第五章第一讲__正式
- 格式:ppt
- 大小:1.47 MB
- 文档页数:42
第五章物质结构元素周期律第一讲原子结构一、选择题1.据新闻网报道:科学家首次合成第117号元素,被美国《时代》周刊评比为当Up和294117Up 年十大科学发觉。
假如第117号元素符号临时定为Up,下列关于293117的说法中正确的是()。
A.293117Up和294117Up是两种元素B.293117Up和294117Up互为同位素C.293117Up和294117Up质子数不同、中子数相同D.293117Up和294117Up质量数相同、电子数不同解析293117Up和294117Up是同种元素的两种核素,元素符号左上角的数字表示该核素的质量数,左下角的数字表示该核素的质子数,它们的质子数相同,中子数不同,互为同位素,A选项错误,B选项正确;293117Up和294117Up的质子数、电子数都是117,而质量数分别为293、294,中子数分别为176、177,C、D选项均错误。
答案 B2.下列叙述错误的是()。
A.13C和14C属于同一种元素,它们互为同位素B.1H和2H是不同的核素,它们的质子数相等C.14C和14N的质量数相等,它们的中子数不等D.6Li和7Li的电子数相等,中子数也相等解析本题主要考查同位素、核素以及同位素原子中各种微粒的数量关系。
A 项中13C和14C质子数相同,互为同位素;B项中1H和2H是氢元素的两种不同的核素,质子数均为1;C项中14C和14N质量数相同,但是中子数不等;D项中的6Li与7Li为锂元素的两种不同的核素,它们的质子数相等,核外电子数均为3,中子数不等,分别为3和4。
答案 D3.近年来我国政府强化了对稀土元素原料的出口管制,引起了美、日等国家的高度关注与不满。
所谓“稀土元素”是指镧系元素及第五周期ⅢB族的钇(39Y),它们被称为“工业味精”。
它们在军工生产、高科技领域中有极为重要的作用,下列有关“稀土元素”的说法正确的是()。
A.它们的原子核外均有5个电子层B.它们的原子最外层均含有3个电子C.它们均是金属元素D.76Y、80Y中子数不同,化学性质不同解析镧系元素属于第六周期,而周期序数等于电子层数,A错;过渡元素原子的最外层电子均只有1~2个,B错;76Y、80Y互为同位素,化学性质几乎相同,D错。
自主命题卷全国卷考情分析2021·山东卷·T5万有引力定律2021·湖南卷·T7人造卫星宇宙速度2021·河北卷·T4人造卫星2021·浙江1月选考·T7人造卫星2020·山东卷·T7万有引力定律2020·浙江1月选考·T9人造卫星2020·天津卷·T2人造卫星2021·全国甲卷·T18万有引力定律2021·全国乙卷·T18万有引力定律2020·全国卷Ⅰ·T15万有引力定律2020·全国卷Ⅱ·T15人造卫星2020·全国卷Ⅲ·T16人造卫星2019·全国卷Ⅱ·T14万有引力定律2018·全国卷Ⅰ·T20双星模型试题情境生活实践类地球不同纬度重力加速度的比较学习探究类开普勒第三定律的应用,利用“重力加速度法”、“环绕法”计算天体的质量和密度,卫星运动参量的分析与计算,人造卫星,宇宙速度,天体的“追及”问题,卫星的变轨和对接问题,双星或多星模型第1讲万有引力定律及应用目标要求 1.理解开普勒行星运动定律和万有引力定律,并会用来解决相关问题.2.掌握计算天体质量和密度的方法.考点一开普勒定律定律内容图示或公式开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律) 所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等a 3T 2=k ,k 是一个与行星无关的常量1.围绕同一天体运动的不同行星椭圆轨道不一样,但都有一个共同的焦点.( √ ) 2.行星在椭圆轨道上运行速率是变化的,离太阳越远,运行速率越大.( × )1.行星绕太阳运动的轨道通常按圆轨道处理.2.由开普勒第二定律可得12Δl 1r 1=12Δl 2r 2,12v 1·Δt ·r 1=12v 2·Δt ·r 2,解得v 1v 2=r 2r 1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.3.开普勒第三定律a 3T 2=k 中,k 值只与中心天体的质量有关,不同的中心天体k 值不同,且该定律只能用在同一中心天体的两星体之间.例1 (多选)如图所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有( )A .T A >TB B .E k A >E k BC .S A =S B D.R A 3T A 2=R B 3T B2 答案 AD解析 根据开普勒第三定律知,A 、D 正确;由GMm R 2=m v 2R 和E k =12m v 2可得E k =GMm2R ,因R A >R B ,m A =m B ,则E k A <E k B ,B 错误;根据开普勒第二定律知,同一轨道上的卫星绕地球做匀速圆周运动,与地心连线在单位时间内扫过的面积相等,对于卫星A 、B ,S A 不等于S B ,C 错误.例2 某行星沿椭圆轨道绕太阳运行,如图所示,在这颗行星的轨道上有a 、b 、c 、d 四个对称点.若行星运动周期为T ,则该行星( )A .从a 到b 的运动时间等于从c 到d 的运动时间B .从d 经a 到b 的运动时间等于从b 经c 到d 的运动时间C .a 到b 的时间t ab >T4D .c 到d 的时间t cd >T4答案 D解析 据开普勒第二定律可知,行星在近日点的速度最大,在远日点的速度最小,行星由a 到b 运动时的平均速率大于由c 到d 运动时的平均速率,而弧长ab 等于弧长cd ,故从a 到b 的运动时间小于从c 到d 的运动时间,同理可知,从d 经a 到b 的运动时间小于从b 经c 到d 的运动时间,A 、B 错误;从a 经b 到c 的时间和从c 经d 到a 的时间均为T 2,可得t ab =t da <T 4;t bc =t cd >T4,C 错误,D 正确.