高中数学几何概型
- 格式:doc
- 大小:358.50 KB
- 文档页数:10
高中数学中几种常见的概率模型高中数学中几种常见的概率模型:古典概型、几何概型、贝努利概型、超几何分布概型1、古典概型:也叫传统概率、其定义是由法国数学家拉普拉斯提出的。
如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。
在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的;古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
2、几何概型:是概率模型之一,别名几何概率模型,如果每个事件发生的概率只与构成该事件区域的长度成比例,则称这样的概率模型为几何概率模型。
在这个模型下,随机实验所有可能的结果都是无限的,并且每个基本结果发生的概率是相同的。
一个试验是否为几何概型在于这个试验是否具有几何概型的两个特征,无限性和等可能性,只有同时具备这两个特点的概型才是几何概型。
3、贝努利模型:为纪念瑞士科学家雅各布·贝努利而命名。
对随机试验中某事件是否发生,实验的可能结果只有两个,这个只有两个可能结果的实验被称为贝努利实验;重复进行n次独立的贝努利试验,这里“重复”的意思是指各次试验的条件是相同的,它意味着各次试验中事件发生的概率保持不变。
“独立是指是指各次试验的结果是相互独立的。
基于n重贝努利试验建立的模型,即为贝努利模型。
4、超几何分布:是统计学上一种离散概率分布。
它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。
称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。
超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。
几何概型知识集结知识元几何概型知识讲解1.几何概型1.定义:若一个试验具有下列特征:(1)每次试验的结果有无限多个,且全体结果可用一个有度量的几何区域来表示;(2)每次试验的各种结果是等可能的.那么这样的试验称为几何概型.2.几何概率:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=称为事件A的几何概率.例题精讲几何概型例1.设函数f(x)=log2x,在区间(0,5)上随机取一个数x,则f(x)<1的概率为()A.B.C.D.例2.一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为,则阴影部分图形的“周积率”为()A.2 B.3 C.4 D.5例3.'已知|x|≤2,|y|≤2,点P的坐标为(x,y),求当x,y∈R时,P满足(x-2)2+(y-2)2≤4的概率.' 当堂练习单选题练习1.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其它民俗活动的民间艺术,蕴涵了极致的数学美和丰富的文化信息,现有一幅剪纸的设计图(如图),其中的4个小圆均过正方形的中心,且内切于正方形的邻边,若在该正方形内任取一点,则该点取自阴影部分的概率为()A.B.C.(3-2)(π-2)D.练习2.已知正数a,b均小于2,若a、b、2能作为三角形的三条边长,则它们能构成钝角三角形的三条边长的概率是()A.B.C.D.练习3.如图,在矩形OABC中的曲线分别是y=sin x,y=cos x的一部分,A(,0),C(0,1),在矩形OABC内随机取一点,若此点取自阴影部分的概率为P1,取自非阴影部分的概率为P2,则()A.P1<P2B.P1>P2C.P1=P2D.大小关系不能确定练习4.利用Excel产生两组[0,1]之间的均匀随机数:a=rand(),b=rand():若产生了2019个样本点(a,b),则落在曲线y=1、y=和x=0所围成的封闭图形内的样本点个数估计为()A.673 B.505 C.1346 D.1515练习5.将曲线x2+y2=|x|+|y|围成的区域记为Ⅰ,曲线x2+y2=1围成的区域记为Ⅱ,曲线x2+y2=1与坐标轴的交点分别为A、B、C、D,四边形ABCD围成的区域记为Ⅲ,在区域Ⅰ中随机取一点,此点取自Ⅱ,Ⅲ的概率分别记为p1,p2,则()A.p1+p2>1 B.p1+p2<1C.p1+p2=1 D.p1=p2填空题练习1.中国最早的一部数学著作《周髀算经》的开头就记载了利用赵爽弦图证明了勾股定理,赵爽弦图(如图所示)是由四个全等的直角三角形和两个正方形构成若在大正方形中随机取一点该点落在阴影部分的概率为,则直角三角形中较小角的正切值为__._练习2.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为α,现_向大正方形区域内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为,则cosα=__练习3.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术,蕴涵了极致的数学美和丰富的传统文化信息.现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为___.练习4.已知圆C:x2+y2=1,直线l:y=k(x+2),在[-1,1]上随机选取一个数k,则事件“直线l与圆_C相交”发生的概率为__解答题练习1.'