为正三角形B .截面形状可能为正方形C .截面形状可能为正六边形D .截面形状可能为五边形25.如图,在棱长为1的正方体1111ABCD A B C D -中,P ,M ,N 分别为棱1CC ,CB ,CD 上的动点(点P 不与点C ,1C 重合),若CP CM CN ==,则下列说法正确的是( )A .存在点P ,使得点1A 到平面PMN 的距离为43B .用过P ,M ,1D 三点的平面去截正方体,得到的截面一定是梯形C .1//BD 平面PMND .用平行于平面PMN 的平面α去截正方体,得到的截面为六边形时,该六边形周长一定为26.如图所示,在棱长为2的正方体1111ABCD A B C D -中,M ,N 分别为棱11C D ,1C C 的中点,则下列结论正确的是( )A .直线AM 与BN 是平行直线B .直线MN 与AC 所成的角为60°C .直线MN 与平面ABCD 所成的角为45°D .平面BMN 截正方体所得的截面面积为3227.如图,在正方体1111ABCD A B C D -中,点P 为线段11A C 上的动点(点P 与1A ,1C 不重合),则下列说法正确的是( )A .BD CP ⊥B .三棱锥C BPD -的体积为定值C .过P ,C ,1D 三点作正方体的截面,截面图形为三角形或梯形D .DP 与平面1111D C B A 所成角的正弦值最大为1328.如图所示,在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为棱11A D ,1DD 的中点,则以下四个结论正确的是( )A .1//BC MNB .若P 为直线1CC 上的动点,则111B P BC ⋅为定值C .点A 到平面1C MN 的距离为13D .过MN 作该正方体外接球的截面,所得截面的面积的最小值为38π29.如图,正方体1111ABCD A B C D -的棱长为2,E ,F 分别为AD ,1AA 的中点,则以下说法正确的是( )A .平面EFC 截正方体所得截面周长为B .1BB 上存在点P ,使得1C P ⊥平面EFCC .三棱锥B EFC -和1D FB C -体积相等D .1BB 上存在点P ,使得//AP 平面EFC30.如图,正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为BC ,1CC ,1BB 的中点,则( )A .直线1A D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为98D .点B 到平面AEF 的距离为13第II 卷(非选择题)三、填空题31.已知正四棱柱1111ABCD A B C D -中,1124BE BB ==,143AB AA =,则该四棱柱被过点1A ,C ,E 的平面截得的截面面积为______.32.正三棱锥P ABC -AB ==E 在棱PA 上,且3PE EA =,已知点P A B C 、、、都在球O 的表面上,过点E 作球O 的截面α,则α截球O 所得截面面积的最小值为___________.33.已知在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱C 1D 1,B 1C 1的中点,过A ,E ,F 三点作该正方体的截面,则截面的周长为________.34.正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点,下列四个选项①直线1D D 与直线AF 垂直②直线1A G 与平面AEF 平行③平面AEF 截正方体所得的截面面积为98④点C 和点G 到平面AEF 的距离相等;其中正确的是____________35.如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q的平面截该正方体所得的截面记为S ,则下列命题正确的是______ (写出所有正确命题的编号).①当102CQ 时,S 为四边形; ②当12CQ时,S 为等腰梯形; ③当34CQ时,S 与11C D 的交点R 满足113C R ; ④当314CQ 时,S 为六边形 四、解答题36.如图,在正方体1111ABCD A B C D -中,E F ,分别为11A D 和1CC 的中点.(1)画出由A ,E ,F 确定的平面β截正方体所得的截面,(保留作图痕迹,使用铅笔作图);(2)求异面直线EF 和AC 所成角的大小.37.已知正三棱柱的所有棱长都是1(1)画经过ABC 三点的截面(2)过棱BC 作和底面成60二面角的截面,求此截面面积.38.如图,在正方体1111ABCD A B C D 中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ;(2)平面//EFG 平面11BDD B ;(3)若正方体棱长为1,过A ,E ,1C 三点作正方体的截面,画出截面与正方体的交线,并求出截面的面积.39.(1)如图,棱长为2的正方体1111ABCD A B C D -中,M ,N 是棱11A B ,11A D 的中点,在图中画出过底面ABCD 中的心O 且与平面AMN 平行的平面在正方体中的截面,并求出截面多边形的周长为:______;(2)作出平面PQR 与四棱锥ABCDE 的截面,截面多边形的边数为______.40.如图①,正方体1111ABCD A B C D -的棱长为2,P 为线段BC 的中点,Q 为线段1CC 上的动点,过点A 、P 、Q 的平面截该正方体所得的截面记为S .(1)若12CQ <<,请在图①中作出截面S (保留尺规作图痕迹);(2)若1CQ =(如图②),试求截面S 将正方体分割所成的上半部分的体积1V 与下半部分的体积2V 之比.。
考前百问扫描(sǎomiáo)表数列道哪些性质?〔8条以上〕。
你知道有哪些通项公式吗?求和公式呢?你会把通项公式与求和公式写成函数形式吗?你会多少变式?如对于等差数列的求和公式有——3、你知道等比数列的定义、图象与性质吗?除了课本性质以外,你还知道哪些补充性质?〔8条以上〕。
你知道有那些通项公式吗?求和公式呢?你会把通项公式与求和公式写成函数形式吗?你知道“万能通项公式〞吗?〔an=Sn-=Sn-1,n≥2,a1=S1单列。
〕4、你会用函数观点处理数列问题吗?例如,把等差数列的通项公式以及求和公式写成函数形式是怎样的?这有什么好处?5、你有抓根本量的意识吗?你有用整体法处理数列问题的习惯吗?6、你知道从递推公式求数列的通项公式有哪些方法吗?〔9种左右〕口诀是什么?〔有套就套,没套就造, 待定系数猜后证;作差累加,作商累乘,同取倒对同平开〕7、你知道数列求和有哪些常见的方法吗?〔9种左右〕,口诀是什么?〔套、倒、错、拆、裂、猜、造〕8、你知道解数列题目容易犯的三个错误吗?〔1、无视n=1的情形;2、无视公比q=1的情形;3〕请自己写一个9、你会科学设元吗?Σ常用来简单得表示什么运算?10、 12+22+32+…+n2=?13+23+33+…+n3=?11、你知道无穷递缩等比数列的各项和的公式吗?怎样得来的?三1、你知道三角函数的知识体系吗?〔三角函数分为三大块,第一块是任意角的三角函数,包括三角函数的定义,诱导公式,同角三角函数的关系,和差角的公式,倍角半角的公式,一一共是5组,都要分类记牢。
第二块是三角函数的图象和性质,这才是真正意义上的三角函数,包括正弦函数、角函数余弦函数正切函数以及余切函数的图象和性质,其性质当然也是从三性二域方面去研究。
第三块是三角形,包括三角形的各种性质,尤其是正弦定理、余弦定理、射影定理、正弦面积公式、五心及其性质〕2、你有“看角看名看构造〞的习惯吗?你知道升幂公式与降幂公式吗?你知道万能公式吗?三角不等式或者三角方程的解集你记得注明K∈Z吗?3、你会用凑角法求三角函数值吗?请举例说明常见的凑角形式。
专题04函数的性质综合应用必刷100题任务一:善良模式(基础)1-50题一、单选题1.(2021·黑龙江·牡丹江市第三高级中学高三月考(文))已知函数(1)f x +的定义域为(-2,0),则(21)f x -的定义域为( )A .(-1,0)B .(-2,0)C .(0,1)D .1,02⎛⎫-⎪⎝⎭2.(2021·湖南·高三月考)已知函数()f x 满足22()()326f x f x x x +-=++,则( )A .()f x 的最小值为2B .x R ∃∈,22432()x x f x ++>C .()f x 的最大值为2D .x R ∀∈,22452()x x f x ++>3.(2021·河南·孟津县第一高级中学高三月考(理))若函数()2021x x f x x ππ-=-+,则不等式(1)(24)0f x f x ++-≥的解集为( )A .[1,)+∞B .(,1]-∞C .(0,1]D .[1,1]-4.(2022·全国·高三专题练习)已知函数f (x 2+1)=x 4,则函数y =f (x )的解析式是( ) A .()()21,0f x x x =-≥ B .()()21,1f x x x =-≥ C .()()21,0f x x x =+≥ D .()()21,1f x x x =+≥5.(2021·湖南省邵东市第一中学高三月考)已知函数()f x 满足()()()222f a b f a f b +=+对,a b ∈R 恒成立,且(1)0f ≠,则(2021)f =( )A .1010B .20212C .1011D .202326.(2021·安徽·六安二中高三月考)设()f x 为奇函数,且当0x ≥时,()21x f x =-,则当0x <时,()f x =( ) A .21x -- B .21x -+ C .21x --- D .21x --+7.(2021·河南·高三月考(理))||||2()x x x e f x e -=的最大值与最小值之差为( )A .4-B .4eC .44e- D .08.(2021·黑龙江·牡丹江市第三高级中学高三月考(理))已知减函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为( ) A .(),3-∞ B .()3,+∞ C .(),3-∞- D .()3,-+∞9.(2021·陕西·西安中学高三期中)已知函数()(1ln 31xxa x f x x a +=+++-(0a >,1a ≠),且()5f π=,则()f π-=( ) A .5- B .2C .1D .1-10.(2021·北京通州·高三期中)已知函数()f x 的定义域为R ,()54f =,()3f x +是偶函数,[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,则( )A .()04f <B .()14f =C .()24f >D .()30f <11.(2021·北京朝阳·高三期中)若函数()()221xf x a a R =-∈+为奇函数,则实数a =( ). A .2-B .1-C .0D .112.(2022·上海·高三专题练习)函数()2020sin 2f x x x =+,若满足()2(1)0f x x f t ++-≥恒成立,则实数t 的取值范围为( ) A .[2,)+∞ B .[1,)+∞C .3,4⎛⎤-∞ ⎥⎝⎦ D .(,1]-∞13.(2021·江苏·海安高级中学高三月考)已知定义在R 上的可导函数()f x ,对任意的实数x ,都有()()4f x f x x --=,且当()0,x ∈+∞时,()2f x '>恒成立,若不等式()()()1221f a f a a --≥-恒成立,则实数a 的取值范围是( ) A .1,02⎛⎫-⎪⎝⎭B .10,2⎡⎤⎢⎥⎣⎦C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭14.(2021·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为( ) A .1个 B .2个 C .3个 D .0个15.(2020·广东·梅州市梅江区嘉应中学高三月考)已知函数()f x 是定义在R 上的奇函数,满足1(2)()f x f x +=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,()2log (31)f x x =-+,则()2021f 等于( ) A .4 B .2C .2-D .2log 716.(2021·江西·九江市柴桑区第一中学高三月考(文))已知函数()f x 是定义在[3,2]a --上的奇函数,且在[3,0]-上单调递增,则满足()()0f m f m a +->的m 的取值范围是( ) A .5,82⎛⎤⎥⎝⎦B .5,32⎛⎤ ⎥⎝⎦C .[]2,3D .[]3,3-17.(2021·浙江·高三期中)已知0a >,0b >,则“2ln39b a ab>-”是“a b >”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件18.(2021·重庆市实验中学高三月考)已知函数()()2312,1,1x x a x x f x a x ⎧-++<⎪=⎨≥⎪⎩,若函数()f x 在R 上为减函数,则实数a 的取值范围为( ) A .1,13⎡⎫⎪⎢⎣⎭B .11,32⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭19.(2021·全国·高三期中)已知()2f x +是偶函数,当122x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫= ⎪⎝⎭,()3b f =,()4c f =,则a 、b 、c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .a b c <<20.(2021·宁夏·海原县第一中学高三月考(文))已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+,若()13f =,则()()()()1232022f f f f ++++=( )A .2022B .0C .3D .2022-21.(2021·河北·高三月考)已知函数()3()21sin f x x x x =+++,则()(32)4f x f x -+-<的解集为( ) A .(,1)-∞ B .(1,)+∞ C .(,2)-∞ D .(2,)+∞22.(2021·河南·高三月考(文))已知函数()()12x x f x e e -=+,记12a fπ⎛⎫⎪ ⎪⎝⎭=,1log 2b f π⎛⎫ ⎪⎝⎭=,()c f π=,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <b <a C .b <a <c D .b <c <a23.(2021·安徽·高三月考(文))已知定义在R 上的函数()f x 满足:(1)f x -关于(1,0)中心对称,(1)f x +是偶函数,且312f ⎛⎫-= ⎪⎝⎭,则92f ⎛⎫⎪⎝⎭的值为( ) A .0 B .-1 C .1 D .无法确定24.(2021·江西·赣州市赣县第三中学高三期中(理))函数()y f x =对任意x ∈R 都有(2)()f x f x +=-成立,且函数(1)y f x =-的图象关于点()1,0对称,(1)4f =,则(2020)(2021)(2022)f f f ++=( ) A .1 B .2C .3D .425.(2021·江西·高三月考(文))若定义在R 上的奇函数()f x 在区间(0,)+∞上单调递增,且()30f =,则满足0()2f x x -≤的x 的取值范围为( ) A .(][),15,-∞-+∞ B .[][]3,05,-+∞ C .[][]1,02,5-D .(][),10,5-∞-26.(2022·全国·高三专题练习)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有( ) A .f 3()2<f 1()4-<f 1()4B .f 1()4<f 1()4-<f 3()2C .f 3()2<f 1()4<f 1()4-D .f 1()4-<f 3()2-<f 1()427.(2022·全国·高三专题练习)函数()342221x x f x x x ⎧-≤⎪=⎨->⎪-⎩,,则不等式()1f x ≥的解集是( ) A .()513⎡⎫-∞⋃+∞⎪⎢⎣⎭,, B .(]5133⎡⎤-∞⋃⎢⎥⎣⎦,, C .513⎡⎤⎢⎥⎣⎦, D .533⎡⎤⎢⎥⎣⎦,28.(2021·安徽省亳州市第一中学高三月考(文))函数()f x 满足()()4f x f x =-+,若()23f =,则()2022f =( ) A .3 B .-3 C .6 D .202229.(2021·贵州·贵阳一中高三月考(理))函数2()ln(231)f x x x =-+的单调递减区间为( ) A .3,4⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .3,4⎛⎫+∞ ⎪⎝⎭D .(1,)+∞30.(2021·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为( )A .404B .804C .806D .40231.(2021·安徽·池州市江南中学高三月考(理))已知定义域为R 的函数f (x )满足f (-x )=-f (x +4),且函数f (x )在区间(2,+∞)上单调递增,如果x 1<2<x 2,且x 1+x 2>4,则f (x 1)+f (x 2)的值( ) A .可正可负 B .恒大于0 C .可能为0 D .恒小于032.(2021·河南·模拟预测(文))已知非常数函数()f x 满足()()1f x f x -=()x R ∈,则下列函数中,不是奇函数的为( ) A .()()11f x f x -+ B .()()11f x f x +-C .()()1f x f x -D .()()1f x f x +33.(2021·四川郫都·高三月考(文))已知奇函数()f x 定义域为R ,()()1f x f x -=,当10,2x ⎛⎤∈ ⎥⎝⎦时,()21log 2f x x ⎛⎫=+ ⎪⎝⎭,则52f ⎛⎫= ⎪⎝⎭( ) A .2log 3 B .1C .1-D .034.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且满足()()()()2f x y f x y f x f y ++-=,且12f ⎛⎫= ⎪⎝⎭,()00f ≠,则()2021f =( ). A .2021 B .1 C .0D .1-二、多选题35.(2021·全国·高三月考)()f x 是定义在R 上的偶函数,对x R ∀∈,均有()()2f x f x +=-,当[]0,1x ∈时,()()2log 2f x x =-,则下列结论正确的是( ) A .函数()f x 的一个周期为4B .()20221f =C .当[]2,3x ∈时,()()2log 4f x x =--D .函数()f x 在[]0,2021内有1010个零点36.(2021·重庆市第十一中学校高三月考)关于函数()321x f x x +=-,正确的说法是( ) A .()f x 有且仅有一个零点 B .()f x 在定义域内单调递减 C .()f x 的定义域为{}1x x ≠ D .()f x 的图象关于点()1,3对称37.(2021·福建·三明一中高三月考)下列命题中,错误的命题有( ) A .函数()f x x =与()2g x =是同一个函数B .命题“[]00,1x ∃∈,2001x x +≥”的否定为“[]0,1x ∀∈,21x x +<”C .函数4sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭的最小值为4 D .设函数22,0()2,0x x x f x x +<⎧⎪=⎨≥⎪⎩,则()f x 在R 上单调递增38.(2021·福建·高三月考)已知()f x 是定义域为R 的函数,满足()()13f x f x +=-,()()13f x f x +=-,当02x ≤≤时,()2f x x x =-,则下列说法正确的是( ) A .()f x 的最小正周期为4 B .()f x 的图象关于直线2x =对称 C .当04x ≤≤时,函数()f x 的最大值为2 D .当68x ≤≤时,函数()f x 的最小值为12-39.(2022·全国·高三专题练习)设f (x )的定义域为R ,给出下列四个命题其中正确的是( ) A .若y =f (x )为偶函数,则y =f (x +2)的图象关于y 轴对称; B .若y =f (x +2)为偶函数,则y =f (x )的图象关于直线x =2对称; C .若f (2+x )=f (2-x ),则y =f (x )的图象关于直线x =2对称; D .若f (2-x )=f (x ),则y =f (x )的图象关于直线x =2对称.40.(2021·广东·湛江二十一中高三月考)已知函数sin ()()x f x e x R =∈,则下列论述正确的是( ) A .()f x 的最大值为e ,最小值为0 B .()f x 是偶函数C .()f x 是周期函数,且最小正周期为2πD .不等式()f x ≥5,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭41.(2021·全国·模拟预测)已知函数()21xf x x =-,则下列结论正确的是( ) A .函数()f x 在(),1-∞上是增函数 B .函数()f x 的图象关于点()1,2中心对称C .函数()f x 的图象上存在两点A ,B ,使得直线//AB x 轴D .函数()f x 的图象关于直线1x =对称42.(2022·全国·高三专题练习)对于定义在R 上的函数()f x ,下列说法正确的是( ) A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称第II 卷(非选择题)三、填空题43.