例3 (2021·安徽六安市示范高中教学质检)国产科幻巨作《流浪地球》开创了中国科幻电影的新纪元,引起了人们对地球如何离开太阳系的热烈讨论.其中有一种思路是不断加速地球使其围绕太阳做半长轴逐渐增大的椭圆轨道运动,最终离开太阳系.假如其中某一过程地球刚好围绕太阳做椭圆轨道运动,地球到太阳的最近距离仍为R ,最远距离为7R (R 为加速前地球与太阳间的距离),则在该轨道上地球公转周期将变为( ) A .8年 B .6年 C .4年 D .2年 答案 A解析 由开普勒第三定律得:R3T 2=(R +7R2)3T 12,解得T 1=8年,选项A 正确.考点二 万有引力定律1.内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r 2,G 为引力常量,通常取G =6.67×10-11 N·m 2/kg 2,由英国物理学家卡文迪什测定.3.适用条件(1)公式适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.(2)质量分布均匀的球体可视为质点,r 是两球心间的距离.1.只有天体之间才存在万有引力.( × )2.只要知道两个物体的质量和两个物体之间的距离,就可以由F =G m 1m 2r 2计算物体间的万有引力.( × )3.地面上的物体所受地球的万有引力方向一定指向地心.( √ ) 4.两物体间的距离趋近于零时,万有引力趋近于无穷大.( × )1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向,如图所示.(1)在赤道上:G MmR 2=mg 1+mω2R .(2)在两极上:G MmR2=mg 0.(3)在一般位置:万有引力G MmR2等于重力mg 与向心力F 向的矢量和.越靠近两极,向心力越小,g 值越大.由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR2=mg .2.星体表面及上空的重力加速度(以地球为例)(1)地球表面附近的重力加速度g (不考虑地球自转):mg =G Mm R 2,得g =GMR 2.(2)地球上空的重力加速度g ′地球上空距离地球中心r =R +h 处的重力加速度为g ′,mg ′=GMm (R +h )2,得g ′=GM(R +h )2.所以gg ′=(R +h )2R 2.3.万有引力的“两点理解”和“两个推论” (1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力. ②地球上的物体(两极除外)受到的重力只是万有引力的一个分力. (2)星体内部万有引力的两个推论①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对它的万有引力,即F =G M ′mr 2.考向1 万有引力定律的理解和简单计算例4 (2019·全国卷Ⅱ·14)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆.在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是( )答案 D解析 在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律F =G Mm(R +h )2,可知随着h 的增大,探测器所受的地球引力逐渐减小,但不是均匀减小的,故能够描述F 随h 变化关系的图像是D.考向2 不同天体表面引力的比较与计算例5 (2020·全国卷Ⅰ·15)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A .0.2 B .0.4 C .2.0 D .2.5 答案 B解析 万有引力表达式为F =G Mmr 2,则同一物体在火星表面与在地球表面受到的引力的比值为F 火引F 地引=M 火r 地2M 地r 火2=0.4,选项B 正确.考向3 重力和万有引力的关系例6 一火箭从地面由静止开始以5 m/s 2的加速度竖直向上匀加速运动,火箭中有一质量为1.6 kg 的科考仪器,在上升到距地面某一高度时科考仪器的视重为9 N ,则此时火箭离地球表面的距离为地球半径的(地球表面处的重力加速度g 取10 m/s 2)( ) A.12倍 B .2倍 C .3倍 D .4倍 答案 C解析 在上升到距地面某一高度时,根据牛顿第二定律可得F N -mg ′=ma ,解得g ′= 1016 m/s 2=g 16,因为G Mr 2=g ′,可得r =4R ,则此时火箭离地球表面的距离为地球半径R 的3倍,选C.例7 某类地天体可视为质量分布均匀的球体,由于自转的原因,其表面“赤道”处的重力加速度为g 1,“极点”处的重力加速度为g 2,若已知自转周期为T ,则该天体的半径为( ) A.4π2g 1T2 B.4π2g 2T 2 C.(g 2-g 1)T 24π2D.(g 1+g 2)T 24π2答案 C解析 在“极点”处:mg 2=GMm R 2;在其表面“赤道”处:GMm R 2-mg 1=m (2πT)2R ;解得:R =(g 2-g 1)T 24π2,故选C.考向4 地球表面与地表下某处重力加速度的比较与计算例8 假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d ,已知质量分布均匀的球壳对壳内物体的引力为零,则矿井底部和地面处的重力加速度大小之比为( ) A .1-dRB .1+dRC.