已知两数f(x)=ax2-bx+1.(1)若a,b都是从集合{0,1,2,3}中任取的一个数,求函数f(x)没有零点的概率;(2)分别从集合P和Q中随机取一个数a和b得到数对(a,b),若P={x|1≤x≤3},Q={x|0≤x≤4},求函数y=f(x)在区间[1,+∞)上是增函数的概率.'练习2.'已知函数f(x)=ax+b∙2x-2,其中,0≤b≤4.(1)当a=1时,求函数f(x)≥0在x∈[0,1]上恒成立的概率;(2)当0≤a≤2时,求函数f(x)在区间x∈[0,1]上有且只有一个零点的概率.'练习3.'袋子中放有大小和形状相同而颜色互不相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球2个,从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.(1)记事件A表示“a+b=2”,求事件A的概率;(2)在区间[0,2]内任取2个实数x,y,记(a-b)2的最大值为M,求事件“x2+y2<M”的概率.'。
3.3几何概型3.3.1几何概型【知识提炼】1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度( 面积或体积) 成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的基本事件有无限多个 .(2)每个基本事件出现的可能性相等 .3.几何概型的概率公式P(A)=________________________________________【即时小测】1.思考下列问题:(1)几何概型的概率计算一定与构成事件的区域形状有关?提示:几何概型的概率只与它的长度(面积或体积)有关,而与构成事件的区域形状无关.(2)在射击中,运动员击中靶心的概率是在(0,1)内吗?提示:不是.根据几何概型的概率公式,一个点的面积为0,所以概率为0.2.如图所示,在地面上放置着一个等分为8份的塑料圆盘,若将一粒玻璃球丢在该圆盘中,则玻璃球落在A区域内的概率是()A. B. C. D.1【解析】选A.玻璃球丢在该圆盘内,玻璃球落在各个区域内是随机的,并且落在该圆盘内的任何位置是等可能的,因此该问题是几何概型.由于A区域占整个圆形区域面积的,所以玻璃球落入A区域的概率为.3.在1000mL水中有一个草履虫,现从中随机取出3 mL水样放到显微镜下观察,则发现草履虫的概率是.【解析】由几何概型知,P=.答案:4.利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<0”发生的概率为.【解析】由题意,得0<a<,所以根据几何概型的概率计算公式,得事件“3a-1<0”发生的概率为.答案:5.在{(x,y)|0≤x≤1,0≤y≤1}中,满足y>x的事件的概率为.【解析】由0≤x≤1且0≤y≤1得到的正方形面积为S=1,而y=x恰把其面积二等分,故P= .答案:【知识探究】知识点几何概型的概念及公式观察图形,回答下列问题:问题1:几何概型与古典概型有何区别?问题2:如何求得几何概型中事件A发生的概率?【总结提升】几何概型与古典概型的异同点类型古典概型几何概型异同一次试验的所有可能不同点(基本一次试验的所有可能出现的结果出现的结果(基本事件事件的个数) (基本事件)有无限多个)有有限个类型古典概型几何概型异同相同点(基本事件每一个试验结果(即基本事件)发生的可能性大小相等发生的等可能性)【题型探究】类型一与长度有关的几何概型【典例】1.取一根长为5m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2m的概率为 ()A. B. C. D.2.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A. B. C. D.【解题探究】1.典例1中,剪得两段的长都不小于2m,应将绳子几等分?提示:五等分2.典例2中如何确定点P的位置?提示:在矩形ABCD中,分别以A,B为圆心,以AB长为半径作弧交CD分别于E,F,点P在线段EF上时满足题意.【解析】1.选D.如图所示.记“剪得两段绳长都不小于2m”为事件A.把绳子五等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的,所以事件A发生的概率P(A)= .2.选D.如图,在矩形ABCD中,分别以B,A为圆心,以AB长为半径作弧交CD分别于点E,F,当点P在线段EF上运动时满足题设要求,所以E,F为CD的四等分点,设AB=4,则DF=3,AF=AB=4,在直角三角形ADF中,所以【方法技巧】求解与长度有关的几何概型的步骤(1)找到试验的全部结果构成的区域D,这时区域D可能是一条线段或几条线段或曲线段,(2)找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A的概率.(3)利用几何概型概率的计算公式P=计算.【变式训练】平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任一条平行线相碰的概率.【解析】设事件A:“硬币不与任一条平行线相碰”.为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,这样线段OM长度(记作|OM|)的取值范围是[0,a],只有当r<|OM|≤a时,硬币不与平行线相碰,其长度范围是(r,a].