(2021·广东·高三月考)请写出一个函数()f x =__________,使之同时具有如下性质: ①图象关于直线2x =对称;②x R ∀∈,(4)()f x f x +=.44.(2021·湖南·高三月考)已知偶函数()f x 满足()()416f x f x +-=,且当(]0,1x ∈时,()[]222()f x f x =,则()3f -=___________.45.(2021·北京·中国人民大学附属中学丰台学校高三月考)定义在R 上的函数f (x )满足()()22f x f x -=+,且x ∈(0,1)时,1()24x f x =+,则23(log 8)2f +=___.46.(2021·上海奉贤区致远高级中学高三月考)定义在R 上的函数()f x 满足(6)()f x f x +=,2(2),[3,1)(),[1,3)x x f x x x ⎧-+∈--⎪=⎨∈-⎪⎩,数列{}n a 满足(),n a f n n N =∈*,{}n a 的前n 项和为n S ,则2021S =_________.47.(2021·辽宁沈阳·高三月考)若函数()3121x f x m x⎛⎫=-⋅ ⎪-⎝⎭为偶函数,则m 的值为________.48.(2021·全国·高三月考(理))已知函数2()sin f x x x x =-,则不等式(21)(1)f x f x -<+的解集为______.49.(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________.50.(2021·河南·高三月考(文))已知偶函数()f x 和奇函数()g x 均定义在R 上,且满足()()224359xf xg x x x +=-++,则()()13f g -+=______.任务二:中立模式(中档)1-30题一、单选题1.(2021·河南平顶山·高三月考(文))若函数2233()1x x f x x ++=+的最大值为a ,最小值为b ,则a b +=( ) A .4 B .6 C .7 D .82.(2021·重庆南开中学高三月考)函数()1xf x x=+,则下列结论中错误..的是( ) A .()y f x =的图象关于点()1,1-对称 B .()f x 在其定义域上单调递增 C .()f x 的值域为()1,1-D .函数()()g x f x x =-有且只有一个零点3.(2021·辽宁沈阳·高三月考)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x e f x f x -<-的解集为( )A .(),e -∞B .(),1-∞C .(),e +∞D .()1,+∞4.(2021·北京交通大学附属中学高三开学考试)已知()f x 是定义在R 上的偶函数,当0x >时,'2()()0xf x f x x->,且()20f -=,则不等式()0f x x >的解集是( ) A .()()2,00,2- B .()(),22,-∞-+∞ C .()()2,02,-+∞D .()(),20,2-∞-5.(2021·广东·深圳市第七高级中学高三月考)已知,,(0,1)a b c ∈,且22ln 1a a e -+=,222ln 2b b e -+=,232ln 3c c e -+=,其中e 是自然对数的底数,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>6.(2021·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为( ) A .2- B .0C .2D .47.(2021·陕西·武功县普集高级中学高三期中(文))已知函数()()2020sin 2020f x x x =+,若()()21f x x f m +≥-恒成立,则实数m 的取值范围为( ) A .[)1,+∞ B .3,4⎛⎤-∞ ⎥⎝⎦C .[)2,+∞D .(],1-∞8.(2022·全国·高三专题练习)已知f (x )是奇函数并且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A .14 B .18C .78-D .38-9.(2022·全国·高三专题练习(文))已知函数()1sin sin f x x x=+,定义域为R 的函数()g x 满足()()0g x g x -+=,若函数()y f x =与()y g x =图象的交点为()()()112266,,,,,,x y x y x y ⋯,则()61iji x y =+=∑( ) A .0 B .6C .12D .2410.(2021·河南·高三月考(理))对于函数()f x ,122x x a +=时,()()122f x f x b += ,则函数()f x 的图象关于点(),a b 成中心对称.探究函数()x f x =图象的对称中心,并利用它求12021()()()()202220222230222022f f f f +++⋅⋅⋅+的值为( ) A .4042 B.C .2022 D .202111.(2021·广东·揭阳市揭东区教育局教研室高三期中)定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥时,()()22,031log 1,3x x f x x x -+≤<⎧=⎨-+≥⎩,若对任意的[],1x t t ∈+,不等式()()()12f x f x t f -≤++-恒成立,则实数t 的最小值为( ) A .-1 B .23-C .13-D .1312.(2021·山东菏泽·高三期中)定义在R 上的偶函数()f x 满足(2)(2)f x f x -=+,且当[0,2]x ∈时,21,01()44,12x e x f x x x x ⎧-≤≤⎪=⎨-+<≤⎪⎩,若关于x 的不等式||()m x f x ≤的整数解有且仅有7个,则实数m 的取值范围为( ) A .11,53e e --⎡⎤⎢⎥⎣⎦B .11,53e e --⎛⎤⎥⎝⎦C .11,75e e --⎡⎤⎢⎥⎣⎦D .11,75e e --⎛⎤⎥⎝⎦13.(2021·河南南阳·高三期中(理))已知2()sin 20211xf x x =++,其中()f x '为函数()f x 的导数.则(2021)(2021)(2022)(2022)f f f f ''+-+--=( )A .0B .2C .2021D .202214.(2021·山西大附中高三月考(理))已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x '+<,若2211(),2(2),ln (ln )3333a fb fc f ==--=,则,,a b c 的大小关系正确的是( ) A .a b c << B .b c a << C .a c b << D .c a b <<15.(2021·天津·南开中学高三月考)已知ln 22a =,1e b =,2ln39c =,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>16.(2021·江西赣州·高三期中(理))已知定义在R 上的函数()f x 满足1()()02f x f x '+>且有1(2)f e =,则()f x >的解集为( )A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞17.(2021·新疆·克拉玛依市教育研究所模拟预测(理))已知定义在R 上的奇函数()f x 满足()()2f x f x =-,当[]1,1x ∈-时,()3f x x =,若函数()()()4g x f x k x =--的所有零点为()1,2,3,,i x i n =,当1335k <<时,1nii x==∑( )A .20B .24C .28D .3618.(2021·北京十四中高三期中)函数()f x 是定义域为R 的奇函数,满足()()22f x f x ππ-=+,且当[0,)x π∈时,2sin ()xf x x πx π=-+,给出下列四个结论:①()0f π=;②π是函数()f x 的周期;③函数()f x 在区间(1,1)-上单调递增;④函数()()sin1([10,10])g x f x x =-∈-所有零点之和为3π. 其中,所有正确结论的序号是( ) A .①③ B .①④ C .①③④ D .①②③④19.(2021·江苏扬州·高三月考)已知32a >且33ln ln 22a a =,2b >且ln22ln b b =,52c >且55lnln 22c c =,则( ) A .c b a << B .b c a << C .a b c << D .a c b <<20.(2021·福建·福州四中高三月考)设函数()f x 的定义域为R ,满足()()12f x f x +=,且当(]0,1x ∈时,()()1f x x x =-.若对任意(],x m ∈-∞,都有()89f x ≥,则m 的取值范围是( ) A .9,4⎛⎤-∞ ⎥⎝⎦ B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦二、多选题21.(2021·全国·高三专题练习)已知函数()sin cos 2cos2x xf x x=+,则下列关于()f x 判断正确的是( )A .()f x 是以π为周期的周期函数B .()f x 的图象关于原点对称C .()f x的值域为⎡⎢⎣⎦D .函数()f x 的图象可由函数cos242sin 2x y x =+的图象向右平移4π个单位长度获得22.(2021·全国·高三专题练习)函数()f x 对任意实数x 都有()()f x f x ππ+=-,若()()()2f x f x g x +-=,1()()()2g x g x f x π++=,2()(),(),2cos 2()0,(),2g x g x x k k Z x f x x k k Z πππππ-+⎧≠+∈⎪⎪=⎨⎪=+∈⎪⎩则以下结论正确的是( )A .函数()g x 对任意实数x 都有()()g x g x ππ+=-B .函数1()f x 是偶函数C .函数2()f x 是奇函数D .函数1()f x ,2()f x 都是周期函数,且π是它们的一个周期23.(2022·全国·高三专题练习)(多选题)已知函数f (x )的定义域为R ,对任意实数x ,y 满足f (x +y )=f (x )+f (y )+12,且f 1()2=0,当x >12时,f (x )>0,则以下结论正确的是( ) A .f (0)=-12,f (-1)=-32B .f (x )为R 上的减函数C .f (x )+12为奇函数 D .f (x )+1为偶函数24.(2021·重庆·高三月考)定义域在R 上函数()f x 的导函数为()f x ',满足()()2'2f x f x <-,()211f e =-,则下列正确的是( )A .()00f >B .()421f e >-C .()()()2021202021f ef e ->-D .()()22202120201f e f e ->-25.(2022·全国·高三专题练习)已知定义域为R 的函数()f x 对任意的实数x ,y 满足()()()()cos 222f x f y x y x y f π++-=⋅,且1(0)(1)0,()12f f f ===,并且当1(0,)2x ∈时,()0f x >,则下列选项中正确的是( ) A .函数()f x 是奇函数B .函数()f x 在11(,)22-上单调递增C .函数()f x 是以2为周期的周期函数D .5()02f -=第II 卷(非选择题)三、填空题26.(2021·广东·揭阳市揭东区教育局教研室高三期中)若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3x f x e >的解集为________________.27.(2021·福建宁德·高三期中)已知函数()()8sin ,02log 1,2x x f x x x π≤≤⎧=⎨->⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是___________.28.(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围为_______.29.(2021·广东·大埔县虎山中学高三月考)已知函数())2log f x x =,若任意的正数,a b ,满足()()410f a f b +-=.则19aa a b++的最小值_____.30.(2021·上海·格致中学高三月考)已知函数()f x 的定义域()0,D =+∞,且对任意12,x x D ∈,恒有()()()1212f x x f x f x =+,当1x >时,()0f x <,若()()2212f m f m ->-,则m 的取值范围是______________.任务三:邪恶模式(困难)1-20题一、单选题1.(2021·内蒙古·海拉尔第二中学高三期中(理))已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x ≥时,有22()()f x xf x x +'>,则不等式()()()220182018420x f x f +++-<的解集为( ) A .(),2016-∞- B .()2016,2012-- C .(),2018-∞- D .()2016,0-2.(2021·四川遂宁·模拟预测(理))设函数()f x 是定义在()(),00,-∞⋃+∞上的奇函数,()f x '为()f x 的导函数,当0x >时,ln ()()0x x f x f x '⋅+>,则使得()2()01x f x x +≤-成立的x 的取值范围( )A .(](),20,1-∞-B .[)2,0(0,1)-C .[)2,0(1,)-+∞D .(](),21,-∞-+∞3.(2021·江苏·无锡市第一中学高三月考)已知()f x 是定(,0)(0,)-∞+∞的奇函数,()f x '是()f x 的导函数,(1)0f <,且满足:()()ln 0f x f x x x+'⋅<,则不等式(1)()0x f x -⋅<的解集为( ) A .(1,)+∞ B .(,1)(0,1)-∞- C .(,1)-∞ D .(,0)(1,)-∞⋃+∞4.(2021·江西景德镇·模拟预测(理))定义在R 上的函数()f x ,满足对于任意0x ≠总有1()()f x f x =--成立,且当(1,1]x ∈-时2,01()1<<0x x x f x x ⎧-+≤≤⎪=⎨-⎪⎩,函数,>1(),01,<0a x g x ax a x a x ⎧⎪=+≤≤⎨⎪-⎩.设两函数图像交点坐标为1122(),(,),(,)n n x y x y x y ⋅,当121n x x x =-时,实数a 的取值范围为( )A .1(0,3(,1)4- B .1(0,)(1,324+C .1(3)(1,)4-+∞D .1(3)(1,324-+5.(2021·四川·高三月考(理))函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为( ) A .12 B .14 C .16 D .186.(2020·新疆·克拉玛依市教育研究所三模(理))定义在R 上的函数()f x 的导函数为()f x ',1(1)3f -=-,对于任意的实数x 均有ln3()()f x f x '⋅<成立,且1()12y f x =-+的图像关于点(12,1)对称,则不等式2()30x f x -->的解集为( ) A .(1,+∞) B .(-1,+∞) C .(-∞,-1) D .(-∞,1)7.(2021·黑龙江·哈尔滨三中高三期中(文))设函数()f x 在R 上的导函数为()f x ',若()()1f x f x '>+,()(6)2f x f x +-=,(6)5f =,则不等式()210x f x e ++<的解集为( )A .(,0)-∞B .(0,)+∞C .(0,3)D .(3,6)8.(2021·四川·高三期中(理))已知定义在R 上的函数()f x 和()1f x +都是奇函数,当(]0,1x ∈时,21()log f x x=,若函数()()sin()F x f x x π=-在区间[1,]m -上有且仅有10个零点,则实数m 的最小值为( ) A .3 B .72C .4D .929.(2021·黑龙江大庆·高三月考(理))设()e 2ln e 2a +=+,2ln 2b =,2e 4ln 4c =-,其中e 是自然对数的底数,则( )A .c b a <<B .b c a <<C .a c b <<D .c a b <<10.(2021·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤⎪=⎨->⎪⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( ) A .109,32⎛⎫ ⎪⎝⎭B .(0,1)C .510,23⎛⎫⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭11.(2021·吉林吉林·高三月考(理))()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则下列结论中正确的为( ) ①()0,1m ∈;②()122e 2,e 1a b c d --+++∈--,其中e 为自然对数的底数; ③函数()y f x x m =--恰有三个零点. A .①② B .①③C .②③D .①②③12.(2021·黑龙江·哈尔滨三中高三期中(理))设函数()f x 在R 上的导函数为()f x ',若()()1x f f x '+>,()()6f x f x ''=-,()31f =,()65f =,则不等式()ln 210f x x ++<的解集为( ) A .()0,1 B .()0,3 C .()1,3 D .()3,6二、多选题13.(2021·江苏如皋·高三月考)已知函数()y f x =满足:对于任意实数,R x y ∈,都有()()2()cos f x y f x y f x y ++-=,且(0)0f =,则( )A .()f x 是奇函数B .()f x 是周期函数C .R,()1x f x ∀∈≤D .()f x 在ππ[,]22-上是增函数14.(2021·海南·高三月考)已知偶函数()f x 的定义域为R ,且当[0,3]x ∈时,21,[0,1]()(2),(1,3]x x f x f x x ⎧-∈⎪=⎨--∈⎪⎩,当3x >时,1()(4)2f x f x =-,则以下结论正确的是( ) A .()f x 是周期函数B .任意()()1212,,2x x R f x f x ∈-≤C .1(10)4f -=-D .()f x 在区间[2,4]上单调递增15.(2021·辽宁实验中学高三期中)已知函数()266,1ln 1,1x x x f x x x ⎧---≤⎪=⎨+>⎪⎩,若关于x 的方程()f x m =恰有三个不同实数解123x x x <<,则关于n 的方程()()121222356516n x x x x x -+=++-的正整数解取值可能是( )A .1B .2C .3D .416.(2021·福建宁德·高三期中)已知函数sin cos ()e e x x f x =-,下列说法中正确的是( )A .()()f x f x -=B .()f x 在区间0,2π⎛⎫ ⎪⎝⎭上是增函数 C .4f x π⎛⎫+ ⎪⎝⎭是奇函数 D .()f x 在区间,2ππ⎛⎫ ⎪⎝⎭上有唯一极值点第II 卷(非选择题)三、填空题17.(2021·天津市第四十七中学高三月考)已知函数()2e ,0,0x x f x x x ⎧≤⎪=⎨>⎪⎩,2()2g x x x =-+(其中e 是自然对数的底数),若关于x 的方程(())g f x m =恰有三个不等实根123,,x x x ,且123x x x <<,则12322x x x -+的最大值为___________.18.(2021·全国·高三专题练习)设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a =-有三个零点,则实数a 的范围为________.19.(2021·湖北·襄阳四中高三月考)已知()sin x x f x e e x x -=-+-,若2(2ln(1))02x f a x f ⎛⎫-++≥ ⎪⎝⎭恒成立,则实数a 的取值范围___.20.(2021·浙江·模拟预测)已知0a >,b R ∈,若()3242||2ax bx ax bx a b x b -+≤+++对任意122x ⎡⎤∈⎢⎥⎣⎦,都成立,则b a的取值范围是______.。
