3-5稳态误差的分析与计算
- 格式:ppt
- 大小:317.50 KB
- 文档页数:19
国家开放大学《机电控制工程基础》章节自测参考答案第1章控制系统的基本概念一、单项选择题(共20道题,每题3分,共60分)1.产生与被控制量有一定函数关系的反馈信号的是()a.反馈元件b.校正元件c.控制元件d.比较元件2.产生控制信号的是()a.校正元件b.比较元件c.反馈元件d.控制元件3.以下()是随动系统的特点。
a.输出量不能够迅速的复现给定量的变化b.给定量的变化规律是事先确定的c.输出量不能够准确复现给定量的变化d.输出量能够迅速的复现给定量的变化4.以下()的给定量是一个恒值。
a.有静差系统b.恒值控制系统c.无静差系统d.脉冲控制系统5.反馈控制系统通常是指()a.混合反馈b.干扰反馈c.正反馈d.负反馈6.如果系统的输出端和输入端之间不存在反馈回路,这样的系统一定是()a.闭环控制系统b.正反馈环控制系统c.开环控制系统d.复合反馈系统7.开环控制系统的精度主要取决于()a.系统的校准精度b.放大元件c.校正元件d.反馈元件8.数控机床系统是由程序输入设备、运算控制器和执行机构等组成,它属于以下()a.程序控制系统b.恒值控制系统c.开环系统d.随动控制系统9.根据控制信号的运动规律直接对控制对象进行操作的元件是()a.校正元件b.执行元件c.反馈元件d.比较元件10.没有偏差便没有调节过程,通常在自动控制系统中,偏差是通过()建立起来的。
a.放大元件b.校正元件c.反馈d.控制器11.用来比较控制信号和反馈信号并产生反映两者差值的偏差信号的元件是()a.反馈元件b.校正元件c.控制元件d.比较元件12.输入量为已知给定值的时间函数的控制系统被称为()a.程序控制系统b.有静差系统c.脉冲控制系统d.恒值控制系统13.输入量为已知给定值的时间函数的控制系统被称为()a.程序控制系统b.随动系统c.有静差系统d.恒值控制系统14.输出端与输入端间存在反馈回路的系统一定是()a.开环控制系统b.正反馈环控制系统c.闭环控制系统d.有差控制系统15.()是指系统输出量的实际值与希望值之差。
自动控制原理稳态误差稳态误差是自动控制系统中一个非常重要的概念,它直接关系到系统的稳定性和准确性。
在控制系统中,我们经常会遇到一些误差,这些误差可能会影响系统的性能和稳定性。
因此,了解稳态误差的概念和计算方法对于控制系统的设计和分析都非常重要。
首先,我们来看一下稳态误差的定义。
稳态误差是指系统在稳定工作状态下,输出信号与期望值之间的差异。
换句话说,当输入信号保持不变时,系统输出与期望输出之间的偏差就是稳态误差。
稳态误差通常用于衡量系统的准确性和稳定性,它是评价控制系统性能的重要指标之一。
接下来,我们来看一下稳态误差的分类。
在自动控制系统中,稳态误差可以分为四种类型,静态误差、动态误差、稳态误差和瞬态误差。
静态误差是指系统在稳定工作状态下,输出信号与期望值之间的偏差;动态误差是指系统在工作过程中,输出信号与期望值之间的波动;稳态误差是指系统在长时间工作后,输出信号与期望值之间的偏差;瞬态误差是指系统在瞬时工作过程中,输出信号与期望值之间的偏差。
这四种误差类型各有特点,对于控制系统的设计和分析都有着重要的意义。
然后,我们来看一下稳态误差的计算方法。
在实际工程中,我们通常会用一些指标来衡量系统的稳态误差,比如静态误差增益、动态误差增益、稳态误差增益和瞬态误差增益等。
这些增益值可以帮助我们更好地了解系统的稳定性和准确性,从而指导控制系统的设计和分析工作。
最后,我们来看一下如何通过调节控制系统的参数来减小稳态误差。
在实际工程中,我们通常会通过调节控制系统的参数来改善系统的稳定性和准确性。
比如,可以通过增加控制器增益、改变控制器结构、优化控制器参数等方法来减小系统的稳态误差。
通过这些方法,我们可以更好地提高控制系统的性能和稳定性,从而更好地满足工程实际应用的需求。
总之,稳态误差是自动控制系统中一个非常重要的概念,它直接关系到系统的稳定性和准确性。
了解稳态误差的概念和计算方法对于控制系统的设计和分析都非常重要。
第 一 章1-1 图1-2是液位自动控制系统原理示意图。
在任意情况下,希望液面高度c 维持不变,试说明系统工作原理并画出系统方块图。
图1-2 液位自动控制系统解:被控对象:水箱;被控量:水箱的实际水位;给定量电位器设定水位r u (表征液位的希望值r c );比较元件:电位器;执行元件:电动机;控制任务:保持水箱液位高度不变。
工作原理:当电位电刷位于中点(对应r u )时,电动机静止不动,控制阀门有一定的开度,流入水量与流出水量相等,从而使液面保持给定高度r c ,一旦流入水量或流出水量发生变化时,液面高度就会偏离给定高度r c。