所以答案:类型二与面积有关的几何概型【典例】1.(2014·辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()2.(2015·蚌埠高一检测)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是.【解题探究】1.典例1中要求质点落在以AB为直径的半圆内的概率,需要先求什么?提示:需要求长方形ABCD的面积及以AB为直径的半圆的面积. 2.典例2中,如何求阴影部分的面积?提示:利用“割补法”.【解析】1.选B.由题意AB=2,BC=1,可知长方形ABCD的面积S =2×1=2,以AB为直径的半圆的面积故质点落在以AB为直径的半圆内的概率2.如图所示,设OA=OB=r,则两个以为半径的半圆的公共部分面积为两个半圆外部的阴影部分面积为所以所求概率为答案:【方法技巧】处理面积型几何概型的策略设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区域g上的点数与区域g的面积成正比,而与区域g在区域G上的相对位置无关,则点落在区域g上的概率为【变式训练】(2015·福建高考)如图,在矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()【解题指南】求出点C和点D的坐标,转化成面积型几何概型的概率计算.【解析】选B.因为四边形ABCD为矩形,B(1,0)且点C和点D分别在直线y=x+1和形的面积上,所以C(1,2)和D(-2,2),所以阴影部分三角S矩形=3×2=6,故此点取自阴影部分的概率【补偿训练】(2015·衡水调研)在面积为S的矩形ABCD内随机取一点P,则△PAB的面积不大于的概率是_________.【解析】如图,作PE⊥AB,设矩形的边长AB=a,BC=b,PE=h,由题意得,所以由几何概型的概率计算公式得所求概率答案:类型三与体积有关的几何概型【典例】1.(2015·成都高一检测)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1.称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()2.有一个底面圆的半径为1、高为2的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为.【解题探究】1.典例1中,满足题意的区域是什么?提示:满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.2.典例2中,求解与体积有关的几何概型关键是什么?提示:解与体积有关的几何概型关键是确定基本事件构成的体积与所求基本事件构成的体积.【解析】1.选C.依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1,所以满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为2.先求点P到点O的距离小于1或等于1的概率,圆柱的体积V圆柱=π×12×2=2π,以O为球心,1为半径且在圆柱内部的半球的体积则点P到点O的距离小于1或等于1的概率为:故点P到点O的距离大于1的概率为:答案:【延伸探究】1.(改变问法)若典例1中条件不变,求这个蜜蜂飞到正方体某一顶点A的距离小于的概率.【解析】到A点的距离小于的点,在以A为球心,半径为的球内部,而点又必须在已知正方体内,则满足题意的A点的区域体积为所以2.(变换条件)若典例2中的条件变为在棱长为2的正方体ABCD-- A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,结果如何?【解析】与点O距离等于1的点的轨迹是一个半球面,半球体积为:“点P与点O距离大于1”事件对应的区域体积为则点P与点O距离大于1的概率是【方法技巧】1.与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为2.解决与体积有关的几何概型的关键点解决此类问题的关键是注意几何概型的条件,分清所求的概率是与体积有关还是与长度有关,不要将二者混淆.【补偿训练】正方体ABCD-A1B1C1D1的棱长为1,在正方体内随机取点M,则使四棱锥M-ABCD的体积小于的概率为________.【解析】正方体ABCD-A1B1C1D1中,设M-ABCD的高为h,则又S=1,四边形ABCD所以h=若体积小于则h<即点M在正方体的下半部分,所以答案:【补偿训练】(2015·临沂高一检测)如图所示,A是圆上一定点,在圆上其他位置任取一点A′,连接AA′,得到一条弦,则此弦的长度小于或等于半径长度的概率为()【解析】选C.如图所示,要使弦的长度小于或等于半径长度,只要点A′在劣弧A′1A′2上.AA′1=AA2′=R,所以∠AOA1′=∠AOA2′=故由几何概型的概率公式得。
高中数学六种概率模型高中数学中,概率是一个重要的概念。
它用来描述事件发生的可能性大小。
在概率论中,有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。
下面将逐个介绍这六种概率模型。
一、等可能概型:等可能概型是指每个基本事件发生的可能性相等。
比如抛硬币,硬币正面和反面出现的概率都是1/2。