专题19 立体几何综合小题必刷100题任务一:善良模式(基础)1-30题一、单选题1.已知正四棱锥的底面边长和侧棱长均为2,则该正四棱锥的体积为( )A B .C D .2.已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列说法正确的是( ) A .若//m n ,n ⊂α,则//m αB .若//m α,n ⊂α,则//m nC .若m α⊂,n β⊂,//m n ,则//αβD .若//αβ,m α⊂,则//m β3.如图,空间四边形OABC 中,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,MN xOA yOB zOC =++,则x ,y ,z 的值分别为( )A .12,23-,12B .23-,12,12C .12,12,23-D .23,23,12-4.已知α,β,γ是三个不同的平面,m ,n 是两条不同的直线,下列命题为真命题的是( ) A .若//m α,//m β,则//αβB .若//m α,//n α,则//m nC .若m α⊥,n α⊥,则//m nD .若αγ⊥,βγ⊥,则//αβ5.已知四棱锥P ABCD -的正视图和侧视图均为边长为2(单位:cm )的正三角形,俯视图为正方形,则该四棱锥的体积(单位:3cm )是( )A .83BCD .436.在正方体1111ABCD A B C D -中,则直线1A D 与直线AC 所成角大小为( )A .30B .45C .60D .907.正方体1111ABCD A B C D -的棱长为2,P 为侧面11ABB A 内动点,且满足1PD △PBC 面积的最小值为( )A .1B C .2 D .2 8.在直三棱柱111ABC A B C -中,90ACB ∠=︒.1D 、1E 分别是11A B 、11A C 的中点,1CA CB CC ==,则1AE 与1BD 所成角的余弦值为( )A B C D9.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,则以下结论错误的是( )A .BD ∥平面CB 1D 1 B .AD ⊥平面CB 1D 1C .AC 1⊥BDD .异面直线AD 与CB 1所成的角为45°10.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且//a b ,则实数m 的值等于( )A .32B .-2C .0D .32或-2 11.正方体ABCD A 1B 1C 1D 1中,E ,F 分别是线段BC ,CD 1的中点,则直线A 1B 与直线EF 的位置关系是( )A .相交B .异面C .平行D .垂直12.已知直三棱柱111ABC A B C -中,60ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A B .0 C D13.把一个皮球放入如图所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点(皮球不变形),则皮球的半径为( )A .cmB .10 cmC .cmD .30 cm14.一种特殊的四面体叫做“鳖臑”,它的四个面均为直角三角形.如图,在四面体P -ABC 中,设E ,F 分别是PB ,PC 上的点,连接AE ,AF ,EF (此外不再增加任何连线),则图中直角三角形最多有( )A .6个B .8个C .10个D .12个15.在四棱锥P ABCD -中,底面是边长为4的正方形,且2,PA PB PD ===,则四棱锥外接球的表面积为( )A .4πB .8πC .36πD .144π二、多选题16.给出下列命题,其中正确的有( )A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .已知空间向量(1,0,1)a =,(2,1,2)b =-,则//a bD .已知空间向量(1,0,1)a =,(2,1,2)b =-,则向量a 在向量b 上的投影向量的坐标是848,,999⎛⎫- ⎪⎝⎭17.如图,正方体1111ABCD A B C D -的棱长为4,以下结论正确的是( )A .直线1B D 与1BC 是异面直线B .直线1A D 与1BC 平行C .直线1BD 与1BD 垂直D .三棱锥11A BC D -的体积为64318.如图,正方体1111ABCD A B C D -的棱长为1,点P 是棱1CC 上的一个动点(包含端点),则下列说法正确的是( )A .存在点P ,使//DP 面11AB DB .二面角1P BB D --的平面角大小为60︒C .1PB PD +D .P 到平面11AB D19.已知m 、n 是两条不同的直线,α、β、γ是三个不同的平面.下列说法中正确的是( ) A .若//m α,m β⊂,a n β⋂=,则//m n B .若//m n ,//m α,则//n α C .若a n β⋂=,αβ⊥,βγ⊥,则n γ⊥ D .若m α⊥,m β⊥,//αγ,则//βγ20.在下列条件中,不能使M 与A ,B ,C 一定共面的是( )A .OM =2OA -OB -OC ;B .111532OM OA OB OC =++; C .0MA MB MC ++=;D .OM +OA +OB +OC =0;21.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .22.设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则( )A .该正方体的核长为2B .该正方体的体对角线长为3C 1D .空心球的外球表面积为(12π+23.在正三棱柱111ABC A B C -中,1AB =,12AA =,1BC 与1B C 交于点F ,点E 是线段11A B 上的动点,则下列结论正确的是( )A .1111222AF AB AC AA =++ B .存在点E ,使得AF BE ⊥C .三棱锥B AEF -D .直线AF 与平面11BCC B第II 卷(非选择题)三、填空题24.已知正方体ABCD A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、BC 的中点,则三棱锥N DMC 1的体积为___________.25.已知正三棱锥的底面边长是6,侧棱与底面所成角为60︒,则此三棱锥的体积为__.26.如图,在直三棱柱111ABC A B C -中,∠ACB =90°,11AA AC BC ===,则异面直线1A B 与AC 所成角的余弦值是__________________.27.已知圆台上底半径为1,下底半径为3,高为2,则此圆台的外接球的表面积为______.28.如图,已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,侧棱1AA 长为3,且11120A AB A AD ∠=∠=︒,则1AC =__.29.如图,在空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且2OM MA =,N 为BC 的中点,则用向量,,a b c 表示向量MN =________.30.已知四棱锥P﹣ABCD的顶点都在球O的球面上,底面ABCD是边长为2的正方形,且P A⊥平面ABCD.若四棱锥P﹣ABCD的体积为163,则球O的表面积为___________.任务二:中立模式(中档)1-40题一、单选题1.在三棱锥P -ABC 中,3APB BPC CPA π∠∠∠===,△P AB ,△P AC ,△PBC 的面积分别记为123,,S S S ,且123322S S S === )A BC D 2.在立体几何探究课上,老师给每个小组分发了一个正四面体的实物模型,同学们在探究的过程中得到了一些有趣的结论.已知直线//AD 平面α,直线//BC 平面α,F 是棱BC 上一动点,现有下列三个结论:⊥若,M N 分别为棱,AC BD 的中点,则直线//MN 平面α;⊥在棱BC 上存在点F ,使AF ⊥平面α;⊥当F 为棱BC 的中点时,平面ADF ⊥平面α.其中所有正确结论的编号是( )A .⊥B .⊥⊥C .⊥⊥D .⊥⊥3.已知圆台上底面半径为3,下底面半径为4,高为7,若点A 、B 、C 在下底面圆的圆周上,且AB BC ⊥,点Р在上底面圆的圆周上,则222PA PB PC ++的最小值为( )A .246B .226C .208D .1984.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和,例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为π2π3π3-⨯=,故其总曲率为4π,则四棱锥的总曲率为( )A .2πB .4πC .5πD .6π5.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且EF A BEF -的体积为( )A .112B .14 C D .不确定6.如图已知正方体1111ABCD A B C D -,点M 是对角线1AC 上的一点且1AM AC λ=,()0,1λ∈,则()A .当12λ=时,1AC ⊥平面1A DMB .当12λ=时,//DM 平面11CB DC .当1A DM 为直角三角形时,13λ=D .当1A DM 的面积最小时,13λ=7.如图所示,已知空间四边形的每条边和对角线长都等于a ,点E 、F 、G 分别为AB 、AD 、DC 的中点,则a 2等于( )A .2BA •ACB .2AD •BDC .2FG •CAD .2EF •BC8.如图一,矩形ABCD 中,2BC AB =,AM BD ⊥交对角线BD 于点O ,交BC 于点M .现将ABD △沿BD 翻折至A BD '的位置,如图二,点N 为棱A D '的中点,则下列判断一定成立的是( )A .BD CN ⊥B .AO '⊥平面BCDC .//CN 平面A OM 'D .平面A OM '⊥平面BCD9.点M 是棱长为3的正方体1111ABCD A B C D -中棱AB 的中点,12CN NC =,动点P 在正方形11AA D D (包括边界)内运动,且1//PB 平面DMN ,则PC 的长度范围为( )A .B .⎣C .D .⎣10.如图,在正方体1111ABCD A B C D -中,点M 在线段1BC (不包含端点)上运动,则下列判断中正确的是( )①1//A M 平面1ACD ; ②异面直线1A M 与1AD 所成角的取值范围是,32ππ⎛⎤⎥⎝⎦;③AC ⊥平面11MB D 恒成立; ④三棱锥1D AMC -的体积不是定值. A .①③ B .①② C .①②③ D .②④11.在四面体S ABC -中,SA ⊥平面ABC ,6BAC π∠=,SB =4,2SC SA ==,则该四面体的外接球的表面积是( )A .253πB .100πCD .20π12.已知圆锥SO 的母线长为 )A .B .24C .36πD .4813.如图,四棱锥P ABCD -的底面为矩形,PD ⊥底面ABCD ,1AD =,2PD AB ==,点E 是PB 的中点,过A ,D ,E 三点的平面α与平面PBC 的交线为l ,则下列结论中正确的有( )(1)//l 平面PAD ;(2)//AE 平面PCD ;(3)直线PA 与l (4)平面α截四棱锥P ABCD -所得的上、下两部分几何体的体积之比为35.A .1个B .2个C .3个D .4个14.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且PAD △是边长为2的正三角形,ABCD 是正方形,则四棱锥P ABCD -外接球的表面积为( )A .293π B .643π C .263π D .283π15.已知在正四面体ABCD 中,E 是AD 的中点,P 是棱AC 上的一动点,BP +PE 四面体内切球的体积为( )A B .13πC . D16.在棱长为2的正方体1111ABCD A B C D -中,点E ,F ,G ,H 分别为棱AB ,BC ,11C D ,11A D 的中点,若平面//α平面EFGH ,且平面α与棱11A B ,11B C ,1B B 分别交于点P ,Q ,S ,其中点Q 是棱11B C 的中点,则三棱锥1B PQS -的体积为( ) A .1B .12C .13D .1617.已知球O ,过其球面上A ,B ,C 三点作截面,若点O 到该截面的距离是球半径的一半,且2AB BC ==,120B ∠=︒,则球O 的表面积为( )(注:球的表面积公式24)S r π=A .643π B .83πC .323π D .169π18.如图,在正三棱柱ABC A 1B 1C 1中,AC =CC 1,P 是A 1C 1的中点,则异面直线BC 与AP 所成角的余弦值为( )A .0B .13C D19.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h 、2h 、3h ,则123::h h h =( )A.2B . C 2:2 D 6:620.如图,二面角l αβ--的大小是60︒,线段AB α⊂.B l ∈,AB 与l 所成的角为30.直线AB 与平面β所成的角的正弦值是( )A B C D二、多选题21.如图,已知正方体1111ABCD A B C D -,则四个推断正确的是( )A .111AC AD ⊥B .11AC BD ⊥C .平面11//A C B 平面1ACD D .平面11A C B ⊥平面11BB D D22.正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别为11,,BC CC BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为92D .点C 到平面AEF 的距离为2323.正四棱锥P ABCD -的所有棱长为2,用垂直于侧棱PC 的平面α截该四棱锥,则( ) A .截面可以是三角形B .PA 与底面ABCD 所成的角为60︒C .PA 与底面ABCD 所成的角为45︒D .当平面α经过侧棱PC 中点时,截面分四棱锥得到的上下两部分几何体体积之比为3:124.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,下列说法正确的是( )A .三棱锥E BCD -B .三棱锥E BCD -C .存在某个位置,使得AE BD ⊥D .设二面角D ABE --的平面角为θ,且0θπ<<,则DAE θ<∠25.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中不正确的是( )A .1AC =B .BD ⊥平面1ACCC .向量1B C 与1AA 的夹角是60°D .直线1BD 与AC26.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为60C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为D .设正方体棱长为1,则过点E ,F ,A27.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点M ,N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.则下列结论中正确的有( )A .当12a =时,ME 与CN 相交 B .MN 始终与平面BCE 平行 C .异面直线AC 与BF 所成的角为45︒D .当a =MN28.(多选)如图,ABCD A 1B 1C 1D 1为正方体,下面结论正确的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°29.已知四边形ABCD 为正方形,GD ⊥平面ABCD ,四边形DGEA 与四边形DGFC 也都为正方形,连接EF ,FB ,BE ,H 为BF 的中点,则下列结论正确的是( ) A .DE ⊥BFB .EF 与CH 所成角为3π C .EC ⊥平面DBFD .BF 与平面ACFE 所成角为4π30.下图中正方体1111ABCD A B C D -边长为2,则下列说法正确的是( )A .平面1C BD ⊥平面1A BDB .正方体1111ABCD A BCD -外接球与正四面体11A DBCC .正四面体11A DBCD .四面体1A ADB第II 卷(非选择题)三、填空题31.空间四面体ABCD 中,2AB CD ==,3AD BC ==,BD =BD 和AC 所成的角为3π,则该四面体的外接球的表面积为 __.32.如图,A 、B 、C 、D 、P 是球O 上5个点,ABCD 为正方形,球心O 在平面ABCD 内,PB PD =,2PA PC =,则P A 与CD 所成角的余弦值为______.33.已知圆锥、圆柱的底面半径和体积都相等,则它们的轴截面的面积之比的比值是___________34.中国有悠久的金石文化,印信是金石文化的代表之一.下左图是南北朝官员独孤信的印信,它是由正方形和正三角形围成.右图是根据这只印信作出的直观图,直观图的所有顶点都在一正方体的表面上(如果一个正八边形的八个顶点都在这个正方体同一个侧面的四条棱上,那么这个八边形的边长就等于这个直观图的棱长).__________.35.如图,在直三棱柱111ABC A B C -中,2BAC π∠=,11AB AC AA ===,已知G 与E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若GD EF ⊥,则线段DF 的长度的平方取值范围为__________.36.如图,在长方体1111ABCD A B C D -中,已知1AA =M ,N 分别在棱DA ,DC 上.二面角1D MN D --的大小为30°.若三棱锥1D DMN -,则三棱锥1D DMN -的外接球的表面积为___________.37.异面直线a 、b 所成角为3π,直线c 与a 、b 垂直且分别交于A 、B ,点C 、D 分别在直线a 、b 上,若1AC =,2AB =,3BD =,则CD =________.38.已知四棱锥S ﹣ABCD 的底面是边长为4的正方形,SD ⊥面ABCD ,点M 、N 分别是AD 、CD 的中点,P 为SD 上一点,且SD =3PD =3,H 为正方形ABCD 内一点,若SH ∥面PMN ,则SH 的最小值为__.39.如图,在ABC 中,AB AC ==1cos 3BAC ∠=-,D 是棱BC 的中点,以AD 为折痕把ACD △折叠,使点C 到达点C '的位置,则当三棱锥C ABD '-体积最大时,其外接球的表面积为___________.40.在如图所示的实验装置中,正方形框架的边长都是1,且平面ABCD ⊥平面ABEF ,活动弹子,M N 分别在正方形对角线,AC BF 上移动,若CM BN =,则MN 长度的最小值为__________.任务三:邪恶模式(困难)1-30题一、单选题1.已知四面体ABCD M ,N 分别为棱AD ,BC 的中点,F 为棱AB 上异于A ,B 的动点.有下列结论: ①线段MN 的长度为1;②若点G 为线段MN 上的动点,则无论点F 与G 如何运动,直线FG 与直线CD 都是异面直线;③MFN ∠的余弦值的取值范围为;④FMN 1. 其中正确结论的为( ) A .①② B .②③C .③④D .①④2.已知三棱锥P ABC -,其中PA ⊥平面ABC ,2PA =,2AB AC ==,2BAC π∠=.已知点Q 为棱PA(不含端点)上的动点,若光线从点Q 出发,依次经过平面PBC 与平面ABC 反射后重新回到点Q ,则光线经过路径长度的取值范围为( )A .(1B .)4C .4⎫⎪⎭D .(3.如图,已知锐二面角l αβ--的大小为1θ,A α∈,B β∈,M l ∈,N l ∈,AM l ⊥,BN l ⊥,C ,D 为AB ,MN 的中点,若AM MN BN >>,记AN ,CD 与半平面β所成角分别为2θ,3θ,则( )A .122θθ<,132θθ<B .122θθ<,132θθ>C .122θθ>,132θθ<D .122θθ>,132θθ>4.在棱长为2的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的点(点M 与1A C 、不重合),有以下四个结论:⊥存在点M ,使得平面1A DM ⊥平面1BC D ; ⊥存在点M ,使得//DM 平面11B D C ;⊥若1A DM 的周长为L ,则L⊥若1A DM 的面积为S ,则S ∈⎝. 则正确的结论为( ) A .⊥⊥ B .⊥⊥⊥C .⊥⊥⊥D .⊥⊥5.在棱长为1的正方体1111ABCD A B C D -中,点P 是正方体棱上一点,若满足1PB PC d +=的点P 的个数为4,则d 的取值范围为( )A .)2B .C .2,1⎡⎣D .(16.在三棱锥D ABC -中,222AD AB AC BC ===,点A 在面BCD 上的投影G 是BCD △的垂心,二面角G AB C --的平面角记为α,二面角G BC A --的平面角记为β,二面角G CD A --的平面角记为γ,则( )A .αβγ>>B .αγβ>>C .βγα>>D .γβα>>7.已知正方体1111ABCD A B C D -的棱长为1,E 是1AA 的中点,F 是棱BC 上一点(不包括端点),则下列结论错误的是( )A .三棱锥11CB EF -的体积为定值16B .存在点F ,使得直线EF 与直线1CD 相交C .当F 是棱BC 的中点时,直线EF 与直线1CD 所成的角为π6D .平面1D EF 截正方体所得的截面是五边形8.如图,在等边三角形ABC 中,,D E 分别是线段,AB AC 上异于端点的动点,且BD CE =,现将三角形ADE 沿直线DE 折起,使平面ADE ⊥平面BCED ,当D 从B 滑动到A 的过程中,则下列选项中错误的是( )A .ADB ∠的大小不会发生变化 B .二面角A BDC --的平面角的大小不会发生变化 C .BD 与平面ABC 所成的角变大 D .AB 与DE 所成的角先变小后变大9.蹴鞠,又名“蹴球”“蹴圆”等,“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的踢足球活动.如图所示,已知某“鞠”的表面上有四个点A ,B ,C ,D 满足10cm AB BC CD DA DB =====,15cm AC =,则该“鞠”的表面积为( )A .2350cm 3πB .2700cm 3πC .2350cm πD 210.已知在Rt ABC △中,斜边2AB =,1BC =,若将Rt ABC △沿斜边AB 上的中线CD 折起,使平面ACD ⊥平面BCD ,则三棱锥A BCD -的外接球的表面积为( )A .13π3B .20π3C .10π3 D .7π311.如图,在长方体1111ABCD A B C D -中,3AB =,5AD =,14AA =,点F 是1AA 的中点,点E 为棱BC 上的动点,则平面1C EF 与平面11ABB A 所成的锐二面角正切的最小值是( )A .513BC D .13512.已知正方体1111ABCD A B C D -的棱长为M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB内,且三角形PMN 的面积PMN S =△P 的轨迹长度为( )A B C D13.