当液面升高时,浮子也相应升高,通过杠杆作用,使电位器电刷由中点位置下移,从而给电动机提供一定的控制电压,驱动电动机,通过减速器带动进水阀门向减小开度的方向转动,从而减少流入的水量,使液面逐渐降低,浮子位置也相应下降,直到电位器电刷回到中点位置,电动机的控制电压为零,系统重新处于平衡状态,液面恢复给定高度r c。
反之,若液面降低,则通过自动控制作用,增大进水阀门开度,加大流入水量,使液面升高到给定高度r c。
系统方块图如图所示:1-10 下列各式是描述系统的微分方程,其中c(t)为输出量,r (t)为输入量,试判断哪些是线性定常或时变系统,哪些是非线性系统?(1)222)()(5)(dt t r d tt r t c ++=;(2))()(8)(6)(3)(2233t r t c dt t dc dt t c d dt t c d =+++;(3)dt t dr t r t c dt t dc t )(3)()()(+=+; (4)5cos )()(+=t t r t c ω;(5)⎰∞-++=t d r dt t dr t r t c ττ)(5)(6)(3)(;(6))()(2t r t c =;(7)⎪⎩⎪⎨⎧≥<=.6),(6,0)(t t r t t c解:(1)因为c(t)的表达式中包含变量的二次项2()r t ,所以该系统为非线性系统。
第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。
答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。
控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。
如下图所示为自动控制系统的基本组成。
开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。
此时,系统构成没有传感器对输出信号的检测部分。
开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。
闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。
闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。
1-2 请说明自动控制系统的基本性能要求。
答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性通常由系统的结构决定与外界因素无关。
对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。
对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。
快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。
在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。
准确性用稳态误差来衡量。
在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。
显然,这种误差越小,表示系统的精度越高,准确性越好。
当准确性与快速性有矛盾时,应兼顾这两方面的要求。
自动控制原理稳态误差
在自动控制原理中,稳态误差是指系统在达到稳态时,输出值与期望值之间的差异。
稳态误差的大小和系统的控制算法有关,常用的控制算法包括比例控制、积分控制和微分控制。
比例控制是最简单的控制算法,通过调整比例增益来控制系统的输出。
然而,比例控制往往会产生稳态误差。
当比例增益增大时,稳态误差会减小,但系统的稳定性可能会受到影响。
当比例增益调整得过大时,系统可能会变得不稳定。
为了降低稳态误差,可以采用积分控制。
积分控制通过对误差进行积分来调整系统的输出。
积分控制可以消除稳态误差,但会引入超调现象,导致系统的动态响应变差。
为了解决超调问题,可以采用微分控制。
微分控制通过对误差进行微分来调整系统的输出。
微分控制可以提高系统的响应速度,但可能导致系统的稳态误差增加。
为了综合利用比例控制、积分控制和微分控制的优势,可以采用PID控制。
PID控制是一种常用的自动控制算法,通过对误差进行比例、积分和微分操作来调整系统的输出。
PID控制可
以同时减小稳态误差和超调现象,提高系统的稳定性和响应速度。
综上所述,稳态误差是自动控制系统中常见的问题,可以通过调整控制算法的参数来减小稳态误差。
但需要根据具体的系统要求和性能指标来选择合适的控制算法和参数。
第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。
答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。