再比如掷骰子,每个点数出现的概率都是1/6。
在等可能概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
二、几何概型:几何概型是指在几何空间中进行概率计算。
比如说,我们可以通过几何概型来计算平面内的点落在某个区域的概率。
在几何概型中,我们可以通过计算区域的面积或体积与几何空间的大小来求解概率。
三、排列概型:排列概型是指在排列问题中的概率计算。
比如说,从n个元素中取出r个元素进行排列,那么排列的个数就是n个元素的全排列数,即n!。
在排列概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
四、组合概型:组合概型是指在组合问题中的概率计算。
比如说,从n个元素中取出r个元素进行组合,那么组合的个数就是n个元素的组合数,即C(n,r)。
在组合概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
五、条件概型:条件概型是指在已知某些条件下的概率计算。
比如说,已知某个事件A发生的条件下,另一个事件B发生的概率。
在条件概型中,我们可以通过计算事件A与事件B同时发生的概率与事件A发生的概率之比来求解概率。
六、分布概型:分布概型是指在统计分布中的概率计算。
比如说,正态分布、泊松分布、二项分布等等。
在分布概型中,我们可以通过计算随机变量的取值与概率密度函数或概率质量函数之间的关系来求解概率。
高中数学中的概率有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。
每种概率模型都有其独特的应用场景和计算方法。
熟练掌握这些概率模型,有助于我们更好地理解和应用概率论的知识,解决实际生活和工作中的问题。
几何概型知识图谱几何概型知识精讲一.几何概型1.定义:如果每个事件发生的概率只与构成该事件的区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型几何概型,可以将每个基本事件看成从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会一样;这里区域可以是线段、平面图形、立体图形等.2.特点:(1)结果的无限性,即在一次试验中,所有可能出现的结果(基本事件)的个数可以是无限的,且全体结果可用一个有度量的几何区域来表示;(2)等可能性,每个基本事件的发生的可能性是均等的.二.几何概型的计算公式几何概型中,事件A的概率定义为:()AP A=构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三点剖析一.方法点拨1.几何概型与古典概型的联系与区别在古典概型及几何概型中,基本事件的发生都是等可能的;在古典概型中基本事件的个数是有限的,而在几何概型中基本事件的个数是无限的.2.几何概型求解的一般步骤(1)首先要判断几何概型,尤其是判断等可能性,这方面比古典概型可能更难于判断;(2)把基本事件转化为与之对应的区域;(3)计算基本事件空间与事件A所含的基本事件对应的区域的几何度量(长度、面积、体积等);(4)利用公式代入求解.3.几何概型的应用要把实际问题转化成几何概型,精读问题,注意适当选择观察角度,抓住关键词,把问题转化为数学问题,几何概型问题解决的关键是构造出事件对应的几何图形,利用几何图形的几何度量来求随机事件的概率.注意分辨清楚属于一维、二维或三维问题.尤其是二维问题一直是考试的重点.一维情形例题1、将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,则事件T发生的概率为()A.1 2B.15C.25D.35例题2、在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.1 6B.13C.23D.45例题3、在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为_________.例题4、如图,在三角形AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,求△AOC为钝角三角形的概率.()A.0.6B.0.4C.0.2D.0.1随练1、某公交车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,那么一个乘客候车时间不超过6分钟的概率为____.随练2、平面上有一组平行线,且相邻平行线间的距离为3cm,把一枚半径为1cm的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是()A.1 4B.13C.12D.23随练3、在长为12cm的线段AB上任取一点C.现做一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为()A.1 6B.13C.23D.45二维情形例题1、如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1-2πB.12-1πC.2πD.1π例题2、二次函数f(x)=ax2+2bx+1(a≠0).(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)上为减函数的概率.