⎝⎛⎭⎫R -d R 2D.⎝⎛⎭⎫R R -d 2答案 A解析 如图所示,根据题意,地面与矿井底部之间的环形部分对处于矿井底部的物体引力为零.设地面处的重力加速度为g ,地球质量为M ,地球表面的物体m 受到的重力近似等于万有引力,故mg =G Mm R 2,又M =ρ·43πR 3,故g =43πρGR ;设矿井底部的重力加速度为g ′,图中阴影部分所示球体的半径r =R -d ,则g ′=43πρG (R -d ),联立解得g ′g =1-dR,A 正确. 考点三 天体质量和密度的计算应用万有引力定律估算天体的质量、密度 (1)利用天体表面重力加速度已知天体表面的重力加速度g 和天体半径R .①由G Mm R 2=mg ,得天体质量M =gR 2G .②天体密度ρ=M V =M 43πR 3=3g4πGR.(2)利用运行天体(以已知周期为例)测出卫星绕中心天体做匀速圆周运动的半径r 和周期T . ①由G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT2.②若已知天体的半径R ,则天体的密度ρ=M V =M 43πR 3=3πr 3GT 2R 3.③若卫星绕天体表面运行,可认为轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2,故只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.考向1 利用“重力加速度法”计算天体质量和密度例9 宇航员在月球表面将一片羽毛和一个铁锤从同一高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R .求:(不考虑月球自转的影响) (1)月球表面的自由落体加速度大小g 月; (2)月球的质量M ; (3)月球的密度ρ.答案 (1)2h t 2 (2)2hR 2Gt 2 (3)3h2πRGt 2解析 (1)月球表面附近的物体做自由落体运动,有h =12g 月t 2月球表面的自由落体加速度大小g 月=2ht 2(2)不考虑月球自转的影响,有G MmR 2=mg 月得月球的质量M =2hR 2Gt2(3)月球的密度ρ=M V =2hR 2Gt 24π3R 3=3h2πRGt 2.考向2 利用“环绕法”计算天体质量和密度例10 (多选)已知引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( ) A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 23GT 22C .月球的质量m 月=4π2L 13GT 12D .太阳的平均密度ρ=3πGT 22答案 AB解析 对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G ,故A项正确;地球绕太阳运动,有Gm 太m 地L 22=m 地4π2L 2T 22,则m 太=4π2L 23GT 22,故B 项正确;同理,月球绕地球运动,能求出地球质量,无法求出月球的质量,故C 项错误;由于不知道太阳的半径,不能求出太阳的平均密度,故D 项错误.例11 (2021·全国乙卷·18)科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示.科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞.这项研究工作获得了2020年诺贝尔物理学奖.若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M ,可以推测出该黑洞质量约为( )A .4×104MB .4×106MC .4×108MD .4×1010M答案 B课时精练1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 答案 C解析 由开普勒第一定律(轨道定律)可知,太阳位于木星运行椭圆轨道的一个焦点上,故A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,故B 错误;根据开普勒第三定律(周期定律)知,太阳系中所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,故C 正确;对于太阳系某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同时间内扫过的面积不相等,故D 错误.2.(多选)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功 答案 CD解析 根据开普勒第二定律,行星与太阳的连线在相等时间内扫过的面积相等,所以从P 到M 所用的时间小于从M 到Q 所用的时间,而从P 到Q 所用的时间为T 02,所以从P 到M 所用的时间小于T 04,选项A 错误;从Q 到N 阶段,只有万有引力对海王星做功,机械能保持不变,选项B 错误;从P 到Q 阶段,海王星从近日点运动至远日点,速率逐渐减小,选项C正确;从M 到Q 阶段,万有引力做负功,从Q 到N 阶段,万有引力做正功,选项D 正确. 3.2020年7月23日,我国第一个火星探测器“天问一号”成功升空,飞行约7个月抵达火星,已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g ,则火星表面的重力加速度为( ) A .0.2g B .0.4g C .2g D .4g 答案 B解析 根据地球表面的物体受到的万有引力近似等于重力,有G Mm R 2=mg 得g =GMR 2;同理,火星表面的重力加速度为g ′=GM ′R ′2=G ×0.1×M (0.5×R )2=0.4×GMR 2=0.4g ,故选B.4.