杆件的应力
- 格式:ppt
- 大小:3.26 MB
- 文档页数:102
第6章 杆件的应力与强度计算6.1 轴向拉压杆的应力与强度计算6.1.1 应力的概念为了分析内力在截面上的分布情况,从而对杆件的强度进行计算,必须引入应力的概念。
图6-1(a )所示的受力体代表任一受力构件。
pc)F图6-1由于截面上内力的分布一般不是均匀的,所以平均应力m p 与所取小面积A ∆的大小有关。
令A ∆趋于零,取极限0limA Fp A∆→∆=∆ (b)6.1.2轴向拉压杆横截面上的应力拉压杆横截面上的内力为轴力N F ,与轴力N F 对应的应力为正应力σ。
NF Aσ=(6-1) 式(6-1)就是轴向拉压杆横截面上正应力的计算公式。
6.1.3轴向拉压杆的强度条件 1.强度条件材料所能承受的应力值有限,它所能承受的最大应力称为该材料的极限应力,用u σ表示。
材料在拉压时的极限应力由试验确定。
为了使材料具有一定的安全储备,将极限应力除以大于1的系数n ,作为材料允许承受的最大应力值,称为材料的许用应力,以符号[]σ表示,即u []nσσ=(6-2)式中n 称为安全系数。
为了确保拉压杆不致因强度不足而破坏,应使其最大工作应力max σ不超过材料的许用应力,即Nmax F Aσ=≤[]σ (6-3) 2.强度条件的三方面应用(1) 强度校核:杆件的最大工作应力不应超过许用应力,即Nmax F Aσ=≤[]σ (2) 选择截面尺寸 : 由强度条件式(6-3),可得A ≥N[]F σ 式中A 为实际选用的横截面积,(3) 确定许用荷载: 由强度条件可知,杆件允许承受的最大轴力N []F 的范围为N F ≤[]A σ6.2材料在轴向拉压时的力学性质在计算拉压杆的强度与变形时,要涉及材料的极限应力u σ和弹性模量E 等,这些反映材料在受力过程中所表现出的有关性质,统称为材料的力学性质。
6.2.1低碳钢在拉伸时的力学性质1.拉伸图与应力-应变曲线将试件装入试验机的夹头后启动机器,使试件受到从零开始缓慢增加的拉力F 作用,试件在标距l 长度内产生相应的变形l ∆。
杆件正应力怎么求计算公式杆件正应力的计算公式。
在工程力学中,杆件正应力是指在杆件内部由外部加载引起的正向拉伸或压缩应力。
正应力的计算是工程设计中非常重要的一部分,它可以帮助工程师确定杆件是否能够承受外部加载,并且可以帮助工程师选择合适的材料和尺寸来设计结构。
杆件正应力的计算公式可以通过简单的力学原理推导得出。
在这篇文章中,我们将介绍杆件正应力的计算公式,并且讨论一些实际应用中的例子。
杆件正应力的计算公式可以表示为:σ = P / A。
其中,σ表示杆件的正应力,P 表示施加在杆件上的外部力,A 表示杆件的横截面积。
这个公式的推导可以通过简单的力学原理来进行。
当一个外部力 P 作用在杆件上时,杆件内部会产生一个与外部力方向相反的内部应力。
根据牛顿第三定律,这个内部应力的大小与外部力的大小相等,方向相反。
而杆件的横截面积 A 则可以用来表示内部应力的分布情况。
因此,杆件的正应力可以表示为外部力 P 与横截面积 A 的比值。
在实际应用中,杆件正应力的计算可以通过这个简单的公式来进行。
例如,当一个钢杆承受一个拉力时,我们可以通过测量钢杆的横截面积和外部拉力来计算钢杆的正应力。
这个计算可以帮助工程师确定钢杆是否能够承受这个拉力,并且可以帮助工程师选择合适的钢材来设计结构。
除了上面提到的简单拉力的情况,杆件正应力的计算公式也可以应用在其他复杂的情况中。
例如,在梁的设计中,梁的横截面积不是均匀的,因此我们可以通过积分的方法来计算梁的正应力分布。
这个计算可以帮助工程师确定梁在不同位置的正应力大小,并且可以帮助工程师选择合适的梁的尺寸和材料来设计结构。
除了简单的拉力和梁的设计,杆件正应力的计算公式也可以应用在其他工程结构的设计中。
例如,在桥梁的设计中,我们可以通过计算桥梁的正应力来确定桥梁的承载能力,并且可以帮助工程师选择合适的桥梁的尺寸和材料来设计结构。
总之,杆件正应力的计算公式是工程设计中非常重要的一部分。