控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。
如下图所示为自动控制系统的基本组成。
开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。
此时,系统构成没有传感器对输出信号的检测部分。
开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。
闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。
闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。
1-2 请说明自动控制系统的基本性能要求。
答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性通常由系统的结构决定与外界因素无关。
对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。
对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。
快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。
在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。
准确性用稳态误差来衡量。
在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。
显然,这种误差越小,表示系统的精度越高,准确性越好。
当准确性与快速性有矛盾时,应兼顾这两方面的要求。
第五章稳定性分析第五章:控制系统的稳定性分析3.3.5 控制系统的稳定性分析稳定性的概念线性系统稳定的充要条件线性系统稳定的必要条件代数判据(⼀般情况,特殊情况,劳斯,赫尔维茨)劳斯判据的应⽤(确定稳定域判断稳定性,求系统的极点,设计系统中的参数3.3.5.1 稳定性的概念分析⼩球平衡点的稳定性定义:若线性控制系统在初始扰动的影响下,其过渡过程随着时间的推移逐渐衰减并趋向于零,则称该系统为渐近稳定,简称稳定。
反之,若在初始扰动的影响下,系统的过渡过程随时间的推移⽽发散,则称该系统不稳定。
3.3.5.2线性系统稳定性的充要条件设系统的微分⽅程模型为:分析系统的稳定性是分析在扰动的作⽤下,当扰动消失后系统是否能回到原来的平衡状态的性能,亦系统在作⽤下的性能,亦与系统的输⼊信号⽆关,只与系统的内部结构有关。
对上述微分⽅程描述的系统亦只与等式的左端有关,⽽与右端⽆关,亦:系统的稳定性是由下列齐次⽅程所决定:其稳定性可转化为上述齐次⽅程的解c(t)若则系统稳定,则系统不稳定。
分析齐次⽅程的解的特征。
由微分⽅程解的知识,上述⽅程对应的特征多项式为:设该⽅程有k个实根(i=1,2,…k)r对复根(i=1,2,…r)k+2r=n 且各根互异(具有相同的根时分析⽅法相同,推导稍繁琐)则上述齐次⽅程的⼀般解为:其中为常数,由式中的决定,分析可见:只有当时,否则。
注:只能是⼩于零,等于或⼤于均不⾏。
等于零的情况为临界稳定,属不稳定。
综:线性系统稳定的充要条件(iff)是:其特征⽅程式的所有根均为负实数或具有负的实部。
亦:特征⽅程的根均在根平⾯(复平⾯、s平⾯)的左半部。
亦:系统的极点位于根平⾯(复平⾯、s平⾯)的左半部。
从上⾯的充要条件可以看出:系统稳定性的判断只需计算上系统的极点,看其在s平⾯上的位置,勿需去计算齐次⽅程的解(当系统复杂时的计算可能很繁),勿需去计算系统的脉冲响应。
3.3.5.3 线性系统稳定的必要条件设系统特征⽅程式中所有系数均为实数,并设(若,对特征⽅程两端乘(-1)),可以证明上述特征⽅程中所有系数均⼤于零(即)是该特征⽅程所有根在s平⾯的左半平⾯的必要条件。
第5章计算机控制系统特性分析计算机控制系统特性分析就是从给定的计算机控制系统数学模型出发,对计算机控制系统在稳定性、准确性、快速性三个方面的特性进行分析。
通过分析,一是了解计算机控制系统在稳定性、准确性、快速性三个方面的技术性能,用以定量评价相应控制系统性能的优劣;更重要的是,建立计算机控制系统特性或性能指标与计算机控制系统数学模型的结构及其参数之间的定性和定量关系,用以指导计算机控制系统的设计。
本章主要内容有:计算机控制系统稳定性分析,稳态误差与动态响应分析。
5.1计算机控制系统稳定性分析与模拟控制系统相同,计算机控制系统必须稳定,才有可能正常工作。
稳定是计算机控制系统正常工作的必要条件,因此,稳定性分析是计算机控制系统特性分析的一项最为重要的内容。
5.1.1连续系统稳定性及稳定条件离散系统稳定性和连续系统稳定性含义相同。