(2017·北京卷·17)利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转)B .人造卫星在地面附近绕地球做圆周运动的速度及周期C .月球绕地球做圆周运动的周期及月球与地球间的距离D .地球绕太阳做圆周运动的周期及地球与太阳间的距离 答案 D解析 因为不考虑地球的自转,所以地球表面物体所受的万有引力等于重力,即GM 地mR 2=mg ,得M 地=gR 2G ,所以根据A 中给出的条件可求出地球的质量;根据GM 地m 卫R 2=m 卫v 2R 和T =2πRv ,得M 地=v 3T 2πG ,所以根据B 中给出的条件可求出地球的质量;根据GM 地m 月r 2=m 月4π2T 2r ,得M地=4π2r 3GT 2,所以根据C 中给出的条件可求出地球的质量;根据GM 太m 地r 02=m 地4π2T 2r 0,得M 太=4π2r 03GT 2,所以根据D 中给出的条件可求出太阳的质量,但不能求出地球质量,故选D. 5.(多选)宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处.若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面附近的重力加速度为g ′,空气阻力不计.则( ) A .g ′∶g =1∶5 B .g ′∶g =5∶2 C .M 星∶M 地=1∶20 D .M 星∶M 地=1∶80答案 AD解析 设初速度为v 0,由对称性可知竖直上抛的小球在空中运动的时间t =2v 0g ,因此得g ′g =t 5t =15,选项A 正确,B 错误;由G Mm R 2=mg 得M =gR 2G ,则M 星M 地=g ′R 星2gR 地2=15×⎝⎛⎭⎫142=180,选项C 错误,D 正确.6.(2018·浙江4月选考·9)土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径为1.2×106 km.已知引力常量G =6.67×10-11N·m 2/kg 2,则土星的质量约为( )A .5×1017 kgB .5×1026 kgC .7×1033 kgD .4×1036 kg答案 B解析 根据“泰坦”的运动情况,由万有引力提供向心力,则G Mm r 2=m ⎝⎛⎭⎫2πT 2r ,化简得到M =4π2r 3GT2,代入数据得M ≈5×1026 kg ,故选B.7.假设某探测器在着陆火星前贴近火星表面运行一周用时为T ,已知火星的半径为R 1,地球的半径为R 2,地球的质量为M ,地球表面的重力加速度为g ,引力常量为G ,则火星的质量为( )A.4π2R 13M gR 22T 2B.gR 22T 2M 4π2R 13C.gR 12GD.gR 22G 答案 A解析 对绕地球表面运动的物体,由牛顿第二定律可知: G MmR 22=mg 对绕火星表面做匀速圆周运动的物体有: GM 火m R 12=m (2πT)2R 1 结合两个公式可解得:M 火=4π2R 13M gR 22T 2,故A 对.8.若在某行星和地球上相对于各自的水平地面附近相同的高度处以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7.已知该行星质量约为地球的7倍,地球的半径为R ,不考虑气体阻力.由此可知,该行星的半径约为( ) A.12R B.72R C .2R D.72R 答案 C解析 由平抛运动规律:x =v 0t ,h =12gt 2,得x =v 02hg,两种情况下,抛出的速率相同,高度相同,故g 行g 地=74;由G Mm R 02=mg ,可得g =GMR 02,故g 行g 地=M 行R 行2M 地R 2=74,解得R 行=2R ,选项C正确.9.(2020·山东卷·7改编)质量为m 的着陆器在着陆火星前,会在火星表面附近经历一个时长为t 0、速度由v 0减速到零的过程.已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g ,忽略火星大气阻力.若该减速过程可视为一个竖直向下的匀减速直线运动,此过程中着陆器受到的制动力大小约为( ) A .m ⎝⎛⎭⎫0.4g -v 0t 0B .m ⎝⎛⎭⎫0.4g +v 0t 0C .m ⎝⎛⎭⎫0.2g -v 0t 0D .m ⎝⎛⎭⎫0.2g +v 0t 0答案 B解析 着陆器向下做匀减速直线运动时的加速度大小a =v 0t 0.在天体表面附近,有mg =G mMR 2,则g 火g =M 火M 地·(R 地R 火)2,整理得g 火=0.4g ,由牛顿第二定律知,着陆器减速运动时有F -mg 火=ma ,则制动力F =m (0.4g +v 0t 0),选项B 正确.10.将一质量为m 的物体分别放在地球的南、北两极点时,该物体的重力均为mg 0;将该物体放在地球赤道上时,该物体的重力为mg .假设地球可视为质量均匀分布的球体,半径为R ,已知引力常量为G ,则由以上信息可得出( ) A .g 0小于g B .地球的质量为gR 2GC .地球自转的角速度为ω=g 0-gRD .地球的平均密度为3g4πGR答案 C解析 设地球的质量为M ,物体在赤道处随地球自转做圆周运动的角速度等于地球自转的角速度,轨道半径等于地球半径,物体在赤道上的重力和物体随地球自转的向心力是万有引力的分力.