高中数学:几何概型 (25)
- 格式:doc
- 大小:196.00 KB
- 文档页数:8
几何概型知识图谱几何概型知识精讲一.几何概型1.定义:如果每个事件发生的概率只与构成该事件的区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型几何概型,可以将每个基本事件看成从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会一样;这里区域可以是线段、平面图形、立体图形等.2.特点:(1)结果的无限性,即在一次试验中,所有可能出现的结果(基本事件)的个数可以是无限的,且全体结果可用一个有度量的几何区域来表示;(2)等可能性,每个基本事件的发生的可能性是均等的.二.几何概型的计算公式几何概型中,事件A的概率定义为:()AP A=构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三点剖析一.方法点拨1.几何概型与古典概型的联系与区别在古典概型及几何概型中,基本事件的发生都是等可能的;在古典概型中基本事件的个数是有限的,而在几何概型中基本事件的个数是无限的.2.几何概型求解的一般步骤(1)首先要判断几何概型,尤其是判断等可能性,这方面比古典概型可能更难于判断;(2)把基本事件转化为与之对应的区域;(3)计算基本事件空间与事件A所含的基本事件对应的区域的几何度量(长度、面积、体积等);(4)利用公式代入求解.3.几何概型的应用要把实际问题转化成几何概型,精读问题,注意适当选择观察角度,抓住关键词,把问题转化为数学问题,几何概型问题解决的关键是构造出事件对应的几何图形,利用几何图形的几何度量来求随机事件的概率.注意分辨清楚属于一维、二维或三维问题.尤其是二维问题一直是考试的重点.一维情形例题1、将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,则事件T发生的概率为()A.1 2B.15C.25D.35例题2、在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.1 6B.13C.23D.45例题3、在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为_________.例题4、如图,在三角形AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,求△AOC为钝角三角形的概率.()A.0.6B.0.4C.0.2D.0.1随练1、某公交车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,那么一个乘客候车时间不超过6分钟的概率为____.随练2、平面上有一组平行线,且相邻平行线间的距离为3cm,把一枚半径为1cm的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是()A.1 4B.13C.12D.23随练3、在长为12cm的线段AB上任取一点C.现做一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为()A.1 6B.13C.23D.45二维情形例题1、如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1-2πB.12-1πC.2πD.1π例题2、二次函数f(x)=ax2+2bx+1(a≠0).(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)上为减函数的概率.例题3、设有-4×4正方形网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上;假设每次投掷都落在最大的正方形内或与最大的正方形有公共点.求:(1)硬币落下后完全在最大的正方形内的概率;(2)硬币落下后与网格线没有公共点的概率.例题4、小钟和小薛相约周末去爬尖刀山,他们约定周日早上8点至9点之间(假定他们在这一时间段内任一时刻等可能的到达)在华岩寺正大门前集中前往,则他们中先到者等待的时间不超过15分钟的概率是____(用数字作答).随练1、分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为()A.7 10B.310C.35D.25随练2、设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于1的概率为____.随练3、小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.三维情形例题1、在500mL的水中有一个细菌,现从中随机取出2mL水样放到显微镜下观察,则发现这个细菌的概率是()A.0.004B.0.002C.0.04D.0.02例题2、在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点O 在底面ABCD 中心,在正方体ABCD-A 1B 1C 1D 1内随机取一点P 则点P 与点O 距离大于1的概率为()A.12π B.1-12π C.6π D.1-6π随练1、1升水中有2只微生物,任取0.1升水化验,含有微生物的概率是()A.0.01 B.0.19 C.0.1 D.0.2随练2、一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.18 B.116 C.127 D.38拓展1、在区间[﹣4,4]上随机地抽取一个实数x ,若x 满足x 2≤m 的概率为34,则实数m 