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A B C D14.如图,等腰直角ABC 中,2AC BC ==,点P 为平面ABC 外一动点,满足PB AB =,2PBA π∠=,给出下列四个结论:①存在点P ,使得平面PAC ⊥平面PBC ; ②存在点P ,使得平面PAC ⊥平面PAB ; ③设PAC △的面积为S ,则S 的取值范围是(]0,4;④设二面角A PB C --的大小为α,则α的取值范围是π0,4⎛⎤⎥⎝⎦.其中正确结论是( ) A .①③ B .①④C .②③D .②④15.已知AB 、CD 是圆O 的两条直径,且60AOC ∠=︒,如图1,沿AB 折起,使两个半圆面所在的平面垂直,折到点D 位置,如图2.设直线BD '与直线OC 所成的角为θ,则( )A .90BD C '∠=︒且60θ>︒B .90BDC '∠=︒且60θ≤︒ C .90BD C '∠≠︒且60θ>︒ D .90BD C '∠≠︒且60θ≤︒二、多选题16.如图,底面ABCD 为边长是4的正方形,半圆面APD ⊥底面ABCD .点P 为半圆弧AD (不含A ,D 点)一动点.下列说法正确的是( )A .三梭锥P —ABD 的每个侧面三角形都是直角三角形B .三棱锥P —ABD 体积的最大值为83C .三棱锥P —ABD 外接球的表面积为定值32πD .直线PB 与平面ABCD17.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则( ) A .若112BF BC BD →→→⎛⎫=+ ⎪⎝⎭,则三棱锥的11-F B CC 的外接球表面积为4π B .若1//B F 平面1A BD ,则1B F 不可能垂直1CD C .若1C F ⊥平面1A CF ,则点F 的位置唯一D .若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半18.为弘扬中华民族优秀传统文化,某学校组织了《诵经典,获新知》的演讲比赛,本次比赛的冠军奖杯由一个铜球和一个托盘组成,如图⊥,已知球的体积为43π,托盘由边长为4的正三角形铜片沿各边中点的连线垂直向上折叠而成,如图⊥.则下列结论正确( )A .经过三个顶点,,ABC 的球的截面圆的面积为4π B .异面直线AD 与CF 所成的角的余弦值为58C .多面体ABCDEF 的体积为94D .球离球托底面DEF 119.已知边长为a 的菱形ABCD 中,3ADC π∠=,将ADC 沿AC 翻折,下列说法正确的是( )A .在翻折的过程中,直线AD ,BC 始终不可能垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38aC .在翻折过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(14a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '20.如图,ABC 是由具有公共直角边的两块直角三角板组成的三角形,4CAD π∠=,3BCD π∠=.现将Rt ACD △沿斜边AC 翻折成△11(D AC D 不在平面ABC 内).若M ,N 分别为BC 和1BD 的中点,则在ACD △翻折过程中,下列结论正确的是( )A .//MN 平面1ACDB .1AD 与BC 不可能垂直C .二面角1D AB C -- D .直线1AD 与DM 所成角的取值范围为(,)63ππ21.已知边长为a 的菱形ABCD 中,π3ADC ∠=,将ADC 沿AC 翻折,下列说法正确的是( ) A .在翻折的过程中,直线AD ,BC 可能相互垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38aC .在翻折的过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(14a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '22.已知正方体1111ABCD A B C D -的棱长为2,O 是底面ABCD 的中心,P 是棱11B C 上一点(不与端点重合),则( )A .平面OCP 截正方体1111ABCD ABCD -所得截面一定是梯形 B .存在点P ,使得三棱锥1P ABD -的体积为23C .存在点P ,使得AP 与11CD 相交D .当P 是棱11B C 的中点时,平面OCP 截正方体1111ABCD A B C D -外接球所得截面圆的面积269π23.在四面体ABCD 中,AB AC ⊥,AC CD ⊥,直线AB ,CD 所成的角为60°,AB CD ==,4AC =,则四面体ABCD 的外接球表面积为( )A B .52π C .80π D .208π第II 卷(非选择题)三、填空题24θ,则当tan θ等于______时,侧面积最小.25.球面几何学是几何学的一个重要分支,在航海、航空、卫星定位等面都有广泛的应用,如图,A ,B ,C 是球面上不同的大圆(大圆是过球心的平面与球面的交线)上的三点,经过这三个点中任意两点的大圆的劣弧分别为,,AB BC CA ,由这三条劣弧围成的图形称为球面ABC .已知地球半径为R ,北极为点N ,P ,Q 是地球表面上的两点若P ,Q 在赤道上,且PQ =,则球面NPQ △的面积为________;若NP PQ QN R ===,则球面NPQ △的面积为________.26.如图,在矩形ABCD 中,2,4,AB BC E ==是边AD 的中点,将ABE △沿直线BE 折成A BE ∠',使得二面角A BE C '--的平面角为锐角,点F 在线段A B '上运动(包括端点),当直线CF 与平面A BE '所成角最大时,FBE 在底面ABCD 内的射影面积为___________.27.已知三棱锥A BCD -的三条侧棱两两垂直,AB 与底面BCD 成30角,P 是平面BCD 内任意一点,则AP BP的最小值是________.28.已知正方体1111ABCD A B C D -的棱长为2,点E 是棱AD 的中点,点,F G 在平面1111D C B A 内,若EF =CE BG ⊥,则FG 的最小值为_________.29.在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,得四边形1BFD E ,给出下列结论:①四边形1BFD E 有可能为梯形; ②四边形1BFD E 有可能为菱形; ③四边形1BFD E 在底面ABCD 内的投影一定是正方形; ④四边形1BFD E 有可能垂直于平面11BB D D ;⑤四边形1BFD E 其中正确结论的序号是_____________30.在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别是BC 和11C D 的中点,经过点A ,E ,F 的平面把正方体1111ABCD A B C D -截成两部分,则截面的周长为________.。
第97炼 不等式选讲一、基础知识:(一)不等式的形式与常见不等式: 1、不等式的基本性质: (1)a b b a >⇔<(2),a b b c a c >>⇒>(不等式的传递性)注:,a b b c a c ≥≥⇒≥,a c ≥等号成立当且仅当前两个等号同时成立 (3)a b a c b c >⇒+>+(4),0;,0a b c ac bc a b c ac bc >>⇒>><⇒< (5)()02,nna b a b n n N >>⇒>≥∈(6))02,a b n n N >>>≥∈ 2、绝对值不等式:a b a b a b -≤+≤+ (1)a b a b +≤+等号成立条件当且仅当0ab ≥ (2)a b a b -≤+等号成立条件当且仅当0ab ≤(3)a b b c a c -+-≥-:此性质可用于求含绝对值函数的最小值,其中等号成立当且仅当()()0a b b c --≥ 3、均值不等式(1)涉及的几个平均数: ① 调和平均数:12111n nnH a a a =+++②几何平均数:n G = ③ 代数平均数:12nn a a a A n+++=④ 平方平均数:2nn a Q ++=(2)均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===(3)三项均值不等式:①a b c ++≥ 2223a b c abc ++≥② 33a b c abc ++⎛⎫≤ ⎪⎝⎭③a b c ++≤4、柯西不等式:()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++等号成立条件当且仅当1212nna a ab b b ===或120n b b b ====(1)二元柯西不等式:()()()22222a bc d ac bd ++≥+,等号成立当且仅当ad bc =(2)柯西不等式的几个常用变形 ① 柯西不等式的三角公式:()()()222222121122n n n b b b a b a b a b ++++≥±+±++±② ()222212121212n nn na a a a a ab b b b b b ++++++≥+++()()222212121212nn n n a a a b b b a a a b b b ⎛⎫⇔++++++≥+++ ⎪⎝⎭②式体现的是当各项22212,,,n a a a 系数不同时,其“平方和”与“项的和”之间的不等关系,刚好是均值不等式的一个补充。
专题11 三角恒等与解三角形综合必刷大题100题任务一:善良模式(基础)1-40题1.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,角A 、B 、C 的度数成等差数列,b = (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值.2.已知函数()22sin cos 6f x x x x π⎛⎫=-- ⎪⎝⎭.(1)求()f x 的最小正周期;(2)当,44x ππ⎛⎫∈- ⎪⎝⎭时,求()f x 的值域.3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且222sin b A c a +=. (1)求角A ;(2)若a =2tan tan tan a b cA B C=+,求ABC 的面积.4.在ABC 中,120BAC ∠=︒,sin ABC ∠=D 是CA 延长线上一点,且24AD AC ==. (1)求sin ACB ∠的值; (2)求BD 的长.5.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知2222sin sin sin b c a B Abc C +--=. .1.求角C 的值;(2)若4a b +=,当边c 取最小值时,求ABC 的面积.6.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知2cos c b b A -=⋅.(1)若a =3b =,求c ; (2)若角2C π=,求角B .7.已知△ABC 中,C ∠为钝角,而且8AB =,3BC =,AB (1)求B 的大小;(2)求cos 3cos AC A B +的值.8.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且()sin cos 0a B B C ++=. (1)若sin 2a A b =,求sin B ;(2)若a =2sin sin B C =,求ABC 的面积.9.在ABC 中,三内角A ,B ,C 对应的边分别是a ,b ,c ,cos cos 2cos 0b C c B A ++=,且1a =. (Ⅰ)求角A 的大小;(Ⅱ)若ABC ABC 的周长.10.已知函数()()()cos sin f x x x x x =∈R . (1)求()f x 的最小正周期和单调增区间;(2)在ABC 中,角,,A B C 的对边分别为,,a b c .若2B f ⎛⎫= ⎪⎝⎭6b =,求ABC 的面积的取值范围.11.在ABC 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b = (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值12.在ABC 中,已知2cos S bc A =,其中S 为ABC 的面积,a ,b ,c 分别为角A ,B ,C 的对边. (1)求角A 的值;(2)若6tan 5B =,求sin 2C 的值.13.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足3sin c a B =,cos B =, (.)求证:4A π=;(.)若边AB 上中线CD ABC 的面积.14.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c sin (2cos )A a B =+. (1)求B ;(2)若△ABC △ABC 的周长的最小值.15.已知平面向量(sin cos ,2sin )a x x x =+,(sin cos ,)b x x x =-,函数()(R)f x a b x =⋅∈. (1)求()f x 的最小正周期及单调递减区间; (2)若(0,)m π∈,223m f ⎛⎫=- ⎪⎝⎭,求sin m 的值.16.在ABC 中,4ABC π∠=,D 是边BC 上一点,且5AD =,3cos 5ADC ∠=.(1)求BD 的长;(2)若ABC 的面积为14,求AC 的长.17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos 0a c B b A ++=. (1)求B ;(2)若4b =,求ABC 的面积的最大值.18.如图,在ABC ∆中,2AC =,3A π∠=,点D 在线段AB 上.(1)若1cos 3CDB ∠=-,求CD 的长;(2)若2AD DB =,sin ACD BCD ∠=∠,求ABC ∆的面积.19.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,且()2cos cos cos A b C c B a +=. (1)求角A ;(2)在ABC 中,D 为BC 边上一点,且()12AD AB AC =+,2AD =,求ABC 面积的最大值.20.已知函数()21sin sin 22f x x x x π⎛⎫=-+- ⎪⎝⎭(1)求()f x 的最小正周期;(2)求()f x 在区间02π⎡⎤⎢⎥⎣⎦,上的最大值.21.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin sin 2sin cos 0A B C B --=. (1)求内角C 的大小;(2)若ABC ∆的周长为6+c 的长度.22.ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且满足 ()()cos 2cos b A c a B π=+-. (1)求角B 的大小;(2)若b =ABC ∆a c +的值.23.已知函数()23sin cos f x x x x =x ∈R . (1)求函数()f x 的最小正周期;(2)若2a f ⎛⎫= ⎪⎝⎭,263a ππ⎛⎫<< ⎪⎝⎭,求3cos 2a π⎛⎫+ ⎪⎝⎭的值.24.在ABC ∆中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足sin 4sin b B a A =,()2222bc b a c =--.(1)求角B 的大小; (2)求()sin 2A B -的值.25.在ABC 中,内角A ,B ,C 所对的边长分别为,,,cos 23cos()1a b c C A B ++=. (1)求角C ;(2)若2c =,求ABC 面积的最大值.26.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c 满足cos cos 2cos ca Bb A C+=,且BC 边上一点P 使得PA PC =. (1)求角C 的大小;(2)若3PB =,sin BAP ∠=ABC 的面积.27.已知向量()2cos ,sin a x x =,()cos ,b x x =-,且()1f x a b =⋅-. (1)求()f x 的单调递增区间;(2)先将函数()y f x =的图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将所得图象向左平移12π个单位,得到函数()y g x =的图象,求方程()1g x =在区间0,2x π⎡⎤∈⎢⎥⎣⎦上所有根之和.28.已知函数443()2sin cos 224x x f x x =++-. (1)求()f x 的最小正周期;(2)求()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上对称轴、对称中心及其最值.29.函数()()2sin f x A x ωϕ=+(0A >,0>ω,02πϕ<<),且()y f x =的最大值为2,其图象相邻两对称轴间的距离为2,并过点()1,2. (1)求ϕ;(2)计算()()12f f ++…()2019f .30.设函数2()sin(2)2cos 16f x x x π=-+-.(Ⅰ)当[0,]2x π∈时,求函数()f x 的值域;(Ⅱ)ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且1()2f A =,2223a b =,1c =,求ABC ∆的面积.31.已知通数()cos()(0,0)f x x ωϕωϕπ=+><<的图像经过点1,62π⎛⎫- ⎪⎝⎭,图像与x 轴两个相邻交点的距离为π.(.)求()f x 的解析式:(.)若335f πθ⎛⎫+=- ⎪⎝⎭,求sin θ的值.32.已知向量()3sin ,2cos a x x =-,()2cos ,cos b x x =,函数()1()f x a b x =⋅+∈R .(1)求函数()f x 的单调递增区间;(2)在ABC ∆中,内角A 、B 、C 所对边的长分别是a 、b 、c ,若()2f A =,4C π,2c =,求ABC∆的面积ABC S ∆.33.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足:()2222sin sin b c a C c B +-=.(.)求角A 的大小;(Ⅱ)若1a =,求b c +的最大值.34.在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .35.在①sinsin 2A Bb c B +=)cos sin c A b a C -=-,③cos cos cos c a b C A B+=+这三个条件中任选一个,补充在下面的问题中,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________. (1)求C ;(2)若ABC 的面积为AC 的中点为D ,求BD 的最小值.36.在①22cos a b c B -=(A +B )=1+22sin 2C这两个条件中选一个,补充在下面的横线处,然后解答问题.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,设△ABC 的面积为S ,已知___. (1)求角C 的值;(2)若b =4,点D 在边AB 上,CD 为∠ACB 的平分线,△CDB ,求边长a 的值.注:如果选择多个条件分别解答,按第一个解答计分.37.在①2cos (cos cos )A c B b C a +=,②222sin sin sin sin sin B C A B C +-=cos b cC C a++=这三个条件中任选一个,补充在下面问题中,并作答.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且________. (1)求角A ;(2)若O 是ABC 内一点,120AOB ∠=︒,150AOC ∠=︒,1b =,3c =,求tan ABO ∠. 注:如果选择多个条件分别解答,按第一个解答计分. 38.在①cos cos 2B b C a c=-+,②sin sin sin A b cB C a c +=-+,③23S BA BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,若2a =,4c =,求AC 边上的垂线长.39.在.cos cos 2B b C a c=-+,.sin sin sin A b cB C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,7b =,5c =,求a 的值.40.记ABC 的内角,,A B C 的对边分别为,,a b c .请在下列三个条件中任选一个作为已知条件,解答问题.①()sin sin()sin a c A c A B b B -++=;②2S AB CB =⋅(其中S 为ABC 的面积);③sin cos c B C -=.(1)若4,3b ac ==,求a c +的值;c ,求a的取值范围.(2)若ABC为锐角三角形,且2任务二:中立模式(中档)1-40题1.在.2sin tan a B b A =;.cos sin b a C A =;.()22222cos a c b bc A +-=-三个条件中任选一个,补充在下面问题中,并作答.问题:已知ABC 的内角A ,B ,C 所对应的边分别为a ,b ,c ,且a =___________. (1)求角A 的大小; (2)求ABC 面积的最大值.2.