有G Mm R 2-mg =mω2R ,物体在两极受到的重力等于万有引力G MmR 2=mg 0,所以g 0>g ,故A 错误;在两极mg 0=G Mm R 2,解得M =g 0R 2G ,故B 错误;由G MmR 2-mg =mω2R ,mg 0=G MmR2,解得ω=g 0-g R ,故C 正确;地球的平均密度ρ=M V =g 0R 2G 43πR 3=3g 04πGR,故D 错误. 11.(2021·全国甲卷·18)2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105 s 的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105 m .已知火星半径约为3.4×106 m ,火星表面处自由落体的加速度大小约为3.7 m/s 2,则“天问一号”的停泊轨道与火星表面的最远距离约为( ) A .6×105 m B .6×106 m C .6×107 m D .6×108 m答案 C解析 忽略火星自转,设火星半径为R , 则火星表面处有GMmR 2=mg ①可知GM =gR 2设与周期为1.8×105 s 的椭圆形停泊轨道周期相同的圆形轨道半径为r ,由万有引力提供向心力可知 GMm r 2=m 4π2T2r ② 设近火点到火星中心的距离为R 1=R +d 1③ 设远火点到火星中心的距离为R 2=R +d 2④ 由开普勒第三定律可知r3T 2=(R 1+R 22)3T 2⑤联立①②③④⑤可得d 2≈6×107 m ,故选C.12.若地球半径为R ,把地球看作质量分布均匀的球体.“蛟龙号”下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的加速度大小之比为(质量分布均匀的球壳对内部物体的万有引力为零)( ) A.R -d R +hB.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 2答案 C解析 设地球的密度为ρ,则在地球表面,物体受到的重力和地球的万有引力大小相等,有g =G M R 2.由于地球的质量为M =ρ·43πR 3,所以重力加速度的表达式可写成g =GMR 2=G ·ρ43πR 3R 2=43πGρR .质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙号”的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力有G Mm(R +h )2=ma ,“天宫一号”所在处的重力加速度为a =GM (R +h )2,所以a g =R 2(R +h )2,g ′a =(R -d )(R +h )2R 3,故C 正确,A 、B 、D 错误.。
第五章机械能第1讲功和功率过好双基关————回扣基础知识训练基础题目一、功1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功.2.必要因素:力和物体在力的方向上发生的位移.3.物理意义:功是能量转化的量度.4.计算公式(1)恒力F的方向与位移l的方向一致时:W=Fl.(2)恒力F的方向与位移l的方向成某一夹角α时:W=Fl cosα.5.功的正负(1)当0≤α<π时,W>0,力对物体做正功.2<α≤π时,W<0,力对物体做负功,或者说物体克服这个力做了功.(2)当π2(3)当α=π时,W=0,力对物体不做功.26.一对作用力与反作用力的功做功情形图例备注都做正功(1)一对相互作用力做的总功与参考系无关(2)一对相互作用力做的总功W =Fl cos α.l 是相对位移,α是F 与l 间的方向夹角(3)一对相互作用力做的总功可正、可负,也可为零都做负功一正一负一为零一为正一为负二、功率1.定义:功与完成这些功所用时间的比值.2.物理意义:描述力对物体做功的快慢.3.公式:(1)P =W t,P 描述时间t 内力对物体做功的快慢.(2)P =Fv①v 为平均速度,则P 为平均功率.②v 为瞬时速度,则P 为瞬时功率.③当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解.研透命题点————细研考纲和真题分析突破命题点命题点一功的分析和计算1.常用办法对于恒力做功利用W=Fl cosα;对于变力做功可利用动能定理(W=ΔE k);对于机车启动问题中的恒定功率启动问题,牵引力的功可以利用W=Pt. 2.几种力做功比较(1)重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关.(2)滑动摩擦力、空气阻力、安培力做功与路径有关.(3)摩擦力做功有以下特点:①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.③相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能的情况,内能Q=F f x相对.◆类型1恒力功的分析和计算【例1】如图所示,木块B上表面是水平的,木块A置于B上,并与B 保持相对静止,一起沿固定的光滑斜面由静止开始下滑,在下滑过程中()A.A所受的合外力对A不做功B.B对A的弹力做正功C.B对A的摩擦力做正功D.A对B做正功答案C解析A、B一起沿固定的光滑斜面由静止开始下滑,加速度为g sinθ(θ为斜面倾角),由于A速度增大,由动能定理知,A所受的合外力对A做正功,对A受力分析,可知B对A的支持力方向竖直向上,B对A的摩擦力方向水平向左,故B对A的摩擦力做正功,B对A的弹力做负功,A、B错误,C正确;A与B相对静止,由牛顿第二定律及几何关系可知A对B的作用力垂直斜面向下,A对B不做功,D错误.