的值为________2、一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.3、在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S 的概率是()A.13 B.12 C.34 D.144、在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与281cm 之间的概率为()A.56 B.12 C.13 D.165、已知圆O :x 2+y 2=4(O 为坐标原点),点P (1,0),现向圆O 内随机投一点A ,则点P 到直线OA 的距离小于12的概率为()A.23 B.12 C.13 D.166、在区间[0,1]上随机取两个数m ,n ,求关于x 的一元二次方程x 2n 有实根的概率.7、假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A.425 B.825 C.1625 D.24258、已知函数:f (x )=x 2+bx+c ,其中:0≤b≤4,0≤c≤4,记函数f (x )满足条件:(2)12(1)3f f ≤⎧⎨-≤⎩的事件为A ,则事件A 发生的概率为()A.58 B.516 C.38 D.129在棱长为a的正方体-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为()A.22B.22C.16D.16π。
课后作业(二十二)(时间45分钟)学业水平合格练(时间25分钟)1.用随机模拟方法求得某几何概型的概率为m ,其实际概率的大小为n ,则( )A .m >nB .m <nC .m =nD .m 是n 的近似值 [解析] 随机模拟法求其概率,只是对概率的估计.[★答案★] D2.某公司的班车在7∶00,8∶00,8∶30发车,小明在7∶50至8∶30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34[解析] 设小明到达发车站的时间为y ,当y 在7∶50至8∶00,或8∶20至8∶30时,小明等车时间不超过10分钟,故P =2040=12.故选B.[★答案★] B3.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5 cm 的圆,中间有边长为0.5 cm 的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为( )A.49πB.94πC.4π9D.9π4[解析] 由题意知所求的概率为P =0.5×0.5π×⎝ ⎛⎭⎪⎫1.522=49π. [★答案★] A4.设一直角三角形两直角边的长均是区间[0,1]上的随机数,则斜边的长小于1的概率为( ) A.12 B.34 C.π4 D.3π16[解析] 设两直角边分别为x ,y ,则x ,y 满足x ∈[0,1],y ∈[0,1],则P (x 2+y 2<1)=π4. [★答案★] C5.如图所示,在墙上挂着一块边长为16 cm 的正方形木块,上面画了小、中、大三个同心圆,半径分别为2 cm,4 cm,6 cm ,某人站在3 m 之外向此板投镖,设镖击中线上或没有投中木板时不算,可重投,记事件A ={投中大圆内},事件B ={投中小圆与中圆形成的圆环内},事件C ={投中大圆之外}.(1)用计算机产生两组[0,1]内的均匀随机数,a 1=RAND ,b 1=RNAD.(2)经过伸缩和平移变换,a =16a 1-8,b =16b 1-8,得到两组[-8,8]内的均匀随机数.(3)统计投在大圆内的次数N 1(即满足a 2+b 2<36的点(a ,b )的个数),投中小圆与中圆形成的圆环次数N 2(即满足4<a 2+b 2<16的点(a ,b )的个数),投中木板的总次数N (即满足上述-8<a <8,-8<b <8的点(a ,b )的个数).则概率P (A )、P (B )、P (C )的近似值分别是( )A.N 1N ,N 2N ,N -N 1NB.N 2N ,N 1N ,N -N 2NC.N 1N ,N 2-N 1N ,N 2ND.N 2N ,N 1N ,N 1-N 2N[解析] P (A )的近似值为N 1N ,P (B )的近似值为N 2N ,P (C )的近似值为N -N 1N .[★答案★] A6.函数f (x )=x 2-x -2,x ∈[-5,5],用计算器上的随机函数产生一个[-5,5]上的随机数x 0,那么使f (x 0)≤0的概率为( )A .0.1 B.23 C .0.3 D .0.4[解析] 用计算器产生的x 0∈[-5,5],其区间长度为10.使f (x 0)≤0,即x 20-x 0-2≤0,得-1≤x 0≤2,其区间长度为3,所以使f (x 0)≤0的概率为310=0.3.[★答案★] C7.用随机模拟方法,近似计算由曲线y =x 2及直线y =1所围成部分的面积S .利用计算机产生N 组数,每组数由区间[0,1]上的两个均匀随机数a 1=RAND ,b =RAND 组成,然后对a 1进行变换a =2(a 1-0.5),由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足x 2i ≤y i ≤1(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得到的近似值为( )A.2N 1NB.N 1NC.N 12ND.4N 1N[解析] 由题意,对a 1进行变换a =2(a 1-0.5),由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足x 2i ≤y i ≤1(i =1,2,…,N )的点数N 1,所以由随机模拟方法可得到的近似值为N 1N .