已知函数2()2cos 1cos (01)f x x x x ωωωω=-+<<,直线3x π=是函数()f x 的图象的一条对称轴.(1)求函数()f x 的单调递增区间;(2)令()22263g x f x f x m ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭,若12,x x 是函数()g x 在0,2π⎡⎤⎢⎥⎣⎦的零点,求()12cos x x +的值.3.ABC 的内角A ,B ,C 的对边分别是a ,b ,c sin cos c B C +=. (1)求角B 的大小;(2)若b =D 为AC 边上一点,1BD =,且___________,求ABC 的面积.(从①BD 为ABC ∠的平分线,②D 为AC 的中点,这两个条件中任选一个补充在上面的横线上并作答)4.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,设ABC 面积的大小为S 32AB AC S ⋅=. (1)求A 的值;(2)若ABC 的外接圆直径为1,求22b c +的取值范围.5.在ABC 中,1a =,2b =.(1)若边c =ABC 的面积S ;(2)在下列三个条件中选择一个作为已知,使ABC 存在且唯一确定,并求出sin A . ①2B A =; ②π3A B +=; ③2C B =6.已知(1,2)m x ω=,2(2sin 1,cos )n x x ωω=-,令().f x m n =⋅其中01ω<<,满足()43f x f x π⎛⎫-= ⎪⎝⎭. (1)求()f x 的解析式;(2)在锐角ABC 中,角,,A B C 所对边分别为,,a b c ,()1f B =且1c =,求ABC 的面积的取值范围.7.在①()()()sin sin sin sin A B a b C B c +-=-,②sin sin 2B C b a B +=,③2tan tan tan B bA B c=+中任选一个,补充在横线上,并回答下面问题.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且________. (1)求角A 的大小;(2)已知2AB =,D 为AB 中点,且2CD ab =,求ABC 面积.8.如图,D 是直角ABC 斜边上一点(不含端点),AB AD =,记BAD ∠=α,ADC β∠=.(1sin 2αβ-的最大值;(2)若AC =,求角β的值.9.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,点M 在边BC 上,已知2cos 2a C b c =+. (1)求A ;(2)若AM 是角A 的平分线,且2AM =,求ABC 的面积的最小值.10.1.已知a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,()()3cos cos 4cos cos a b A a B c A a C c +=+,再从下面条件①与②中任选1个作为已知条件,完成以下问题.(1)证明:ABC 为锐角三角形;(2)若8CA CB ⋅=,CD 为ABC 的内角平分线,且与AB 边交于D ,求CD 的长. ①2cos 3C =;②1cos 9A =.11.在①2cos (cos cos )A c B b C a +=cos b cC C a++=这两个条件中任选一个,补充在下面问题中,并作答.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且________.(1)求角A ;(2)若O 是ABC 内一点,120,150,1,3∠=︒∠=︒==AOB AOC b c ,求tan ABO ∠.12.在“①2cos a B c =;②(),m a c b =-,(),n c b a b =++,//m n ”这两个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,a ,b ,c 分别是三内角A ,B ,C 的对边,已知4b =,D 是AB 边上的点,且3AD DB =,()211sin sin 2cos sin224C A B C -=+,若_______________,求CD 的长度.13.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin sin 2sin B C A +=,3sin 4sin =b C c A ,点D 在射线AC 上,满足cos 2cos ABD B ∠=. (1)求ABD ∠;(2)设ABD ∠的角平分线与直线AC 交于点E ,求证:111BA BD BE+=.14.在ABC 中,内角、、A B C 所对边分别为a b c 、、,若2222sin sin sin cos cos C A B A B -=++. (1)求C ;(2)若ABC 为锐角三角形,且4b =,求ABC 面积的取值范围.15.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =cos (cos )+-C B B cos 0A =.(1)求角A 的大小;(2)求2b c +的取值范围.16.已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,7cos 25c B a b =-. (1)求cos C ;(2)若点A ,B 是函数()2sin 133f x x ππ⎛⎫=+- ⎪⎝⎭的图象在某个周期内的最高点与最低点,求ABC 面积的最大值.17.在平面四边形ABCD 中,AB =1,BC =CD =2,AD =3. (1)证明:3cos A -4cos C =1;(2)记△ABD 与△BCD 的面积分别为S 1,S 2,求S 12+S 22的最大值.18.在锐角ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos c b a B b A -=-. (1)求角A 的大小;(2)若1a =,求ABC 周长的范围.19.在.cos cos 2B b C a c -=+,.sin sin sin A b cB C a c+=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,若2a =,4c =,AB 边上的中垂线交AC 于D 点,求BD 的长.20.ABC 的内角A ,B ,C 的对边分别为a ,b ,c 且满足2a =,()cos 2cos a B c b A =-. (1)求角A 的大小; (2)求ABC 周长的范围.21.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos 2b cC a-=. (1)求角A 的大小;(2)若ABC 的周长为6,求ABC 面积S 的最大值.22.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin 2A Bc B b +=. (1)求角C 的大小;(2)若8b =,cos B D 为边BC 上一点,且7AD =,求BD DC 的值.23.如图,在ABC 中,AB AC >,AD 、AE 分别为BC 边上的高和中线,4=AD ,3DE =(1)若90BAC ∠=︒,求AB 的长;(2)是否存在这样的ABC ,使得射线AE 和AD 三等分BAC ∠?24.已知函数2())2sin 1,(0,0)2x f x x ωϕωϕωϕπ+⎛⎫=++-><< ⎪⎝⎭为奇函数,且()f x 图像相邻的对称轴之间的距离为2π(1)求函数()f x 的解析式及其减区间;(2)在ABC 中,角A 、B 、C 对应的边为a 、b 、c ,且a =26f A π⎛⎫+= ⎪⎝⎭ABC 的周长的取值范围.25.在ABC 中,角,,A B C 的对边分别为,,a b c ,满足sin (1cos )3sin cos cos sin B C A C A C +=+ 且π2C ≠. (1)求证:2b a =;(2)若2c =,求ABC 的面积的最大值.26.在ABC 中,AC AB >,31cos 32A =,8AB =.(1)若ABC S =△BC ;(2)若()1cos 8B C -=,求ABC S ∆.27.1.已知向量()cos ,sin m x x →=,()cos x n x →=,设()12f x m n →→=⋅-,π0,3x ⎡⎤∈⎢⎥⎣⎦.(1)求()f x 的值域; (2)若方程()23f x =有两个不相等的实数根1x ,2x ,求()12cos x x +,()12cos x x -的值.28.如图,ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,c =,且cos (2)cos -=-a c B c b C .(1)求角C 的大小;(2)在ABC 内有点M ,CMA CMB ∠=∠,且3BM AM =,直线CM 交AB 于点Q ,求cos CQA ∠.29.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且满足22,c a ab =+记ABC 的面积为S. (1)求证:2C A =;(2)若ABC 为锐角三角形,4b =,且S λ<恒成立,求实数λ的范围.30.已知a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,从下面条件①与②中任选一个作为已知条件,并完成下列问题: (1)求B ;(2)若4AC =,求ABC 的周长的最大值.条件①:cos (2)cos 0b C a c B --=;条件②:()(sin sin )()sin a b A B a c C +-=-. 注:如果选择不同的条件分别解答,按照第一种选择的解答计分. 31.在①cos cos 2B b C a c =-+,②sin sin sin A b cB C a c+=-+,③23S BA BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,BD 是ABC ∠的平分线交AC 于点D ,若1BD =,求4a c +的最小值.32.在①cos cos 2B b C a c=-+,②sin sin sin A b cB C a c +=-+,③23S BA BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,作AB AD ⊥,使得四边形ABCD 满足3ACD π∠=,AD =ACDS的最值33.在.cos cos 2B b C a c=-+,.sin sin sin A b c B C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,若b =2-c a 的取值范围.34.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且22cos c a b A -=,3b =.(1)求B 的大小;(2)若a =ABC 的面积;(3)求ac a c+的最大值.35.如图,在四边形ABCD 中,34ABC π∠=,AB AD ⊥,AB =(1)若AC =ABC ∆的面积;(2)若6ADC π∠=,CD =AD 的长.36.在.cos cos 2B b C a c=-+,.sin sin sin A b c B C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,求a c b+的取值范围.37.在ABC 中,a 、b 、c 分别为内角A 、B 、C 的对边,且()()2sin 2sin 2sin a A b c B c b C =+++. (1)求A 的大小;(2)若sin sin 1B C +=,试判断ABC 的形状;(3)若3a =,求ABC 周长的最大值.38.如图,在四边形ABCD 中,2D B ∠=∠,且1AD =,3CD =,cos B =(1)求AC 的长;(2)求四边形ABCD 面积的最大值.39.现给出三个条件:①a sin 2A C +=b sin A ,②a cos C +c cos A =2b cosB ,③2c -a =2b cos A .从中选出一个补充在下面的问题中,并解答问题.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,________.(1)求角B 的大小;(2)若b =2,求△ABC 周长的取值范围.40.目前,中国已经建成全球最大的5G 网络,无论是大山深处还是广袤平原,处处都能见到5G 基站的身影.如图,某同学在一条水平公路上观测对面山项上的一座5G 基站AB ,已知基站高50m AB =,该同学眼高1.5m (眼睛到地面的距离),该同学在初始位置C 处(眼睛所在位置)测得基站底部B 的仰角为37°,测得基站顶端A 的仰角为45°.(1)求出山高BE (结果保留整数);(2)如图,当该同学面向基站AB 前行时(保持在同一铅垂面内),记该同学所在位置M 处(眼睛所在位置)到基站AB 所在直线的距离m MD x =,且记在M 处观测基站底部B 的仰角为α,观测基站顶端A 的仰角为β.试问当x 多大时,观测基站的视角AMB ∠最大?参考数据:sin80.14︒≈,sin370.6︒≈,sin 450.7︒≈,sin1270.8︒≈.任务三:邪恶模式(困难)1-20题1.ABC 中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC 面积的2倍.(1)求sin sin B C∠∠的值;(2)从①1AD =,②DC =cos C =这三个条件中选择两个条件作为已知,求BD 和AC 的长.2.已知函数()()1sin sin cos 2f x x x x ωωω=+-(0>ω)图象的相邻两条对称轴之间的距离为2π. (1)求()f x 的单调递增区间以及()f x 图象的对称中心坐标;(2)是否存在锐角α,β,使2π23αβ+=,3ππ222f f αβ⎛⎫⎛⎫+⋅+ ⎪ ⎪⎝⎭⎝⎭α,β的值;若不存在,请说明理由.3.已知函数()2()2sin 1(0,0 )2x f x x ωϕωϕωϕπ+⎛⎫++-><< ⎪⎝⎭为奇函数,且()f x 图象的相邻两对称轴间的距离为 2π. (1)求()f x 的解析式与单调递减区间;(2)将函数()f x 的图象向右平移 6π个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当 0,2x π⎡⎤∈⎢⎥⎣⎦时,求方程()22()30g x x +-=的所有根的和.4.已知函数()sin (0)f x x x ωωω=>.(1)当03ω<<时,函数()()3y f x f x πω=--的图象关于直线512x π=对称,求()f x 在[]0,π上的单调递增区间;(2)若()f x 的图像向右平移3π个单位得到的函数()g x 在[,]2ππ上仅有一个零点,求ω的取值范围.5.在平面四边形ABCD 中,3AB =,5AD =,120BAD ∠=︒,60BCD ∠=︒(1)求BD 的长;(2)求AD BC AB CD ⋅+⋅的最大值.6.在.cos cos 2B b C a c=-+,.sin sin sin A b c B C a c +=-+,.2S BC =⋅三个条件中任选一个补充在下面的横线上,并加以解答.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且______,作AB AD ⊥,使得四边形ABCD 满足3ACD π∠=,AD = 求BC 的取值范围.7.已知A ∠是ABC 的内角,函数()()3cos sin 2f x x x A π⎛⎫=-- ⎪⎝⎭的最大值为14.(1)求A ∠的大小;(2)若()()124g x f x ⎡⎤=+⎢⎥⎣⎦,关于x 的方程()()2410g x m g x -+=⎡⎤⎡⎤⎣⎦⎣⎦在,33x ππ⎛⎫∈- ⎪⎝⎭内有两个不同的解,求实数m 的取值范围.8.如图,有一景区的平面图是一个半圆形,其中O 为圆心,直径AB 的长为2km ,C ,D 两点在半圆弧上,且BC CD =,设COB θ∠=;(1)当π12θ=时,求四边形ABCD 的面积. (2)若要在景区内铺设一条由线段AB ,BC ,CD 和DA 组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l 的最大值.9.某校要在一条水泥路边安装路灯,其中灯杆的设计如图所示,AB 为地面,CD ,CE 为路灯灯杆,CD AB ⊥,2π3DCE ∠=,在E 处安装路灯,且路灯的照明张角π3MEN ∠=,已知4CD =m ,2CE =m .(1)当M ,D 重合时,求路灯在路面的照明宽度MN ;(2)求此路灯在路面上的照明宽度MN 的最小值.10.已知向量1(sin ,1),3cos ,2m x n x ⎛⎫==- ⎪⎭.令函数()()f x m n m =+⋅. (1)求函数()f x 的最小正周期和单调递增区间;(2)ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,ACB ∠的角平分线交AB 于D .其中,函数()f C 恰好为函数()f x 的最大值,且此时()CD f C =,求3a b +的最小值.11.如图,在四边形ABCD 中,CD =BC =cos 14CBD ∠=.(1)求BDC ∠;(2)若3A π∠=,求ABD △周长的最大值.12.已知函数()cos 14f x x x π⎛⎫=+- ⎪⎝⎭. (1)当,88x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域; (2)是否同时存在实数a 和正整数n ,使得函数()()g x f x a =-在[]0,x n π∈上恰有2021个零点?若存在,请求出所有符合条件的a 和n 的值;若不存在,请说明理由.1360°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N ,M 在OB 上,设矩形PNMQ 的面积为y .(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设△POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.14.如图,在梯形ABCD 中,//AB CD ,2AB =,5CD =,23ABC π∠=.(1)若AC =ABCD 的面积;(2)若AC BD ⊥,求tan ABD ∠.15.已知a ,b ,c 是ABC 的内角A ,B ,C 的对边,且ABC 的面积214S c =.(1)记(2,1)m c =,(2,cos )n a B =-,若//m n . (i )求角C , (ii )求a b的值;(2)求a b的取值范围.16.如图,某污水处理厂要在一个矩形污水处理池ABCD 的池底水平铺设污水净化管道(Rt FHE ∆三条边,H 是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口H 是AB 的中点,,E F 分别落在线段,BC AD 上,已知20AB =米,AD =BHE θ∠=.(1)试将污水净化管道的总长度L (即Rt FHE ∆的周长)表示为θ的函数,并求出定义域;(2)问θ取何值时,污水净化效果最好?并求出此时管道的总长度.17.某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以AB 为直径的圆,且300AB =米,景观湖边界CD 与AB 平行且它们间的距离为A 点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作PQ .设2AOP θ∠=.(1)用θ表示线段,PQ 并确定sin 2θ的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将PQ 的长度设计到最长,求PQ 的最大值.18.随着生活水平的不断提高,人们更加关注健康,重视锻炼,“日行一万步,健康一辈子”.通过“小步道”,走出“大健康”,健康步道成为引领健康生活的一道亮丽风景线.如图,A B C A ---为某市的一条健康步道,AB ,AC 为线段,BC 是以BC 为直径的半圆,AB =,4km AC =,6BAC π∠=.(1)求BC 的长度;(2)为满足市民健康生活需要,提升城市品位,改善人居环境,现计划新增健康步道A D C --(B ,D在AC 两侧),AD ,CD 为线段.若3ADC π∠=,A 到健康步道B C D --的最短距离为,求D 到直线AB 距离的取值范围.19.已知函数()21cos 2sin 222xxxf x ωωω=+-(0>ω)在一个周期内的图象如图所示,A 为()f x 图象的最高点,B ,C 为()f x 图象与x 轴的交点,且ABC 为等腰直角三角形.(1)求ω的值及函数()f x 的值域;(2)若()85f α=,且84,33α⎛⎫∈- ⎪⎝⎭,求()1f α+的值;(3)已知函数()y g x =的图象是由()y f x =的图象上各点的横坐标缩短到原来的12倍,然后再向左平移1个单位长度得到的,若存在()0,2x ∈,使()()24g 12g x a x ⎡⎤+=⋅-⎣⎦成立,求a 的取值范围.20.已知△ABC 中,函数3()cos()sin()2f x x A x π=+⋅-的最大值为14. (1)求△A 的大小;(2)若1()2(())4g x f x =+,方程24[()][()]10g x m g x -+=在[,]33x ππ∈-内有两个不同的解,求实数m 取值范围.。