例题3、设有-4×4正方形网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上;假设每次投掷都落在最大的正方形内或与最大的正方形有公共点.求:(1)硬币落下后完全在最大的正方形内的概率;(2)硬币落下后与网格线没有公共点的概率.例题4、小钟和小薛相约周末去爬尖刀山,他们约定周日早上8点至9点之间(假定他们在这一时间段内任一时刻等可能的到达)在华岩寺正大门前集中前往,则他们中先到者等待的时间不超过15分钟的概率是____(用数字作答).随练1、分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为()A.7 10B.310C.35D.25随练2、设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于1的概率为____.随练3、小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.三维情形例题1、在500mL的水中有一个细菌,现从中随机取出2mL水样放到显微镜下观察,则发现这个细菌的概率是()A.0.004B.0.002C.0.04D.0.02例题2、在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点O 在底面ABCD 中心,在正方体ABCD-A 1B 1C 1D 1内随机取一点P 则点P 与点O 距离大于1的概率为()A.12π B.1-12π C.6π D.1-6π随练1、1升水中有2只微生物,任取0.1升水化验,含有微生物的概率是()A.0.01 B.0.19 C.0.1 D.0.2随练2、一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.18 B.116 C.127 D.38拓展1、在区间[﹣4,4]上随机地抽取一个实数x ,若x 满足x 2≤m 的概率为34,则实数m 的值为________2、一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.3、在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S 的概率是()A.13 B.12 C.34 D.144、在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与281cm 之间的概率为()A.56 B.12 C.13 D.165、已知圆O :x 2+y 2=4(O 为坐标原点),点P (1,0),现向圆O 内随机投一点A ,则点P 到直线OA 的距离小于12的概率为()A.23 B.12 C.13 D.166、在区间[0,1]上随机取两个数m ,n ,求关于x 的一元二次方程x 2n 有实根的概率.7、假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A.425 B.825 C.1625 D.24258、已知函数:f (x )=x 2+bx+c ,其中:0≤b≤4,0≤c≤4,记函数f (x )满足条件:(2)12(1)3f f ≤⎧⎨-≤⎩的事件为A ,则事件A 发生的概率为()A.58 B.516 C.38 D.129在棱长为a的正方体-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为()A.22B.22C.16D.16π。
(1)几何概型:几何概型知识点一般地,一个几何区域D 中随机地取一点,记事件“该点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为P(A)=_________(一般地,线段的测度为该线段的长度;平面多边形的测度为该图形的面积;立体图像的测度为其体积 ) (2)几何概型的基本特点:① ____________ ② _______________例题精选例1. 如图,在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求<AM AC 的概率? 【分析】点M 随机的落在线段AB 上,故线段AB 为区域D ,当点M 位于如图的AC '内时<AM AC ,故线段 AC '即为区域d解: 在AB 上截取'=AC AC ,于是P AM AC P AM AC AC AB AC AB <=<===''()22)(【变式训练】如图,在等腰直角三角形ABC 中,在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,求<AM AC 的概率?解:在∠ACB 内的射线是均匀分布的,所以射线CM 作在任何位置都是等可能的,在AB 上截取'=AC AC ,则ACC '67.5∠=︒ ,故满足条件的概率为=67.5900.75例2. 如图,分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为( ) A.-π24 B.-π44C.-π22D.-π42【解析】设正方形的边长为2,则1片阴影部分的面积为⎝⎭⎪--⋅⨯=-⎛⎫ππ42111211222,所以阴影部分的面积⎝⎭⎪=-=-⎛⎫ππS A 24124,=-πP A 22)(,故选C.课堂练习与作业1.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ). A .B .C .D .2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ). A .31B .