通过这个简单的公式,工程师可以确定杆件是否能够承受外部加载,并且可以帮助工程师选择合适的材料和尺寸来设计结构。
工程力学中的杆件和梁的应力分析工程力学是工程学科的重要分支之一,它研究物体在受力作用下的力学性质。
在工程实践中,杆件和梁是常见的结构构件,其应力分析是工程设计和计算的基础。
本文将从杆件和梁的应力分析角度探讨工程力学中的相关知识。
一、杆件的应力分析杆件是一种细长的结构构件,承受轴向力的作用。
在杆件的静力学中,应力是一个重要参数,用于描述杆件内部受力的强度和稳定性。
杆件的应力可以分为正应力和切应力。
1. 正应力正应力是指垂直于杆件截面的作用力在该截面上的单位面积,通常用σ表示。
正应力的计算可以使用公式:σ = F / A其中,F为作用力的大小,A为截面积。
正应力可以分为拉应力和压应力两种情况。
当作用力沿着杆件的轴向,方向与截面的法线方向一致时,称为拉应力。
拉应力是正值,表示杆件受拉的状态。
当作用力沿着杆件的轴向,方向与截面的法线方向相反时,称为压应力。
压应力是负值,表示杆件受压的状态。
2. 切应力切应力是指杆件截面上作用力的切向力与该截面上的单位面积之比,通常用τ表示。
切应力的计算可以使用公式:τ = F / A其中,F为作用力的大小,A为截面积。
切应力主要存在于杆件的连接部分,例如螺纹连接、焊接连接等。
切应力会引起杆件的剪切变形和破坏,需要在设计过程中加以考虑。
二、梁的应力分析梁是一种用于承受弯曲力的结构构件,具有横截面的特点。
在梁的应力分析中,主要考虑的是弯矩和截面弯曲应力。
1. 弯矩弯矩是指作用在梁上的力对其产生的弯曲效应。
在工程实践中,梁通常是直线形状,因此弯矩在横截面上呈现出分布的特点。
弯矩可以通过力学平衡和弹性力学原理进行计算。
弯矩的大小与力的大小和作用点的位置有关,计算公式为:M = F * d其中,M为弯矩,F为作用力的大小,d为作用点到梁的某一端的距离。
2. 截面弯曲应力截面弯曲应力是指由于弯曲效应,在梁的横截面上产生的应力。
截面弯曲应力的大小与弯矩和横截面的几何形状有关,计算可以使用弯曲应力公式进行。
第3章杆件的应力与强度判断1、“轴向拉压杆件任意斜截面上的内力作用线一定与杆件的轴线重合”2、“拉杆内只存在均匀分布的正应力,不存在剪应力。
”3、“杆件在轴向拉压时最大正应力发生在横截面上”4、“杆件在轴向拉压时最大剪应力发生在与轴线成45度角的斜截面上”5、“材料的延伸率与试件的尺寸有关。
“6、“没有明显的屈服极限的塑性材料,可以将产生0.2%应变时的应力作为屈服极限。
“7、“构件失效时的极限应力是材料的强度极限。
”8、“对平衡构件,无论应力是否超过弹性极限,剪应力互等定理均成立。
”9、“直杆扭转变形时,横截面的最大剪应力在距截面形心最远处。
”10、“塑性材料圆轴扭转时的失效形式为沿横截面断裂”11、“对于受扭的圆轴,最大剪应力只出现在横截面上”12、”圆轴受扭时,横截面的最大剪应力发生在距截面形心最远处。
”13、“圆轴受扭时,轴内各点均处于纯剪切状态“14、”薄壁圆管与空心圆管的扭转剪应力计算公式完全一样。
”15、”圆轴的扭转变形实际上是剪切变形。
”16、”圆轴扭转时,根据剪应力互等定理,其纵截面上也存在剪应力。
”17、“剪应力互等定理只适用于纯剪状态”18、“传动轴的转速越高,则其横截面的直径应越大”19、“受扭杆件的扭矩仅与杆件所受的外力偶矩有关,而与杆件的材料、横截面的大小以及横截面的形状无关”20、“普通碳钢扭转屈服极限τs=120MPa,剪变模量G=80GPa,则由剪切虎克定律τ=Gγ得到剪应变为γ=1.5×10-3rad”21、“一等直圆杆,当受到扭转时,杆内沿轴线方向会产生拉应变。
”22、“低碳钢圆柱试件受扭时,沿450螺旋面断裂。
”23、“铸铁圆柱试件受扭时,沿横截面断裂”24、“弯曲时梁横截面的中性轴通过截面形心。
”25、“梁的截面如图,其抗弯截面系数为W Z=BH2/6-bh2/6”26、“控制弯曲强度的主要因素是最大弯矩值”27、“设梁某段承受正弯矩的作用,则靠近顶面和靠近底面的纤维分别是伸长的和缩短的”28、“中性轴是梁的中性层与横截面的交线。