【变式1】在一次跳绳体能测试中,一位体重约为50kg的同学,一分钟内连续跳了140下,若该同学每次跳跃的腾空时间为0.2s,重力加速度g 取10m/s2,则他在这一分钟内克服重力做的功约为()A.3500J B.14000J C.1000J D.2500J答案A解析G=mg=50×10N=500N,腾空时间为0.2s表示上升过程用时0.1s,上升的高度为h=0.05m,则起跳一次克服重力做的功W0=Gh=500N×0.05 m=25J,1分钟内跳了140次,则一分钟内克服重力做功W=140W0=140×25 J=3500J,故选A.【变式2】一滑块在水平地面上沿直线滑行,t=0时其速度为1m/s,从此刻开始在滑块运动方向上再施加一水平作用力F,力F、滑块的速率v随时间的变化规律分别如图甲和乙所示,设在第1s 内、第2s 内、第3s 内力F 对滑块做的功分别为W 1、W 2、W 3,则以下关系正确的是()A .W 1=W 2=W 3B .W 1<W 2<W 3C .W 1<W 3<W 2D .W 1=W 2<W 3答案B 解析在第1s 内,滑块的位移为x 1=12×1×1m =0.5m ,力F 做的功为W 1=F 1x 1=1×0.5J =0.5J ;第2s 内,滑块的位移为x 2=12×1×1m =0.5m ,力F 做的功为W 2=F 2x 2=3×0.5J =1.5J ;第3s 内,滑块的位移为x 3=1×1m =1m ,力F 做的功为W 3=F 3x 3=2×1J =2J ,所以W 1<W 2<W 3,故选B.◆类型2变力功的分析与计算方法以例说法图例应用动能定理用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F -mgL (1-cos θ)=0,得W F =mgL (1-cos θ)微元法质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ·Δx 1+F f ·Δx 2+F f ·Δx 3+…=F f (Δx 1+Δx 2+Δx 3+…)=F f ·2πR等效转换法恒力F 把物块从A 拉到B ,绳子对物块做功W =F ·(h sin α-h sin β)平均力法弹簧由伸长x 1被继续拉至伸长x 2的过程中,克服弹力做功W =kx 1+kx 22·(x 2-x 1)图像法一水平拉力拉着一物体在水平面上运动的位移为x 0,图线与横轴所围面积表示拉力所做的功,W =F 0+F 12x 0【例2】(多选)如图所示,摆球质量为m ,悬线的长为L ,把悬线拉到水平位置后放手.设在摆球从A 点运动到B 点的过程中空气阻力F 阻的大小不变,则下列说法正确的是()A .重力做功为mgLB .绳的拉力做功为0C .空气阻力F 阻做功为-mgLD .空气阻力F 阻做功为-F 阻·12πL 答案ABD 解析小球下落过程中,重力做功为mgL ,A 正确;绳的拉力始终与速度方向垂直,拉力做功为0,B 正确;空气阻力F 阻大小不变,方向始终与速度方向相反,故空气阻力F 阻做功为-F 阻·12πL ,C 错误,D 正确.方法1利用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数个无穷小的位移上的恒力所做功的代数和,此法在中学阶段常应用于求解大小不变、方向改变的变力做功问题.【变式3】如图所示,在一半径为R =6m 的圆弧形桥面的底端A ,某人把一质量为m =8kg 的物块(可看成质点).用大小始终为F =75N 的拉力从底端缓慢拉到桥面顶端B (圆弧AB 在同一竖直平面内),拉力的方向始终与物块在该点的切线成37°角,整个圆弧桥面所对的圆心角为120°,g 取10m/s 2,sin 37°=0.6,cos 37°=0.8.求这一过程中:(1)拉力F 做的功;(2)桥面对物块的摩擦力做的功.答案(1)376.8J (2)-136.8J解析(1)将圆弧AB ︵分成很多小段l 1、l 2…l n ,拉力在每一小段上做的功为W 1、W 2…W n .因拉力F 大小不变,方向始终与物块在该点的切线成37°角,所以W 1=Fl 1cos 37°、W 2=Fl 2cos 37°…W n =Fl n cos 37°所以W F =W 1+W 2+…+W n =F cos 37°(l 1+l 2+…+l n )=F cos37°·16·2πR ≈376.8J.(2)重力G 做的功W G =-mgR (1-cos 60°)=-240J ,因物块在拉力F 作用下缓慢移动,动能不变,由动能定理知W F +W G +W f =0所以W f =-W F -W G =-376.8J +240J =-136.8J.方法2用F -x 图像求变力做功在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x 轴上方的“面积”为正,位于x 轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况(如三角形、矩形、圆等规则的几何图形).【变式4】一物体所受的力F 随位移x 变化的图像如图所示,求在这一过程中,力F 对物体做的功为()A .3JB .6JC .7JD .8J 答案B 解析力F 对物体做的功等于图线与横轴x 所包围面积的代数和,即W 1=12×(3+4)×2J =7J ;W 2=-12×(5-4)×2J =-1J 所以力F 对物体做的功为W =7J -1J =6J.故选项B 正确.方法3用动能定理求变力做功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功,也适用于求变力做功.因为使用动能定理可由动能的变化来求功,所以动能定理是求变力做功的首选.【变式5】(多选)如图所示,一个质量为m=1kg的带孔小球穿在固定的粗糙水平长横杆上,小球与横杆间的动摩擦因数为μ=0.6.