π2C .21D .323.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41D .1614.如图,在边长为 3 的正方形内有区域 A (阴影部分所示),张明同学用随机模拟的方法求区域 A 的面积.若每次在正方形内随机产生 10000 个点,并记录落在区域 A 内的点的个数.经过多次试验,计算出落在区域 A 内点的个数的平均值为 6600 个,则区域 A 的面积约为 ( ) A. 5B. 6C. 7D. 85. 如图,矩形 ABCD 中,点 A 在 x 轴上,点 B 的坐标为(1,0),且点 C 与点 D 在函数 f (x )={x +1,x ≥0−12x +1,x <0 的图象上.若在矩形 ABCD 内随机取一点,则此点取自阴影部分的概率等于 ( )A. 16 B. 14C. 38D. 126. 如图,在半径为 2R ,弧长为 4π3R 的扇形 OAB 中,以 OA 为直径作一个半圆.若在扇形 OAB 内随机取一点,则此点取自阴影部分的概率是 ( )51525354A. 38B. 58C. 34D. 787.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是 ( )A. 13B. 12C. 23D. 348.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61B .31C .21D .329.在棱长为 2 的正方体 ABCD −A 1B 1C 1D 1 中,点 O 为底面 ABCD 的中心,在正方体 ABCD −A 1B 1C 1D 1 内随机取一点 P ,则点 P 到点 O 的距离大于 1 的概率为 ( )A. π12B. 1−π12C. π6D. 1−π610. 在区间 [−2,1] 上随机取一个实数 x ,则 x 使不等式 ∣x −1∣≤1 成立的概率为 .11.已知函数f (x )=log 2x , x ∈,在区间上任取一点x 0,使f (x 0)≥0的概率为 .参考答案1.解析:区域Ω为[-2,3],子区域A 为(1,3],而两个区间的长度分别为5,2.选B2.解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使的值介于0到之间,需使-≤x ≤-或≤x ≤,两区间长度之和为,由几何概型知的值介于0到之间的概率为=.故选A.3.解析:所求概率为=.故选D4.B 【解析】设区域 A 的面积约为 S ,根据题意有 660010000=S3×3, 所以,S =5 94,所以区域 A 的面积约为 6.⎥⎦⎤⎢⎣⎡221 ,⎥⎦⎤⎢⎣⎡221 ,cos x 212π3π3π2π3πcos x 21π3π31224π1π⨯⨯ 1615. B 【解析】易知点 C 的坐标为 (1,2),点 D 的坐标为 (−2,2),所以矩形 ABCD 的面积为 6,阴影部分的面积为 32,故所求概率为 14.6.B 【解析】阴影部分的面积为 S 1=12×4π 3×2R −12R 2=5π6R 2,扇形 OAB 的面积为S 2=4π3R 2,所以在扇形 OAB 内随机取一点,则此点取自阴影部分的概率 P =S S==58.7. B 【解析】解法一:7:30的班车小明显然是坐不到的.当小明在7:50之后8:00之前到达,或者8:20之后8:30之前到达时,他等车的时间将不超过 10 分钟,故所求概率为10 1040=12.解法二:当小明到达车站的时刻超过8:00,但又不到8:20时,等车时间将超过 10 分钟,7:50~8:30的其他时刻到达车站时,等车时间将不超过 10 分钟,故等车时间不超过 10 分钟的概率为 1−2040=12.8.解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比.选A9.B 【解析】点 P 到点 O 的距离大于 1 的点位于以 O 为球心,以 1 为半径的半球的外部.记点 P 到点 O 的距离大于 1 为事件 A ,则 P (A )=2 − ××12=1−π12.10.【解析】因为 ∣x −1∣≤1⇔−1≤x −1≤1⇔0≤x ≤2,所以在区间 [−2,1] 上使不等式 ∣x −1∣≤1 成立的 x 的范围为 x [0,1],故所求概率 P =1−01−(−2)=13.11.解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2].答案:.32。