专题20 立体几何综合大题必刷100题任务一:善良模式(基础)1-30题1.在棱长为1的正方体1111ABCD A B C D -中,E 为线段11A B 的中点,F 为线段AB 的中点.(1)求点B 到直线1AC 的距离;(2)求直线FC 到平面1AEC 的距离.2.如图,正方形11ABB A 的边长为2,11,AB A B 的中点分别为C ,1C ,正方形11ABB A 沿着1CC 折起形成三棱柱111ABC A B C -,三棱柱111ABC A B C -中,1,AC BC AD AA λ⊥=.(1)证明:当12λ=时,求证:1DC ⊥平面BCD ;(2)当14λ=时,求二面角1D BC C --的余弦值.3.如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的正切值.4.如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90.BAC ∠=︒点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(1)求证://MN 平面BDE ;(2)求二面角C EM N --的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE ,求线段AH 的长.5.已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的余弦值.6.如图所示,已知四棱锥P ABCD -中,四边形ABCD 为正方形,三角形PAB 为正三角形,侧面PAB ⊥底面ABCD ,M 是棱AD 的中点.(1)求证:PC BM ⊥;(2)求二面角B PM C --的正弦值.7.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.8.已知如图1所示,等腰ABC 中,4AB AC ==,BC =D 为BC 中点,现将ABD 沿折痕AD 翻折至如图2所示位置,使得3BDC π∠=,E 、F 分别为AB 、AC 的中点.(1)证明://BC 平面DEF ;(2)求四面体BCDE 的体积.9.在三棱柱ABC -A 1B 1C 1中,AB =2,BC =BB 1=4,1AC AB ==BCC 1=60°.(1)求证:平面ABC 1⊥平面BCC 1B 1:(2)设二面角C -AC 1-B 的大小为θ,求sinθ的值.10.如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,//AD BC ,∠BAD =90°,已知PA PC ==,2,3AD AB BC ===.(1)证明:AC PD ⊥;(2)若二面角P AC B --的余弦值为13,求四棱锥P ABCD -的体积.11.如图,四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 和侧面BCC 1B 1都是矩形,E 是CD 的中点,D 1E ⊥CD ,AB =2BC =2.(1)求证:平面CC 1D 1D ⊥底面ABCD ;(2)若平面BCC 1B 1与平面BED 1所成的锐二面角的大小为3π,求线段ED 1的长度.12.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAD ⊥平面ABCD ,PAD △是斜边PA 的长为E ,F 分别是棱PA ,PC 的中点,M 是棱BC 上一点.(1)求证:平面DEM ⊥平面PAB ;(2)若直线MF 与平面ABCD E DM F --的余弦值.13.如图所示,四棱锥E ABCD -的底面ABCD 是边长为2的正方形,侧面EAB ⊥底面ABCD ,EA EB =,F 在侧棱CE 上,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)求点D 到平面ACE 的距离.14.在三棱锥B -ACD 中,平面ABD ⊥平面ACD ,若棱长AC =CD =AD =AB =1,且∠BAD =30°,求点D 到平面ABC 的距离.15.如图,在长方体1111ABCD A B C D -中,1AB BC ==,12BB =,E 为棱1AA 的中点.(1)证明:BE ⊥平面11EB C ;(2)求二面角1B EC C --的大小.16.如下图,在四棱锥S ABCD -中,底面ABCD 是正方形,平面SAD ⊥平面ABCD ,2SA SD ==,3AB =.(1)求SA 与BC 所成角的余弦值;(2)求证:AB SD ⊥.17.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.18.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值.19.如图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点(I )求证BC PAC ⊥平面;(II )设//.Q PA G AOC QG PBC ∆为的中点,为的重心,求证:平面20.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD ⊥,点E 在线段AD 上,且CE AB ∥.(Ⅰ)求证:CE ⊥平面PAD ;(Ⅰ)若1==PA AB ,3AD =,CD =,45CDA ∠=︒,求四棱锥P ABCD -的体积.21.如图,直三棱柱ABC A B C '''-,90BAC ∠=,,AB AC AA λ'==点M ,N 分别为A B '和B C ''的中点. (∠)证明:MN ∠平面A ACC '';(∠)若二面角A MN C '--为直二面角,求λ的值.22.如图,在三棱锥S ABC -中, 侧面SAB 与侧面SAC 均为等边三角形,90,BAC ∠=︒O 为BC 中点. (∠)证明:SO ⊥平面;ABC(∠)求二面角A SC B --的余弦值.23.如图,在四棱锥P—ABCD 中,底面是边长为ⅠBAD =120°,且PAⅠ平面ABCD ,PA =M ,N 分别为PB ,PD 的中点.(1)证明:MNⅠ平面ABCD ;(2) 过点A 作AQⅠPC ,垂足为点Q ,求二面角A—MN—Q 的平面角的余弦值.24.如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====∠O 为AC 的中点. ∠1)证明:PO ⊥平面ABC ∠∠2)若点M在棱BC上,且2,求点C到平面POM的距离.MC MB25.如图,在三棱锥P∠ABC中,P A∠AB∠P A∠BC∠AB∠BC∠P A∠AB∠BC∠2∠D为线段AC的中点,E为线段PC上一点.(1)求证:P A∠BD∠(2)求证:平面BDE∠平面P AC∠(3)当P A∠平面BDE时,求三棱锥E∠BCD的体积.26.如图,在四棱锥P-ABCD中,PAⅠCD,ADⅠBC,ⅠADC=ⅠPAB=90°,BC=CD=1AD.2(Ⅰ)在平面PAD 内找一点M ,使得直线CMⅠ平面PAB ,并说明理由;(Ⅰ)证明:平面PABⅠ平面PBD .27.如图,在三棱台ABC–DEF 中,平面BCFEⅠ平面ABC ,ⅠACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BFⅠ平面ACFD ;(Ⅰ)求直线BD 与平面ACFD 所成角的余弦值.28.如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE 平面A 1C 1F ;(2)平面B 1DEⅠ平面A 1C 1F.29.如图,在三棱锥111ABC A B C -中,11BAC 90AB AC 2,4,A AA ∠====,在底面ABC 的射影为BC 的中点,D 为11B C 的中点.∠1)证明:11D A BC A ⊥平面∠∠2)求直线1A B 和平面11B C B C 所成的角的正弦值.30.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,,,60,AB AD AC CD ABC PA AB BC ⊥⊥∠===,E 是PC 的中点.(∠)证明CD AE ⊥;(∠)证明PD ⊥平面ABE ;--的大小.(∠)求二面角A PD C任务二:中立模式(中档)30-70题31.如图,在四棱锥P-ABCD中,底面ABCD为菱形,△P AD为正三角形,平面P AD⊥平面ABCD,E,F 分别是AD,CD的中点.(1)证明:BD⊥PF;(2)若AD=DB=2,求点C到平面PBD的距离;32.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠P AD为正三角形,平面P AD⊥平面ABCD,E,F 分别是AD,CD的中点.(1)证明:BD⊥PF;(2)若∠BAD=60°,求直线PC与平面PBD所成角的正弦值;33.如图,在四棱锥E -ABCD 中,AB ⊥CE ,AE ⊥CD ,BC AD ∥,AB =3,CD =4,AD =2BC =10.(1)证明:∠AED 是锐角;(2)若AE =10,求二面角A -BE -C 的余弦值.34.如图,在直四棱柱1111ABCD A B C D -中,12A E EA =(1)若F 为1BB 的中点,试在11A B 上找一点P ,使//PF 平面1CD E ;(2)若四边形ABCD 是正方形,且1BB 与平面1CD E ,求二面角1E D C D --的余弦值.35.如图1,已知ADE 为等边三角形,四边形ABCD 为平行四边形,1,2,BC BD BA ===ADE 沿AD 向上折起,使点E 到达点P 位置,如图2所示;且平面PAD ⊥平面PBD .(1)证明:PA BD ⊥;(2)在(1)的条件下求二面角A PB C --的余弦值.36.如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,四边形ABCD 为梯形,//AB CD ,3AB =,1CD =,AD =60ABC ∠=,30BAD ∠=,点E 在AB 上,满足AD DE ⊥.(1)求证:平面PAD ⊥平面PBC ;(2)若点F 为PA 的中点,求平面PCD 与平面DEF 所成角的余弦值.37.在四棱锥P ABCD -中,PA ⊥平面ABCD ,22PA AB ==,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,E 为PD 的中点,在平面PCD 内作EF PC ⊥于点F .(1)求证:平面AEF ⊥平面PAC ;(2)求二面角P AC E --的余弦值.38.在正方体1111ABCD A B C D -中,点E 、F 分别在AB 、BC 上,且13AE AB =,13BF BC =.(1)求证:11A F C E ⊥;(2)求直线1A F 与平面1B EF 所成角的正弦值.39.如图,在多面体1111ABCD A B C D -中,1111,,,AA BB CC DD 均垂直于平面ABCD ,//AD BC ,11=2AB BC CD AA CC ====,1=1BB ,14AD DD ==.(1)证明:11A C ⊥平面11CDD C ;(2)求1BC 与平面11AA B B 所成角的余弦值.40.某商品的包装纸如图1,其中菱形ABCD 的边长为3,且60ABC ∠=︒,AE AF ==BE DF ==E ,F ,M ,N 汇聚为一点P ,恰好形成如图2的四棱锥形的包裹.(1)证明PA ⊥底面ABCD ;(2)设点T 为BC 上的点,且二面角B PA T --,试求PC 与平面P AT 所成角的正弦值.41.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,侧面PAB ⊥底面ABCD ,且P A =AB ,90PAB ∠=.(1)证明:PC BD ⊥;(2)若60ABC ∠=,求直线PC 与平面PBD 所成角的正弦值.42.1.如图,正方形ABCD 所在平面与等边ABE △所在平面成的锐二面角为60,设平面ABE 与平面CDE 相交于直线l .(1)求证://l CD ;(2)求直线DE 与平面BCE 所成角的正弦值.43.如图,在四棱锥P ABCD -中,//AD BC ,AB AD ⊥,平面APD ⊥平面ABCD ,点E 在AD 上,且AB BC AE ED ===,PA PD ==.(1)求证:CE PD ⊥.(2)设平面PAB ⋂平面PCD l =,求二面角E l A --的余弦值.44.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ADC =∠︒,4BC =,M ,N 分别为BC ,PC 的中点,1,,CD PD DC PM MD =⊥⊥.(1)证明:BC PM ⊥;(2)若PA =BN 与平面PDC 所成角的正弦值.45.如图,已知点P 在圆柱1OO 的底面圆O 上,120AOP ∠=,圆O 的直径4AB =,圆柱的高13OO =.(1)求点A到平面1A PO的距离;--的余弦值大小.(2)求二面角1A PB O46.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=AA1=2,点P为棱B1C1的中点,点Q为线段A1B上的一动点.(1)求证:当点Q为线段A1B的中点时,PQ⊥平面A1BC;BA,试问:是否存在实数λ,使得平面A1PQ与平面B1PQ(2)设BQ=λ1在,求出这个实数λ;若不存在,请说明理由.47.如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90ABC ∠=︒,2PA =,AC =(1)求证:平面PBC ⊥平面PAB ;(2)若二面角P BC A --的大小为45︒,过点A 作AN PC ⊥于N ,求直线AN 与平面PBC 所成角的大小.48.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2PA AB ==,60BAD ∠=︒.(1)求证:直线BD ⊥平面PAC ;(2)设点M 在线段PC 上,且二面角C MB A --的余弦值为57,求点M 到底面ABCD 的距离.49.如图,在三棱锥P ABC -中,底面ABC 是边长2的等边三角形,PA PC ==F 在线段BC 上,且3FC BF =,D 为AC 的中点,E 为的PD 中点.(Ⅰ)求证:EF //平面PAB ;(Ⅱ)若二面角P AC B --的平面角的大小为2π3,求直线DF 与平面PAC 所成角的正弦值.50.如图,直四棱柱1111ABCD A B C D -的底面是菱形,侧面是正方形,60DAB ∠=︒,经过对角线1AC 的平面和侧棱1BB 相交于点F ,且12B F BF =.(1)求证:平面1AC F ⊥平面11BCC B ;(2)求二面角1F AC C --的余弦值.51.直角梯形11AA B B 绕直角边1AA 旋转一周的旋转的上底面面积为9π,下底面面积为36π,侧面积为,且二面角111B AA C --为90,P ,Q 分别在线段1CC ,BC 上.(∠)若P ,Q 分别为1CC ,BC 中点,求1AB 与PQ 所成角的余弦值;(∠)若P 为1CC 上的动点、Q 为BC 的中点,求PQ 与平面11AAC C 所成最大角的正切值,并求此时二面角Q AP C --的余弦值.52.正多面体也称柏拉图立体,被喻为最有规律的立体结构,其所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形,且每一个顶点所接的面数都一样,各相邻面所成二面角都相等).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正四面体QPTR 和一个正八面体AEFBHC 的棱长都是a (如图),把它们拼接起来,使它们一个表面重合,得到一个新多面体.(1)求新多面体的体积;(2)求二面角A BF C --的余弦值;(3)求新多面体为几面体?并证明.53.中国是风筝的故乡,南方称“鹞”,北方称“鸢”,如图,某种风筝的骨架模型是四棱锥P ABCD -,其中AC BD ⊥于O ,4OA OB OD ===,8OC =,PO ⊥平面ABCD .(1)求证:PD AC ⊥;(2)试验表明,当12PO OA =时,风筝表现最好,求此时直线PD 与平面PBC 所成角的正弦值.54.在陕西汉中勉县的汉江河与定军山武侯坪一带,经常出土有铜、铁扎马钉等兵器文物.扎马钉(如题21图(1))是三国时蜀汉的著名政治家、军事家诸葛亮所发明的一种对付骑兵的武器,状若荆刺,故学名蒺藜,有铜、铁两种.扎马钉有四个锋利的尖爪,随手一掷,三尖撑地,一尖直立向上,推倒上尖,下尖又起,始终如此,使触者不能避其锋而被刺伤.即总有一个尖垂直向上,三尖对称支承于地.简化扎马钉的结构,如图(2),记组成该“钉”的四条等长的线段公共点为O ,钉尖为i A (1,2,3,4i =).(Ⅰ)判断四面体1234A A A A -的形状特征; (Ⅱ)若某个出土的扎马钉因年代久远,有一尖爪受损,其长度仅剩其他尖爪长度的23(即4123OA OA '=),如图(3),将2A ,3A ,4A '置于地面,求1OA 与面234A A A '所成角θ的正弦值.55.正多面体也称柏拉图立体,被誉为最有规律的立体结构,其所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形,且每一个顶点所接的面数都一样,各相邻面所成二面角都相等).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正四面体QPTR 和一个正八面体AEFBHC 的棱长都是a (如图),把它们拼接起来,使它们一个表面重合,得到一个新多面体.(1)求新多面体的体积;(2)求正八面体AEFBH 中二面角A BF C --的余弦值;(3)判断新多面体为几面体?(只需给出答案,无需证明)56.如图,已知在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,AB CD =,E 为棱PB 上一点,AC 与BD 交于点O ,且AC BD ⊥,1AD =,3BC PC PB ===,PO =(1)证明:AC DE ⊥;(2)是否存在点E ,使二面角B DC E --E 点位置,若不存在,请说明理由.57.如图,在三棱柱111ABC A B C ﹣中点,E 在棱1BB 上,点F 在棱CC 1上,且点,E F 均不是棱的端点,1,AB AC BB ⊥=平面,AEF 且四边形11AA B B 与四边形11AAC C 的面积相等.(1)求证:四边形BEFC 是矩形;(2)若2,AE EF BE ==ABC 与平面AEF 所成角的正弦值.58.如图,在三棱台111ABC A B C -中,11190,4,2,BAC AB AC A A A B ∠=︒====侧棱1A A ⊥平面,ABC 点D 在棱1CC 上,且1CD CC λ=(1)证明:1BB ⊥平面1AB C ;(2)当二面角C BD A --的余弦值为,求λ的值.59.在直四棱柱1111ABCD A B C D -中,底面ABCD 为平行四边形,1,45AB BC ABC ∠===,点M 在棱1CC 上,点N 是BC 的中点,且满足1AM B N ⊥.(1)证明:AM ⊥平面11A B N ;(2)若M 是1CC 的中点,求二面角111A B N C --的正弦值.60.在四棱锥P ABCD -中,四边形ABCD 是边长为4的菱形,PB BD PD ===PA =(1)证明:PC ⊥平面ABCD ;(2)如图,取BC 的中点为E ,在线段DE 上取一点F 使得23DF FE =,求二面角F PA C --的大小.61.如图,在底面是菱形的四棱柱1111ABCD A B C D -中,60ABC ∠=,1112,AA AC A B A D ====E 在1A D 上.(1)求证:1AA ⊥平面ABCD ;(2)当E 为线段1A D 的中点时,求点1A 到平面EAC 的距离.62.已知四棱锥P ABCD -的底面是菱形,对角线AC 、BD 交于点O ,4OP OA ==,3OB =,OP ⊥底面ABCD ,设点M 满足()01PM MC λλ=<<.(1)若三棱锥P MBD -体积是169,求λ的值;(2)若直线PA 与平面MBD λ的值.63.光学器件在制作的过程中往往需要进行切割,现生产一种光学器件,有一道工序为将原材料切割为两个部分,然后在截面上涂抹一种光触媒化学试剂,加入纳米纤维导管后粘合.在如图所示的原材料器件直三棱柱ABC﹣A'B'C'中,AB⊥AC,AB=AC=AA'=a,现经过AB作与底面ABC所成角为θ的截面,且截面与B'C',A'C'分别交于不同的两点E,F.(1)试求截面面积S随θ变化的函数关系式S(θ);(2)当E和F分别为B C''和A C''的中点时,需要在线段AF上寻找一个点Q,用纳米纤维导管连接EQ,使得EQ与AB'所在直线的夹角最小,试求出纤维导管EQ的长.64.如图,四棱锥P﹣ABCD的底面ABCD为菱形,∠ABC=60°,P A⊥平面ABCD,且E,M分别为BC,PD的中点,点F为棱PC上一动点.(1)证明:平面AEF ⊥平面P AD .(2)若AB =P A ,在线段PC 上是否存在一点F ,使得二面角F ﹣AE ﹣M 定F 的位置;若不存在,说明理由.65.如图,三棱柱111ABC A B C -中,111AA B C =,11120BB C ∠=︒,1190AB C ∠=︒.(1)求证:ABC 为等腰三角形;(2)若11111AB C B AC ∠=∠,11B AB B BA ∠=∠,点M 在线段11B C 上,设111102B M B C λλ⎛⎫=<< ⎪⎝⎭,若二面角11A CM C --λ的值.66.如图,四棱锥P ABCD -中,底面ABCD 为菱形,2AB AD ==,60ABC ∠=︒,PA ⊥平面ABCD ,PA =(1)点E 在线段PC 上,37PE PC =,点F 在线段PD 上,35PF PD =,求证:PC ⊥平面AEF ; (2)设M 是直线AC 上一点,求CM 的长,使得MP 与平面PCD 所成角为45︒.67.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,1AB =,2PA =,E 为PB 的中点,点F 在棱PC 上,且PF PC λ=.