[★答案★] B8.b 1是[0,1]上的均匀随机数,b =3(b 1-2),则b 是区间________上的均匀随机数.[解析] 0≤b 1≤1,则函数b =3(b 1-2)的值域是-6≤b ≤-3,即b 是区间[-6,-3]上的均匀随机数.[★答案★] [-6,-3]9.利用随机模拟方法计算如图中阴影部分(曲线y =2x 与x 轴,x =±1围成的部分)的面积.[解] ①利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND.②经过平移和伸缩变换,a =(a 1-0.5)×2,b =b 1×2,得到一组[-1,1]上的均匀随机数和一组[0,2]上的均匀随机数.③统计试验总次数N 和落在阴影内的点数N 1.④计算频率N 1N ,即为点落在阴影部分的概率的近似值.⑤用几何概型的概率公式求得点落在阴影部分的概率为P =S 4,N 1N =S 4,所以S ≈4N 1N ,即为阴影部分的面积值.10.假设小军、小燕和小明所在的班级共有50名学生,并且这50名学生早上到校先后的可能性是相同的.设计模拟方法估计下列事件的概率:(1)小燕比小明先到校;(2)小燕比小明先到校,小明比小军先到校.[解] 记事件A “小燕比小明先到校”;记事件B “小燕比小明先到校且小明比小军先到校”.①利用计算器或计算机产生三组0到1区间的均匀随机数,a =RAND ,b =RAND ,c =RAND 分别表示小军、小燕和小明三人早上到校的时间;②统计出试验总次数N 及其中满足b <c 的次数N 1,满足b <c <a 的次数N 2;③计算频率f n (A )=N 1N ,f n (B )=N 2N ,即分别为事件A ,B 的概率的近似值.应试能力等级练(时间20分钟)11.P 为圆C 1:x 2+y 2=9上任意一点,Q 为圆C 2:x 2+y 2=25上任意一点,PQ 中点组成的区域为M ,在C 2内部任取一点,则该点落在区域M 上的概率为( )A.1325B.35C.1325πD.35π[解析] 设Q (x 0,y 0),中点(x ,y ),则P (2x -x 0,2y -y 0),代入x 2+y 2=9,得(2x -x 0)2+(2y -y 0)2=9,化简得⎝ ⎛⎭⎪⎫x -x 022+⎝ ⎛⎭⎪⎫y -y 022=94,故中点的轨迹是以⎝ ⎛⎭⎪⎫x 02,y 02为圆心,以32为半径的圆,又点Q (x 0,y 0)在圆x 2+y 2=25上,所以区域M 为在以原点为圆心、宽度为3的圆环带,即应有x 2+y 2=r 2(1≤r ≤4),所以在C 2内部任取一点落在M 内的概率为16π-π25π=35.[★答案★] B12.在利用随机模拟法计算如右图阴影部分(曲线y =⎝ ⎛⎭⎪⎫12x 与x 轴,x =±1围成的部分)的面积时,需要经过伸缩变换得到哪两个区间上的均匀随机数( )A.[-1,1][0,1]B.[-1,1],[0,2]C.[0,1],[0,2]D.[0,1],[0,1][解析]用变换rand()*2-1产生-1~1之间的均匀随机数x表示所投的点的横坐标;用变换rad()*2产生0~2之间的均匀随机数y 表示所投点的纵坐标.故选B.[★答案★] B13.设函数y=f(x)在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)0~1区间上的均匀随机数x1,x2,…,x N和y1,y2,…,y N,由此得到N 个点(x i,y i)(i=1,2,…,N).再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得S的近似值为________.[解析]由0≤f(x)≤1可知曲线y=f(x)与直线x=0,x=1,y=0围成了一个曲边图形.因为产生的随机数对在题图的正方形内,正方形的面积为1,共有N 对数,即有N 个点,且满足y i ≤f (x i )(i =1,2,…,N )的有N 1个点,即在函数f (x )图象上及下方有N 1个点,所以由几何概型的求概率公式得:曲线y =f (x )与x =0,x =1,y =0围成的面积的近似值为N1N ×1=N 1N .[★答案★] N 1N14.某校早上8∶00开始上课,假设该校学生小张与小王在早上7∶30~7∶50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)[解析]设小王到校时间为x ,小张到校时间为y ,则小张比小王至少早到5分钟时满足x -y ≥5.如图,原点O 表示7∶30,在平面直角坐标系中画出小王和小张到校的时间构成的平面区域(图中正方形区域),该正方形区域的面积为400,小张比小王至少早到5分钟对应的图形(图中阴影部分)的面积为12×15×15=2252,故所求概率为P =2252400=932.[★答案★] 93215.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊时间都是4 h ,求它们中的任何一条船不需要等待码头空出的概率;(2)如果甲船的停泊时间为4 h ,乙船的停泊时间为2 h ,求它们中的任何一条船不需要等待码头空出的概率.[解] (1)设甲、乙两船到达时间分别为x ,y ,则0≤x ≤24,0≤y ≤24,|y -x |≥4,分别作出区域D 1,D 2,其中D 1:⎩⎪⎨⎪⎧ 0≤x ≤24≤y ≤24,D 2:⎩⎪⎨⎪⎧ 0≤x ≤240≤y ≤24|y -x |≥4.D 1为正方形区域,D 2为图(1)中的阴影部分,设“两船不需要等待码头空出”为事件A ,则P (A )=2×12×20×2024×24=2536.(2)设“两船不需等待码头空出”为事件B ,则区域D 3:y -x >4或x -y >2为如图(2)所示的阴影部分,则P (B )=S 阴影部分S 正方形=221288.。