对于线性时不变系统而言,无论是连续系统还是离散系统,系统稳定是指该系统在平衡状态下(其输出量为某一不随时间变化的常值或零),受到外部扰动作用而偏离其平衡状态,当扰动消失后,经过一段时间,系统能够回到原来的平衡状态(这种意义下的稳定通常称为渐近稳定)。
如果系统不能回到原平衡状态,则该系统不稳定。
线性系统的稳定性是由系统本身固有的特性所决定的,而与系统外部输入信号的有无和强弱无关。
线性时不变连续系统稳定的充要条件是:系统的特征方程的所有特征根,亦即系统传递函数)(s W 的所有极点都分布在S 平面的左半平面,或者说,系统所有特征根具有负实部,设特征根ωσj s i i +=,则0<i σ。
S 平面的左半平面是系统特征根(或极点)分布的稳定域,S 平面虚轴是稳定边界。
若系统有一个或一个以上的特征根分布于S 平面的右半平面,则系统就不稳定;若有特征根位于虚轴上,则系统为临界稳定,工程上也视为不稳定。
5.1.2 S 平面与Z 平面的映射关系在第3章中定义Z 变换时,规定了z 和s 的关系为Tse z = (5.1)式中,z 和s 均为复变量,T 是采样周期。
第六版前言第一章自动控制的一般概念1-1 自动控制的基本原理与方式1-2 自动控制系统示例1-3 自动控制系统的分类1-4 对自动控制系统的基本要求1-5 自动控制系统的分析与设计工具习题第二章控制系统的数学模型2-1 控制系统的时域数学模型2-2 控制系统的复数域数学模型2-3 控制系统的结构图与信号流图2-4 控制系统建模实例习题第三章线性系统的时域分析法3-1 系统时间响应的性能指标3-2 一阶系统的时域分析3-3 二阶系统的时域分析3-4 高阶系统的时域分析3-5 线性系统的稳定性分析3-6 线性系统的稳态误差计算3-7 控制系统时域设计习题第四章线性系统的根轨迹法4-1 根轨迹法的基本概念4-2 根轨迹绘制的基本法则4-3 广义根轨迹4-4 系统性能的分析4-5 控制系统复域设计习题第五章线性系统的频域分析法5-1 频率特性5-2 典型环节与开环系统的频率特性5-3 频率域稳定判据5-4 稳定裕度5-5 闭环系统的频域性能指标5-6 控制系统频域设计习题第六章线性系统的校正方法6-1 系统的设计与校正问题6-2 常用校正装置及其特性6-3 串联校正6-4 前馈校正6-5 复合校正6-6 控制系统校正设计习题第七章线性离散系统的分析与校正7-1 离散系统的基本概念7-2 信号的采样与保持7-3 z变换理论7-4 离散系统的数学模型7-5 离散系统的稳定性与稳态误差7-6 离散系统的动态性能分析7-7 离散系统的数字校正7-8 离散控制系统设计习题第八章非线性控制系统分析8-1 非线性控制系统概述8-2 常见非线性特性及其对系统运动的影响8-3 相平面法8-4 描述函数法8-5 非线性控制的逆系统方法8-6 非线性控制系统设计习题第九章线性系统的状态空间分析与综合9-1 线性系统的状态空间描述9-2 线性系统的可控性与可观测性9-3 线性定常系统的反馈结构及状态观测器9-4 李雅普诺夫稳定性分析9-5 控制系统状态空间设计习题第十章动态系统的最优控制方法10-1 最优控制的一般概念10-2 最优控制中的变分法10-3 极小值原理及其应用10-4 线性二次型问题的最优控制10-5 控制系统优化设计。
第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。
u rR 1u cR 2CCR 2R 1u ru c(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sCR sC R R R s U s U r c ττ ωωτωωωωω11121212121)1()()()(jT j K C R R j R R C R R j R j U j U j G r c a ++=+++==(b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sCR s U s U r c)(1111)()(2122222212ττ ωωτωωωωω2221211)(11)()()(jT j C R R j C R j j U j U j G r c b ++=+++==5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s (1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2( -=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m s ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m s ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应 )0(8.08.11)(94≥+-=--t e e t h tt试求系统频率特性。