(1)求直线CE 与直线PD 所成角的余弦值;(2)当直线BF 与平面CDE 所成的角最大时,求此时λ的值.68.如图,在四棱锥P ABCD ﹣中,四边形ABCD 为直角梯形,//AD BC ,90BAD ∠=︒,且1AB BC ==,2AD =,PA PD =,M 为AD 的中点,平面PAD ⊥平面ABCD ,直线PB 与平面ABCD 所成角的正切值为(1)求四棱锥PABCD ﹣的体积;(2)在棱CD 上(不含端点)是否存在一点Q ,使得二面角C AP Q --?若存在,请确定点Q 的位置;若不存在,请说明理由.69.已知四棱锥P ABCD -P 中,底面ABCD 是平行四边形,PA AB =,PAD BAD ∠=∠,,E F 分别是,AB DC 的中点,2,3,AD PF PE ===(1)求证:AD ⊥平面PAB ;(2)若PB =B PC A --的余弦值.70.如图,矩形ABCD 中,AB ADλ=()1λ>,将其沿AC 翻折,使点D 到达点E 的位置,且二面角C AB E --为直二面角.(1)求证:平面ACE ⊥平面BCE ;(2)设F 是BE 的中点,二面角E AC F --的平面角的大小为θ,当[]2,3λ∈时,求cos θ的取值范围.任务三:邪恶模式(困难)70-100题71.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为,PA BD 中点,2PA PD AD ===.(1)求证://EF 平面PBC ;(2)求二面角E DF A --的余弦值;(3)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.72.请从下面三个条件中任选一个,补充在下面的横线上,并作答.∠()0BA PA PD ⋅+=;∠PC ∠点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD △是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD △沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F M 、分别是AB CE 、的中点,且___________.(1)求证:AB FM ⊥;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面PAD 所成的锐二面角的余弦值.注:如果选择多个条件分别解答,按第一个解答计分.73.蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H ABC -,J CDE -,K EFA -,再分别以AC ,CE ,EA 为轴将ACH ∆,CEJ ∆,EAK ∆分别向上翻转180︒,使H ,J ,K 三点重合为点S 所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱的侧面积一定,当蜂房表面积最小时,求其顶点S 的曲率的余弦值.74.2022年北京冬奥会标志性场馆——国家速滑馆的设计理念来源于一个冰和速度结合的创意,沿着外墙面由低到高盘旋而成的“冰丝带”,就像速度滑冰运动员高速滑动时留下的一圈圈风驰电掣的轨迹,冰上划痕成丝带,22条“冰丝带”又象征北京2022年冬奥会.其中“冰丝带”呈现出圆形平面、椭圆形平面、马鞍形双曲面三种造型,这种造型富有动感,体现了冰上运动的速度和激情这三种造型取自于球、椭球、椭圆柱等空间几何体,其设计参数包括曲率、挠率、面积体积等对几何图形的面积、体积计算方法的研究在中国数学史上有过辉煌的成就,如《九章算术》中记录了数学家刘徽提出利用牟合方盖的体积来推导球的体积公式,但由于不能计算牟合方盖的体积并没有得出球的体积计算公式直到200年以后数学家祖冲之、祖眶父子在《缀术》提出祖暅原理:“幂势既同,则积不容异”,才利用牟合方盖的体积推导出球的体积公式原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.(Ⅰ)利用祖暅原理推导半径为R 的球的体积公式时,可以构造如图②所示的几何体M ,几何体M 的底面半径和高都为R ,其底面和半球体的底面同在平面α内.设与平面α平行且距离为d 的平面β截两个几何体得到两个截面,请在图②中用阴影画出与图①中阴影截面面积相等的图形并给出证明;(Ⅱ)现将椭圆()222210x y a b a b+=>>所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球A ,B (如图),类比(Ⅰ)中的方法,探究椭球A 的体积公式,并写出椭球A ,B 的体积之比.75.如图,已知边长为2的正方形材料ABCD ,截去如图所示的阴影部分后,可焊接成一个正四棱锥的封闭容器.设FCB θ∠=.(1)用θ表示此容器的体积;(2)当此容器的体积最大时,求tan θ的值.76.如图,在四面体ABCD 中,AB AC ⊥,平面ACD 与平面BCD 垂直且CD =(1)若2AB AC ==,证明:45BCD ∠<︒;(2)若33AB AC ==,当ACD △与BCD 面积之和最大时,求二面角C AB D --的余弦值.77.某人设计了一个工作台,如图所示,工作台的下半部分是个正四棱柱ABCD ﹣A 1B 1C 1D 1,其底面边长为4,高为1(1)当圆弧E 2F 2(包括端点)上的点P 与B 1的最短距离为DB 1Ⅰ平面D 2EF .(2)若D 1D 2=3.当点P 在圆弧E 2E 2(包括端点)上移动时,求二面角P ﹣A 1C 1﹣B 1的正切值的取值范围.78.平面凸六边形11MBB NC C 的边长相等,其中11BB C C 为矩形,1190BMC B NC ∠=∠=︒.将BCM ,11B C N △分别沿BC ,11B C 折至ABC ,111A B C ,且均在同侧与平面11BB C C 垂直,连接1AA ,如图所示,E ,G 分别是BC ,1CC 的中点.(1)求证:多面体111ABC A B C -为直三棱柱;(2)求二面角1A EG A --平面角的余弦值.79.如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是,PA PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.80.已知,图中直棱柱1111ABCD A B C D -的底面是菱形,其中124AA AC BD ===.又点,,,E F P Q 分别在棱1111,,,AA BB CC DD 上运动,且满足:BF DQ =,1CP BF DQ AE -=-=.(1)求证:,,,E F P Q 四点共面,并证明EF Ⅰ平面PQB .(2)是否存在点P 使得二面角B PQ E --?如果存在,求出CP 的长;如果不存在,请说明理由.81.如图1,ADC ∆与ABC ∆是处在同-个平面内的两个全等的直角三角形,30ACB ACD ︒∠=∠=90ABC ADC ︒∠=∠=,2AB =,连接是,BD E 边BC 上一点,过E 作// EF BD ,交CD 于点F ,沿EF 将CEF ∆向上翻折,得到如图2所示的六面体,P ABEFD -(1)求证:;BD AP ⊥(2)设),(BE EC R λλ=∈若平面PEF ⊥底面ABEFD ,若平面PAB 与平面PDF λ的值;(3)若平面PEF ⊥底面ABEFD ,求六面体P ABEFD -的体积的最大值.82.设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为AC BC ⊥,AC BC =,且平面PAB ⊥平面ABC .(1)确定O 的位置(需要说明理由),并证明:平面POC ⊥平面ABC .(2)与侧面PAB 平行的平面α与棱AC ,BC ,PC 分别交于D ,E ,F ,求四面体ODEF 的体积的最大值.83.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 是AB 的中点,BC AC =,2AB DC ==,14AA =.(Ⅰ)求证:1//BC 平面1A CD ;(Ⅰ)求平面11BCC B 与平面1A CD 所成锐二面角的平面角的余弦值.84.如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,ABD △为底面圆O 的内接正三角E 在母线PC 上,且1,AE CE EC BD ==⊥.(1)求证:平面BED ⊥平面ABD ;(2)设线段PO 上动点为M ,求直线DM 与平面ABE 所成角的正弦值的最大值.85.如图,三棱柱111ABC A B C -的底面是边长为4的正三角形,侧面11ACC A ⊥底面ABC ,且侧面11ACC A 为菱形,160A AC ∠=.(1)求二面角1A AB C 所成角θ的正弦值.(2),M N 分别是棱11A C ,11B C 的中点,又2AP BP =.求经过,,M N P 三点的平面截三棱柱111ABC A B C -的截面的周长.86.如图,在三棱台111ABC A B C -中,底面ABC 是边长为2的正三角形,侧面11ACC A 为等腰梯形,且1111AC AA ==,D 为11A C 的中点.(1)证明:AC BD ⊥;(2)记二面角1A AC B --的大小为θ,2,33ππθ⎡⎤∈⎢⎥⎣⎦时,求直线1AA 与平面11BB C C 所成角的正弦值的取值范围.87.如图,在四棱锥P ABCD -中,M ,N 分别是AB ,AP 的中点,AB BC ⊥,MD PC ⊥,//MD BC ,1BC =,2AB =,3PB =,CD =PD =(Ⅰ)证明://PC 平面MND ;(Ⅱ)求直线PA 与平面PBC 所成角的正弦值.88.设P 为多面体M 的一个顶点,定义多面体M 在点P 处的离散曲率为12231111()2k k k Q PQ Q PQ Q PQ Q PQ π--∠+∠++∠+∠,其中Q i (i =1,2,…,k ,k ≥3)为多面体M 的所有与点P 相邻的顶点,且平面Q 1PQ 2,平面Q 2PQ 3,…,平面Q k ﹣1PQ k 和平面Q k PQ 1遍历多面体M 的所有以P 为公共点的面.(1)如图1,已知长方体A 1B 1C 1D 1﹣ABCD ,AB =BC =1,1AA =P 为底面A 1B 1C 1D 1内的一个动点,则求四棱锥P ﹣ABCD 在点P 处的离散曲率的最小值;(2)图2为对某个女孩面部识别过程中的三角剖分结果,所谓三角剖分,就是先在面部取若干采样点,然后用短小的直线段连接相邻三个采样点形成三角形网格.区域α和区域β中点的离散曲率的平均值更大的是哪个区域?(确定“区域α”还是“区域β”)89.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,3PA PB ==.(1)证明:PAD PBC ∠=∠;(2)当直线PA 与平面PCD 所成角的正弦值最大时,求此时二面角P AB C 的大小.90.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在各顶点的曲率为233πππ-⨯=,故其总曲率为4π.(1)求四棱锥的总曲率;(2)若多面体满足:顶点数-棱数+面数2=,证明:这类多面体的总曲率是常数.91.已知四棱锥T ABCD -的底面是平行四边形,平面α与直线AD ,TA ,TC 分别交于点P ,Q ,R 且AP TQ CRx AD TA CT===,点M 在直线TB 上,N 为CD 的中点,且直线//MN 平面α.(1)设TA a =,TB b =,TC c =,试用基底{},,a b c 表示向量TD ;(2)证明,四面体T ABC -中至少存在一个顶点从其出发的三条棱能够组成一个三角形;(3)证明,对所有满足条件的平面α,点M 的线段上.92.如图,在四棱台ABCD -A 1B 1C 1D 1中,底面ABCD 是菱形,ⅠABC =3π,ⅠB 1BD =6π,11,B BA B BC ∠=∠11122,3AB A B B B ===。
第83炼 特殊值法解决二项式展开系数问题一、基础知识:1、含变量的恒等式:是指无论变量在已知范围内取何值,均可使等式成立。
所以通常可对变量赋予特殊值得到一些特殊的等式或性质2、二项式展开式与原二项式呈恒等关系,所以可通过对变量赋特殊值得到有关系数(或二项式系数)的等式3、常用赋值举例:(1)设()011222nnn n r n r rn nn n n n n a b C a C ab C a b C a b C b ---+=++++++,①令1a b ==,可得:012n nn n n C C C =+++②令1,1a b ==-,可得: ()012301nnn n n nnC C C C C =-+-+-,即: 02131n n n n n n n n C C C C C C -+++=+++(假设n 为偶数),再结合①可得: 0213112n n n n n n n n n C C C C C C --+++=+++=(2)设()()201221nn n f x x a a x a x a x =+=++++① 令1x =,则有:()()0122111nn a a a a f ++++=⨯+=,即展开式系数和② 令0x =,则有:()()02010na f =⨯+=,即常数项 ③ 令1x =-,设n 为偶数,则有:()()01231211nn a a a a a f -+-++=-⨯+=-()()()021311n n a a a a a a f -⇒+++-+++=-,即偶次项系数和与奇次项系数和的差 由①③即可求出()02n a a a +++和()131n a a a -+++的值二、典型例题:例1:已知()828012831x a a x a x a x -=++++,则1357a a a a +++的值为________思路:观察发现展开式中奇数项对应的x 指数幂为奇数,所以考虑令1,1x x ==-,则偶数项相同,奇数项相反,两式相减即可得到1357a a a a +++的值解:令1x =可得:80182a a a =+++ ①令1x =-可得:801284a a a a =-+-+ ②①-②可得:()881357242a a a a -=+++()8813571242a a a a ∴+++=- 答案:()881242- 例2:已知()()()()()921120121112111xx aax a x a x +-=+-+-++-,则121a a a +++的值为( ) A. 0 B. 2 C. 255 D. 2- 思路:本题虽然恒等式左侧复杂,但仍然可通过对x 赋予特殊值得到系数的关系式,观察所求式子特点可令2x =,得到01110a a a +++=,只需再求出0a 即可。
第83炼 特殊值法解决二项式展开系数问题一、基础知识:1、含变量的恒等式:是指无论变量在已知范围内取何值,均可使等式成立。
所以通常可对变量赋予特殊值得到一些特殊的等式或性质2、二项式展开式与原二项式呈恒等关系,所以可通过对变量赋特殊值得到有关系数(或二项式系数)的等式3、常用赋值举例:(1)设()011222nnn n r n r rn nn n n n n a b C a C ab C a b C a b C b ---+=++++++,①令1a b ==,可得:012n nn n n C C C =+++②令1,1a b ==-,可得: ()012301nnn n n nnC C C C C =-+-+-,即: 02131n n n n n n n n C C C C C C -+++=+++(假设n 为偶数),再结合①可得: 0213112n n n n n n n n n C C C C C C --+++=+++=(2)设()()201221nn n f x x a a x a x a x =+=++++① 令1x =,则有:()()0122111nn a a a a f ++++=⨯+=,即展开式系数和② 令0x =,则有:()()02010na f =⨯+=,即常数项 ③ 令1x =-,设n 为偶数,则有:()()01231211nn a a a a a f -+-++=-⨯+=-()()()021311n n a a a a a a f -⇒+++-+++=-,即偶次项系数和与奇次项系数和的差 由①③即可求出()02n a a a +++和()131n a a a -+++的值二、典型例题:例1:已知()828012831x a a x a x a x -=++++,则1357a a a a +++的值为________思路:观察发现展开式中奇数项对应的x 指数幂为奇数,所以考虑令1,1x x ==-,则偶数项相同,奇数项相反,两式相减即可得到1357a a a a +++的值解:令1x =可得:80182a a a =+++ ①令1x =-可得:801284a a a a =-+-+ ②①-②可得:()881357242a a a a -=+++()8813571242a a a a ∴+++=- 答案:()881242- 例2:已知()()()()()921120121112111xx aax a x a x +-=+-+-++-,则121a a a +++的值为( ) A. 0 B. 2 C. 255 D. 2- 思路:本题虽然恒等式左侧复杂,但仍然可通过对x 赋予特殊值得到系数的关系式,观察所求式子特点可令2x =,得到01110a a a +++=,只需再求出0a 即可。
专题15 数列构造求解析式必刷100题任务一:善良模式(基础)1-30题一、单选题1.数列{}n a 中,121n n a a +=+,11a =,则6a =( ) A .32 B .62 C .63 D .642.在数列{}n a 中,11a =,且121n n a a +=+,则{}n a 的通项为( )A .21nn a =-B .2n n a =C .21nn a =+D .12n n a +=3.设数列{a n }满足a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是( )A .415B .425C .435D .4454.设数列{a n }中,a 1=2,a n +1=2a n +3,则通项a n 可能是( ) A .5-3n B .3·2n -1-1 C .5-3n 2 D .5·2n -1-35.已知数列{}n a 满足:()*1121,2nn n a a a n a +==∈+N ,则数列{}n a 的通项公式为( ) A .11n a n =+ B .11n a n =- C .1n n a n =+ D .21n a n =+6.已知数列{}n a 中,11111,1()n na n N a a *+==+∈,则10a =( ) A .17B .18C .19D .1107.已知数列{} n a 的前n 项和为n S ,11a =,22a =,()12343n n n a a a n --=+≥,则10S =( )A .10415-B .11415-C .1041-D .1141-8.已知数列{}n a 满足:122a a ==,()12343n n n a a a n --=+≥,则910a a +=( ) A .74 B .84 C .94 D .1049.已知数列{}n a 满足递推关系,1111,2n n n n a a a a a ++⋅=-=,则2020a =( ) A .12018B .12019C .12020D .1202110.已知数列{}n a 满足:11a =,12nn n a a a +=+,()*n N ∈,则数列{}n a 的通项公式为( ) A .112n n a -= B .121n n a =- C .21n a n =- D .112n na =-11.数列{}n a 满足11221n n n n a a ++=-,且11a =,若15n a <,则n 的最小值为 A .3 B .4 C .5 D .612.已知数列{}n a 满足150a =,121n n a a +=-,则满足不等式10k k a a +⋅<的k (k 为正整数)的值为( ). A .3 B .4 C .5 D .613.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9 B .10 C .11 D .1214.已知数列{}n a 满足()112,21n n n a a n n a *--=≥∈+N ,且112a =,则1n a ⎧⎫⎨⎬⎩⎭的第n 项为( ) A .2n B .2nC .31n -D .12n15.数列{}n a 中,若11a =,()1231n n a a n +=+≥,则该数列的通项n a =( ) A .123n +- B .23n -C .23n +D .123n --16.已知数列{}n a 满足11n n a a λ+=+,且11a =,23a =,则数列{}n a 前6项的和为( ). A .115 B .118C .120D .128第II 卷(非选择题)二、填空题17.已知数列{}n a 满足1132,1n n a a a +=+=,则n a =__________.18.已知数列{}n a 的各项均为正数,且220n n a a n n ---=,则数列{}n a 的通项公式n a =______.19.已知数列{}n a 满足11a =,且()111233nn n a a n -⎛⎫=+≥ ⎪⎝⎭,则数列{}n a 的通项公式n a =______.20.若正项数列{}n a 满足22112,441n n n a a a a +==++,则数列{}n a 的通项公式是_______.21.若数列{}n a 满足()()111n n n a n a --=+,2n ≥,n *∈N ,且11a =,则5a =______.22.数列{}n a 的前n 项和为n S ,已知11a =,()121,2,3,n n n a S n n++==,则n a =___.23.在数列{}n a 中,12a =,112144n n a a n n +⎛⎫=+++ ⎪⎝⎭,()n N *∈,则5a =________.三、解答题24.