某时刻小球获得一个水平向右的瞬时速度v0=15m/s,同时小球受到一个竖直向上的作用力F,F与速度的平方成正比,比例常数为k=0.4,重力加速度为g=10m/s2,则小球运动的整个过程中()A.作用力F对小球做功为0B.作用力F对小球做功为-112.5J C.摩擦力对小球做功为-112.5J D.摩擦力对小球做功为-100J答案AD解析对小球受力分析可知,初始状态F=kv2=0.4v2,当v0=15m/s,F0=90N>mg=10N,则小球受力如图所示.因为小球所受的作用力F与位移方向垂直,所以作用力F对小球做功为零,A正确,B错误;“小球运动的整个过程中”指从初态至稳定状态的过程.由于小球受到杆的向下的弹力,小球受到与运动方向相反的沿杆的摩擦力f,但由于F=kv2,随着小球的减速运动,导致F 减小.由于竖直方向上合力为零,则杆给小球的弹力F N 减小,当F =mg 时,小球达到匀速状态,有kv 22=mg ,解得v 2=5m/s ,在这个过程中弹力在变化,因此摩擦力是变力.在v 0=15m/s 到v 2=5m/s 过程中,小球受到重力mg ,向上的拉力F 、向下的弹力F N ,只有摩擦力做功,对小球用动能定理,有W f =12mv 22-12mv 20=-100J ,D 正确,C 错误.方法4“转化法”求变力做功通过转换研究的对象,可将变力做功转化为恒力做功,用W =Fl cos α求解,如轻绳通过定滑轮拉动物体运动过程中拉力做功问题.【变式6】如图所示,固定的光滑竖直杆上套着一个滑块,滑块用轻绳系着绕过光滑的定滑轮O .现以大小不变的拉力F 拉绳,使滑块从A 点起由静止开始上升.滑块运动到C 点时速度最大.已知滑块质量为m ,滑轮O 到竖直杆的距离为d ,∠OAO ′=37°,∠OCO ′=53°,重力加速度为g .求:(sin 37°=0.6,cos 37°=0.8)(1)拉力F 的大小;(2)滑块由A 到C 过程中拉力F 做的功.答案(1)53mg (2)2536mgd 解析(1)根据共点力的平衡条件,在C 点有F cos 53°=mg ,解得F =53mg .(2)由能量的转化与守恒可知,拉力F 对绳端点做的功就等于绳的拉力F 对滑块做的功滑轮与A 间绳长L 1=dsin 37°滑轮与C 间绳长L 2=d sin 53°滑轮右侧绳子增大的长度ΔL =L 1-L 2=d sin 37°-d sin 53°=5d12拉力做功W =F ΔL =2536mgd .1.公式P =Wt和P =Fv 的区别P =Wt 是功率的定义式,P =Fv 是功率的计算式.2.平均功率的计算方法(1)利用P =W t.(2)利用P =F ·v cos α,其中v 为物体运动的平均速度.3.瞬时功率的计算方法(1)利用公式P=Fv cosα,其中v为t时刻的瞬时速度.(2)P=F·v F,其中v F为物体的速度v在力F方向上的分速度.(3)P=F v·v,其中F v为物体受到的外力F在速度v方向上的分力.【例3】质量m=20kg的物体,在大小恒定的水平外力F的作用下,沿水平面做直线运动.0~2s内F与运动方向相反,2~4s内F与运动方向相同,物体的v-t图像如图所示.g取10m/s2,则()A.拉力F的大小为100NB.物体在4s时拉力的瞬时功率为120WC.4s内拉力所做的功为480JD.4s内物体克服摩擦力做的功为320J答案B解析取物体初速度方向为正方向,由题图可知物体与水平面间存在摩擦力,由题图可知0~2s内,-F-f=ma1且a1=-5m/s2;2~4s内,-F+f=ma2且a2=-1m/s2,联立以上两式解得F=60N,f=40N,A错误;由P =Fv,得4s时拉力的瞬时功率为120W,B正确;由W=Fx,0~2s内,W1=-Fx1,2~4s内,W2=Fx2,由题图可知x1=10m,x2=2m,代入数据解得,4s 内拉力所做的功为-480J ,C 错误;摩擦力做功W =fs ,摩擦力始终与速度方向相反,故s 为路程,由题图可求得总路程为12m,4s 内物体克服摩擦力做的功为480J ,D 错误.【变式7】如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则()A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3答案B解析对小滑环,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角);由图中的直角三角形可知,小滑环的位移s =2R sin θ,所以t =2sa=4Rg,t 与θ无关,即t 1=t 2=t 3;根据W =mgh 可知三个环重力做的功W 1>W 2>W 3,根据P =Wt 可知P 1>P 2>P 3,故B 正确,A 、C 、D 错误.1.两种启动方式两种方式以恒定功率启动以恒定加速度启动P -t 图和v -t 图OA 段过程分析v ↑⇒F =P不变v↓⇒a =F -F 阻m↓a =F -F 阻m不变⇒F 不变v ↑⇒P =Fv ↑直到P =P 额=Fv 1运动性质加速度减小的加速直线运动匀加速直线运动,维持时间t 0=v 1aAB 段过程分析F =F 阻⇒a =0⇒v m =P F 阻v ↑⇒F =P 额v ↓⇒a =F -F 阻m↓运动性质以v m 做匀速直线运动加速度减小的加速直线运动BC 段F =F 阻⇒a =0⇒以v m =P 额F 阻做匀速直线运动2.三个重要关系式(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m=P F min =PF阻(式中F min为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的过程中,匀加速过程结束时,功率最大,但速度不是最大,v=P额F<v m=P额F阻.