第6讲 几何概型一、选择题1.在区间[-2,3]上随机选取一个数x ,即x ≤1,故所求的概率为( ) A.45B.35C.25D.15解析 在区间[-2,3]上随机选取一个数x ,且x ≤1,即-2≤x ≤1,故所求的概率为P =35. 答案 B2.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是( ) A.π3B.πC.2πD.3π解析 设阴影部分的面积为S ,且圆的面积S ′=π·32=9π.由几何概型的概率,得S S ′=13,则S =3π. 答案 D3.(2015·山东卷)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( ) A.34B.23C.13D.14解析 由-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1,得12≤x +12≤2,解得0≤x ≤32,所以事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为322=34,故选A. 答案 A4.(2017·东北师大附中检测)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.π2 B.π4 C.π6 D.π8解析设质点落在以AB为直径的半圆内为事件A,则P(A)=阴影面积长方形面积=12π×12 1×2=π4.答案 B5.在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为()A.π12 B.1-π12 C.π6 D.1-π6解析设“点P到点O的距离大于1”为事件A.则事件A发生时,点P位于以点O为球心,以1为半径的半球的外部.∴V正方体=23=8,V半球=43π·13×12=23π.∴P(A)=23-23π23=1-π12.答案 B6.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD 为钝角三角形的概率为()A.16 B.13 C.12 D.23解析如图,当BE=1时,∠AEB为直角,则点D在线段BE(不包含B,E点)上时,△ABD为钝角三角形;当BF=4时,∠BAF为直角,则点D在线段CF(不包含C,F点)上时,△ABD为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12. 答案 C7.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4B.π-22C.π6D.4-π4解析 如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到原点距离大于2的区域,易知该阴影部分的面积为4-π,因此满足条件的概率是4-π4.故选D. 答案 D8.(2017·华师附中联考)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( ) A.14B.316C.916D.34解析 由x ,y ∈[0,4]知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16,S 阴影=(2+4)×42=12.故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.答案 D9.已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是( )A.78 .34 C.12 D.14解析 当点P 到底面ABC 的距离小于32时, V P -ABC <12V S -ABC .由几何概型知,所求概率为P =1-⎝ ⎛⎭⎪⎫123=78.答案 A10.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12πB.12+1πC.12-1πD.14-12π解析 因为复数z =(x -1)+y i(x ,y ∈R )且|z |≤1,所以|z |=(x -1)2+y 2≤1,即(x -1)2+y 2≤1,即点(x ,y )在以(1,0)为圆心、1为半径的圆及其内部,而y ≥x表示直线y =x 左上方的部分(图中阴影弓形),所以所求概率为弓形的面积与圆的面积之比,即P =14·π·12-12×1×1π·12=14-12π.答案 D 二、填空题11.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析 由|x |≤m ,得-m ≤x ≤m .当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去. 当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案 312.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.解析 因为VA -A 1BD =VA 1-ABD =13AA 1×S △ABD =16×AA 1×S 矩形ABCD =16V 长方体,故所求概率为V A -A 1BD V 长方体=16. 答案 1613.(2016·山东卷)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.解析 直线y =kx 与圆(x -5)2+y 2=9相交的充要条件是圆心(5,0)到直线y =kx 的距离小于3. 则|5k -0|k 2+1<3,解之得-34<k <34,故所求事件的概率P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.答案 3414.(2017·唐山模拟)如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为________.解析 顺次连接星形的四个顶点,则星形区域的面积等于(2)2-4⎝ ⎛⎭⎪⎫14×π×12-12×12=4-π,又因为圆的面积等于π×12=π,因此所求的概率等于4-ππ=4π-1. 答案 4π-115.