已知数列{}n a 满足132a =,()*131n n a a n N +=-∈. (1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列;(2)求数列{}n a 的前n 项和n S .25.已知数列{}n a 的前n 项和为n S ,且()2n S n n *=∈N ,数列{}n b 满足12b =,()1322,n n b b n n *-=+≥∈N .求数列{}n a ,{}n b 的通项公式;26.已知数列{}n a 中,213a =,112n n n n a a a a ++=+.求数列{}n a 的通项公式;27.已知列{}n a 满足12a =,且1122n n n a a ++=+,n *∈N .(1)设2nn na b =,证明:数列{}n b 为等差数列; (2)求数列{}n b 的通项公式;28.已知等差数列{}n a 的前n 项和为n S ,且2810a a +=,1166S =. (1)求{}n a 的通项公式;(2)已知11b =,111n n n n a b a b ++-=,设___________,求数列{}n c 的通项公式. 在①nn b c n=,①1n n b c n +=,①1n n b c n -=,这3个条件中,任选一个解答上述问题.注:如果选择多个条件分别解答,按照第一个解答计分.29.设数列{}n a 满足132(2)n n a a n -=+≥,且12a =,3log (1)n n b a =+. (1)求2a ,3a 的值;(2)已知数列{}n a 的通项公式是:31n n a =-,3nn a =,32n a n =+中的一个,判断{}n a 的通项公式,并求数列{}n n a b +的前n 项和n S .30.已知数列{}n a 满足11a =,23a =,且2124n n n a a a ++-+=,*n N ∈. (1)求数列{}n a 的通项公式; (2)设nn a b n=,*n N ∈,求n b 的最小值.任务二:中立模式(中档)1-50题一、单选题1.已知数列{}n a 满足()()11*1211,,222121,2,2n n n n a a a a a a n n ++=-=-=--≥∈N ,记数列{}n a 前n 项和为n S ,则( ) A .202178S << B .202189S << C .2021910S << D .20211011S <<2.已知数列{}n a 满足()()()11113n n n n a a a a ++--=-,152a =,设224n nn a c n λ⎛⎫=-⎪+⎝⎭,若数列{}n c 是单调递减数列,则实数λ的取值范围是( ) A .1,6⎛⎫+∞ ⎪⎝⎭B .1,3⎛+∞⎫⎪⎝⎭C .1,2⎛⎫+∞ ⎪⎝⎭D .()1,+∞3.已知在数列{}n a 中,156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,则n a =( ) A .3223n n- B .2332n n- C .1223n n- D .2132n n-4.设数列{}n a 满足113,34n n a a a n +==-,若21485n n n n n b a a +++=,且数列{}n b 的前n 项和为n S ,则n S =( ) A .2169n n ⎛⎫+ ⎪+⎝⎭B .42369n n ++C .1169n n ⎛⎫+ ⎪+⎝⎭D .2169n n ⎛⎫+ ⎪+⎝⎭5.数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,若2cos 3=πn n n b a ,且数列{}n b 的前n 项和为n S ,则11S =( )A .64B .80C .64-D .80-6.已知数列{}n a 满足*1132(2,)n n n a a a n n -+-=≥∈N ,且10a =,62021a =,则2a =( ) A .202131B .202133C .202163D .2021657.已知数列{}n a 满足12a =,()11312,n n n n a a a a n n N *--+=-≥∈,若123n n T a a a a =⋅⋅⋅,当10n T >时,n 的最小值为( ) A .3 B .5 C .6 D .78.数列{}n a 各项均是正数,112a =,232a =,函数313y x =在点31,3n n a a ⎛⎫ ⎪⎝⎭处的切线过点32172,3n n n a a a ++⎛⎫- ⎪⎝⎭,则下列命题正确的个数是( ). ①3418a a +=;②数列{}1n n a a ++是等比数列; ③数列{}13n n a a +-是等比数列; ④13-=n n a . A .1 B .2 C .3 D .49.已知数列{}n a 满足11a =,()*12n n n a a n a +=∈+N ,若()*11(2)1n n b n n a λ+⎛⎫=-⋅+∈ ⎪⎝⎭N ,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是A .23λ> B .32λ>C .23λ<D .32λ<10.已知数列{}n a 满足11a =,()*12n n n a a n N a +=∈+.若21log 1n n b a ⎛⎫=+ ⎪⎝⎭,则数列{}n b 的通项公式n b =( ) A .12n B .1n -C .nD .2n11.已知数列{}n a 的首项13a =,且满足()*1212123n n n a a n n n +-=+-∈-N ,则{}n a 中最小的一项是( )A .2aB .3aC .4aD .5a12.已知数列21131322n n n a a a --=++,12a =,则()25log 1a +=( ) A .263log 331- B .231log 315- C .363log 231- D .331log 215-13.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p qS S -的最小值为( ) A .6- B .2-C .1-D .014.数列{}n a 满足()111,22nn n a a a n ++==+∈N ,那么4a 的值为( ).A .4B .12C .18D .3215.已知数列{}n a 满足12a =,12(2)1n n n a a n ++=+,则20201232019a a a a a =++++( )A .20212019B .20202019C .20192018D .2021201816.若数列{}n a 的首项121a =-,且满足21(23)(21)483n n n a n a n n +-=-+-+,则24a 的值为( )A .1980B .2000C .2020D .202117.设数列{}n a 的前n 项和为n S ,且11a =,2(1)n n S a n n=+-(*N n ∈),则22n nS n -的最小值为 A .2- B .1-C .23D .318.已知数列{}n a 的首项112,9n n a a a +==+,则27a =( ) A .7268 B .5068 C .6398 D .402819.已知在数列{}n a 中,156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,则n a =( )A .3223n n- B .2332n n- C .1223n n- D .2132n n-20.如果数列{}n a 满足12a =,21a =,且()11112n n n n n n n n a a a a n a a a a -+-+--=≥,则这个数列的第10项等于( )A .1012 B .912 C .110 D .15第II 卷(非选择题)二、填空题21.已知数列{}n a 满足11122n n n n n a a a a a +++++=+,且1211,3a a ==,则{}n a 的通项公式n a =_______________________.22.设数列{}n a 满足12a =,26a =,312a =,数列{}n a 前n 项和为n S ,且211131n n n n S S S S +-+-+=-+(n N ∈且2n ≥).若[]x 表示不超过x 的最大整数,2(1)n n n b a ⎡⎤+=⎢⎥⎣⎦,数列{}n b 的前n 项和为n T ,则2022T 的值为___________.23.已知n S 是数列{}n a 的前n 项和,11321n n n a a a +--+=,11a =,24a =,求数列{}n a 的通项公式___________.24.设数列{}n a 满足12a =,26a =,312a =,数列{}n a 前n 项和为n S ,且211131n n n n S S S S +-+-+=-+(n N ∈且2n ≥).若[]x 表示不超过x 的最大整数,2(1)n n n b a ⎡⎤+=⎢⎥⎣⎦,数列{}n b 的前n 项和为n T ,则2022T 的值为___________.25.已知数列{}n a 中11a =,1512+=-n n a a ,设12n n b a =-,求数列{}n b 的通项公式________.26.已知数列{}n a 满足13a =,()()()1123111231n n n nn a a n N a +*+-++=∈+⋅-,则数列{}n a 的通项公式为na=______.27.若数列{}n a 满足11a =,1162n n n a a ++=+,则数列{}n a 的通项公式n a =________.28.已知数列{}n a 中,132a =,且满足11122n n n a a -=+()*2,N n n ≥∈,若对于任意*N n ∈,都有n a nλ≥成立,则实数λ的最小值是_________.29.在数列{}n a 中,11a =,且()131nn n a a +=+-,则n a =______.(用含n 的式子表示)30.若数列{}n a 满足11a =,且142nn n a a +=+,则6a =________.31.在数列{}n a 中,11a =,122133232(2)n n n n n a a n ----=-⋅+,n S 是数列1{}n a n+的前n 项和,则n S 为___________.32.若数列{}n a 满足12a =,141n n a a +=+,则使得22020n a ≥成立的最小正整数n 的值是______.33.已知数列{}n a 满足15a =,21(23)(25)41615n n n a n a n n ++-+=++,则n a =________.34.已知数列{a n }满足11111n n a a n n n n +-⎛⎫=-+ ⎪+⎝⎭(n ∈N *),且a 2=6,则{a n }的通项公式为_____.35.设数列{}n a 满足14a =,210a =,215n a a -,3n ∀≥,则201920181ln ln 2a a -=______.36.已知数列{}n a 满足1310+=+n n a a ,()41=-+n n b a n ,若1n n b b +>,则数列{}n a 的首项的取值范围为___________.37.数列{}n a 满足11a =,()2212n n n a S S -=(2n ≥,*n N ∈),则n a =______.38.已知数列{}n a 满足11a =,11(2)23n n n a a n a --=≥+,则通项公式n a =_______.39.数列{}n a 满足:21(1)(21)1n n n na n a n a ++++=+-,11a =,26a =,令·cos 2n n n c a π=,数列{}n c 的前n 项和为n S ,则4n S =__________.40.数列{}n a满足()111n a n N a *+==∈,记21·2n n nb a =,则数列{}n b 的前n 项和n S =________.三、解答题41.已知在数列{}n a 中,11a =-,且()13232,n n a a n n n +-=-+≥∈N .(1)求2a ,3a ,并证明数列{}n a n -是等比数列; (2)求{}n a 的通项公式; (3)求12n a a a ++⋅⋅⋅+的值.42.已知S n =4-a n -212n -,求a n 与S n .43.设各项均为正数的等差数列{}n a 的前n 项和为n S ,520S =,且2a ,61a -,11a 成等比数列. (1)求数列{}n a 的公差d ;(2)数列{}n b 满足1n n n b b a ++=,且111b a +=,求数列{}n b 的通项公式.44.已知数列{}n a 中,11a =,()*13nn n a a n N a +=∈+. (1)求证:数列112n a ⎧⎫+⎨⎬⎩⎭是等比数列;(2)数列{}n b 满足的()312nn n n n b a =-⋅⋅,数列{}n b 的前n 项和为n T ,若不等式()112nn n n T λ--<+对一切*n N ∈恒成立,求λ的取值范围.45.数列{}n a ,{}n b 的每一项都是正数,18a =,116b =,且n a ,n b ,1n a +成等差数列,n b ,1n a +,1n b +成等比数列.(1)求数列2a ,2b 的值.(2)求数列{}n a ,{}n b 的通项公式.(3)记1111n n n c a a +=+,记1n c ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明对于正整数n 都有38n S <成立.46.已知数列{}n a 满足112n n a a +=-+,其中10a =. (1)求证11n a ⎧⎫⎨⎬+⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设121n n n n T a a a +-=+++,若n T p n ≤-对任意的n *∈N 恒成立,求p 的最小值.47.已知数列{}n a 的前n 项和为n S ,满足111,221n n n n a a S S a +==++. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)若数列{}n b 满足21(21)n n n b a a n +⋅+⋅=,求数列{}n b 的前n 项和n T .48.已知数列{a n }满足a 1=76,S n 是{a n }的前n 项和,点(2S n +a n ,S n +1)在()1123f x x =+的图象上. (1)求数列{a n }的通项公式;(2)若c n =2()3n a -n ,T n 为c n 的前n 项和,n ∈N *,求T n .49.已知数列{a n }满足a 1a 2…a n =1-a n . (1)求证数列{11n a -}是等差数列,并求数列{a n }的通项公式; (2)设T n =a 1a 2……a n ,b n =a n 2T n 2,证明:b 1+b 2+…+b n <25.50.已知数列{}n a 的前n 项和为n S ,且1111,22n n n a a a n++==. (1)求{}n a 的通项公式;(2)设()*2,n n b n S n N =-∈,若*,n b n N λ≤∈恒成立,求实数λ的取值范围;(3)设()*2,,1nn n S c n N T n n -=∈+是数列{}n c 的前n 项和,证明314n T ≤<.任务三:邪恶模式(困难)1-20题一、单选题1.数列{}n a 满足11a =,23a =,()*12430n n n a a a n N ++--=∈,设31log n n b a +=,记[]x 表示不超过x 的最大整数.设12231202*********n n n S b b b b b b +⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦,若不等式n S t ≥,对n N *∀∈恒成立,则实数t 的最大值为( ) A .2020 B .2019 C .1010 D .10092.已知数列{}n a 满足11a =)*2,N n n =≥∈且()*2cos 3n n n a b n π=∈N ,则数列{}n b 前36项和为( ) A .174 B .672 C .1494 D .59043.已知数列{}{},n n a b ,满足()*11111,6,2,22N n n n n n a b a a b b a n ++====-∈.若k k a b =,k 的值是( )A .4B .5C .6D .74.已知数列{}n a 由首项1a a =及递推关系1311n n n a a a +-=+确定.若{}n a 为有穷数列,则称a 为“坏数”.将所有“坏数”从小到大排成数列{}n b ,若201912020b a b <<,则( ) A .202010a -<<B .2020103a <<C .20213a >D .202113a <<5.n S 为数列{}n a 的前n 项和,12342,5,10,17a a a a ====,对任意大于2的正整数n ,有112330n n n n S S S S m +---+-+=恒成立,则使得231111125222242k k a a a a -++⋅⋅⋅++≥----成立的正整数k 的最小值为( ) A .7 B .6C .5D .46.数列{}n a 中,156a =,()()1251056515n n n n a a n n a n ++=++++,则99a =( )A .12019B .20182019C .12020D .201920207.设数列{}n a 的前n 项和为n S ,且2n S 是6和n a 的等差中项.若对任意的*n ∈N ,都有13[,]n nS s t S -∈,则t s -的最小值为( ). A .23B .94C .12D .168.数列{}n a 满足121n n a a +=+,11a =,24n n b a n n λ=-+,若数列{}n b 为单调递增数列,则λ的取值范围为( ) A .18λ>B .14λ>C .38λ>D .12λ>9.数列{}n a 满足1n n a a +<,则下列说法错误的是( )A .存在数列{}n a 使得对任意正整数p ,q 都满足22pq p q a q a p a =+B .存在数列{}n a 使得对任意正整数p ,q 都满足pq q p a pa qa =+C .存在数列{}n a 使得对任意正整数p ,q 都满足p q q p a pa qa +=+D .存在数列{}n a 使得对任意正整数p ,q 都满足11p q p q a a a p q +⎛⎫=+ ⎪⎝⎭10.已知*121(0)()()()(1)()n n a f f f f f n N n nn -=+++++∈,又函数1()()12F x f x =+-是R 上的奇函数,则数列{}n a 的通项公式为( ) A .1n a n =- B .n a n = C .1n a n =+ D .2n a n =+第II 卷(非选择题)二、填空题11.两个数列{}n a 、{}n b 满足12a =,11b =,1537n n n a a b +=++,135n n n b a b +=+(其中*n N ∈),则{}n a 的通项公式为n a =___________.12.已知数列{}n a 满足1122211,24n n n n a n a a a na n ++==++,则8a =________13.设1x =是函数3212()1()n n n f x a x a x a x n N +++=--+∈的极值点,数列{}n a 满足12211,2,n n a a b log a +===,若[]x 表示不超过x 的最大整数,则122334202020212020202020202020b b b b b b b b ⎡⎤++++=⎢⎥⎣⎦__________.14.已知数列{}n a 中的12,a a 分别为直线2+20x y -=在x 轴、y 轴上的截距,且212n nn na a a a ++-=+,则数列{}n a 的通项公式为_____________.15.已知数列{}n b 的前n 项和n S 满足:(1)(2)nn nS b n n =-++,则n S 为__________.三、解答题16.已知数列{}n a 满足:1a =1n a a +={}n b 满足:11b =,1n n b +=112π2n n n n a b ++⋅<<⋅.17.(1)已知数列{}n a ,其中11a =,22a =,且当3n ≥时,1221n n n a a a ---+=,求通项公式n a ;(2)数列{}n a 中,10a =,22a =,21652nn n n a a a ++-+=,求n a .18.设二次函数()f x 满足:(i )()0f x >的解集为(0,1);(ii )对任意x ∈R 都有231()62x f x x --≤≤+成立.数列{}n a 满足:113a =,102n a <<,()()*1n n a f a n N +=∈.(1)求(1)f -的值; (2)求()f x 的解析式; (3)求证:112322223312121212n na a a a +++++-≥-----19.已知数列{}n a 的前n 项和n S 满足()21nn n S a =+-,1n ≥,证明:对任意的整数4m >,有4511178m a a a +++<.20.已知数列{}n a 中,11a =,*1()43nn n a a n N a +=∈+. (1)求证:12n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求数列{}n a 的通项公式;(2)已知数列{}n b ,满足(32)2n n n n n b a -=⋅. (i )求数列{}n b 的前n 项和n T ;(ii )若不等式1(1)2nn nn T nλ-<+-对一切*n N ∈恒成立,求λ的取值范围.。