在区间[-1,4]内取一个数x ,则2x -x 2≥14的概率是( ) A.12B.13C.25D.35解析 由2x -x 2≥14,得-1≤x ≤2.又-1≤x ≤4. ∴所求事件的概率P =2-(-1)4-(-1)=35.答案 D16.如图,“天宫一号”运行的轨迹是如图的两个类同心圆,小圆的半径为2 km ,大圆的半径为4 km ,卫星P 在圆环内无规则地自由运动,运行过程中,则点P 与点O 的距离小于3 km 的概率为( ) A.112B.512C.13D.15解析 根据几何概型公式,小于3 km 的圆环面积为π(32-22)=5π;圆环总面积为π(42-22)=12π,所以点P 与点O 的距离小于3 km 的概率为P (A )=5π12π=512. 答案 B17.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为( ) A.12B.13C.23D.34解析 由题设知,区域D 是以原点为中心的正方形,根据图形的对称性知,直线y =kx 将其面积平分,如图,故所求概率为12.答案 A18.(2017·长春质检)在区间[0,π]上随机取一个实数x ,使得sin x ∈⎣⎢⎡⎦⎥⎤0,12的概率为( ) A.1πB.2πC.13D.23解析 由0≤sin x ≤12,且x ∈[0,π], 解之得x ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤56π,π.故所求事件的概率P =⎝ ⎛⎭⎪⎫π-56π+⎝ ⎛⎭⎪⎫π6-0π-0=13.答案 C19.(2017·成都诊断)如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( ) A.117B.217C.317D.417解析 ∵大正方形的面积是34,∴大正方形的边长是34,由直角三角形的较短边长为3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4,∴小花朵落在小正方形内的概率为P =434=217. 答案 B20.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.23B.13C.89D.π4解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13,故点P 到O 的距离大于1的概率为23. 答案 A21.(2015·湖北卷)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12B.p 2<12<p 1C.12<p 2<p 1D.p 1<12<p 2解析 (x ,y )构成的区域是边长为1的正方形及其内部,其中满足x +y ≤12的区域如图1中阴影部分所示,所以p 1=12×12×121×1=18,满足xy ≤12的区域如图2中阴影部分所示,所以p 2=S 1+S 21×1=12+S 21>12,所以p 1<12<p 2,故选D.答案 D22.在区间[-π,π]内随机取出两个数分别记为a ,b ,则函数f (x )=x 2+2ax -b 2+π2有零点的概率为( ) A.1-π8B.1-π4C.1-π2D.1-3π4解析 由函数f (x )=x 2+2ax -b 2+π2有零点,可得Δ=(2a 2)-4(-b 2+π2)≥0,整理得a 2+b 2≥π2,如图所示,(a ,b )可看成坐标平面上的点,试验的全部结果构成的区域为Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π},其面积S Ω=(2π)2=4π2. 事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2},即图中阴影部分, 其面积为S M =4π2-π3,故P (A )=S MS Ω=4π2-π34π2=1-π4.答案 B23.(2017·安徽江南名校联考)AB 是半径为1的圆的直径,M 为直径AB 上任意一点,过点M 作垂直于直径AB 的弦,则弦长大于3的概率是________. 解析 依题意知,当相应的弦长大于3时,圆心到弦的距离小于12-⎝ ⎛⎭⎪⎫322=12,因此相应的点M 应位于线段AB 上与圆心的距离小于12的地方,所求的概率等于12.答案 1224.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.解析 由已知条件,可知蜜蜂只能在一个棱长为1的小正方体内飞行,结合几何概型,可得蜜蜂“安全飞行”的概率为P =1333=127.答案 12725.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________. 解析 ∵去看电影的概率P 1=π×12-π×(12)2π×12=34,去打篮球的概率P 2=π×(14)2π×12=116, ∴不在家看书的概率为P =34+116=1316.答案 131626.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为________. 解析 由0<y <2ax -x 2(a >0).得(x -a )2+y 2<a 2. 因此半圆域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P(A)=A的面积半圆的面积=14πa2+12a212πa2=12+1π.答案12+1π。