(3)机车以恒定功率启动时,牵引力做的功W=Pt.由动能定理得:Pt-F阻x =ΔE k.此式经常用于求解机车以恒定功率启动过程的位移大小.【例4】(2021·湖南卷)“复兴号”动车组用多节车厢提供动力,从而达到提速的目的.总质量为m的动车组在平直的轨道上行驶,该动车组有四节动力车厢,每节车厢发动机的额定功率均为P,若动车组所受的阻力与其速率成正比(F阻=kv,k为常量).动车组能达到的最大速度为v m.下列说法正确的是()A.动车组在匀加速启动过程中,牵引力恒定不变B.若四节动力车厢输出功率均为额定值,则动车组从静止开始做匀加速运动C.若四节动力车厢输出的总功率为2.25P,则动车组匀速行驶的速度为34v m D.若四节动力车厢输出功率均为额定值,动车组从静止启动,经过时间t达到最大速度v m,则这一过程中该动车组克服阻力做的功为12mv2m-Pt答案C解析动车组在匀加速启动过程中,F-kv=ma,a不变,v增大,F则也增大,选项A错误;若四节动力车厢输出功率均为额定值,则4Pv-kv=ma,知随着v增大,a减小,选项B错误;当动车组达到最大速度v m时,满足4Pv m-kv m=0;若四节动力车厢总功率为2.25P,动车组匀速行驶时满足2.25Pv-kv=0,联立可得v=34v m,选项C正确;动车组从静止启动到达到最大速度v m,由动能定理得4Pt-W f=12mv2m-0,解得W f=4Pt-12mv2m,选项D错误.【变式8】某兴趣小组对一辆自制遥控小车的性能进行研究,他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v-t图像,如图所示(除2~10s时间段内的图像为曲线外,其余时间段图像均为直线).已知小车运动的过程中,2~14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行.小车的质量为1kg,可认为在整个过程中小车所受到的阻力大小不变.求:(1)小车所受到的阻力大小及0~2s时间内电动机提供的牵引力大小;(2)小车匀速行驶阶段的功率;(3)小车在0~10s 运动过程中位移的大小.答案(1)0.75N1.25N(2)2.25W(3)19.7m解析(1)由图象可得,在14~18s 内:a 3=Δv 3Δt 3=0-318-14m/s 2=-0.75m/s 2小车受到阻力大小:f =m |a 3|=0.75N 在0~2s 内:a 1=Δv 1Δt 1=12m/s 2=0.5m/s 2由F -f =ma 1得,电动机提供的牵引力大小F =ma 1+f =1.25N即小车所受到的阻力大小为0.75N,0~2s 时间内电动机提供的牵引力大小为1.25N.(2)在10~14s 内小车做匀速直线运动,F ′=f故小车匀速行驶阶段的功率:P =F ′v =0.75×3W =2.25W.(3)根据速度-时间图象与时间轴围成的“面积”等于物体的位移,可得0~2s 内,x 1=12×2×1m =1m2~10s 内,根据动能定理有:Pt -fx 2=12mv 2-12mv 21解得:x 2=18.7m故小车在加速过程中的位移为:x =x 1+x 2=19.7m 即小车在0~10s 运动过程中位移的大小为19.7m【变式9】一辆汽车在平直的公路上以某一初速度运动,运动过程中保持恒定的牵引功率,其加速度a 和速度的倒数1v 的图像如图所示.若已知汽车的质量,则根据图像所给信息,不能求出的物理量是()A .汽车的功率B .汽车行驶的最大速度C .汽车受到的阻力D .汽车运动到最大速度所需的时间答案D解析由F -F f =ma 、P =Fv 可得a =P m ·1v -F f m ,由a -1v 图象可知,Pm=k =40m 2·s -3,可求出汽车的功率P ,由a =0时1v m =0.05m -1·s ,可得汽车行驶的最大速度v m =20m/s ,再由v m =PF f ,可求出汽车受到的阻力F f ,但无法求出汽车运动到最大速度所需的时间.。
第1讲功和功率考点1 功的判断与计算1.功的正负的判断方法2.恒力做功的计算方法3.合力做功的计算方法1.(多选)如图所示,粗糙的斜面在水平恒力的作用下向左匀速运动,一物块置于斜面上并与斜面保持相对静止,下列说法中正确的是( ACD )A.斜面对物块不做功B.斜面对地面的摩擦力做负功C.斜面对物块的支持力做正功D.斜面对物块的摩擦力做负功解析:斜面对物块的作用力可以等效为一个力,根据平衡条件,这个力与重力大小相等,方向相反,与位移的夹角为90°,所以不做功,选项A正确;地面受到摩擦力作用,但没有位移,所以斜面对地面的摩擦力不做功,选项B错误;斜面对物块的支持力与位移方向的夹角小于90°,而斜面对物块的摩擦力与位移方向的夹角大于90°,所以选项C、D正确.2.如图所示,小物块位于光滑的斜面上,斜面位于光滑的水平地面上,从地面上看,在小物块沿斜面下滑的过程中,斜面对小物块的作用力( B )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零解析:如图所示,物块初位置为A ,末位置为B ,A 到B 的位移为s ,斜面对小物块的作用力为F N ,方向始终垂直于斜面向上,且从地面看,F N 与位移s 方向的夹角为钝角,F N 做负功.故选B.是否做功的判断:功是力对位移的积累效果,“积累”是逐渐聚集的意思,显然,只具有力或位移谈不上积累,因而也没有功,做功的过程也就是能量转化的过程,所以还可以通过有没有能量转化来判断.考向2 恒力功的计算3.如图所示,质量为m 的物体在恒力F 的作用下从底端沿斜面向上一直匀速运动到顶端后撤去F ,斜面高h ,倾斜角为θ,现把物体放在顶端,发现物体在轻微扰动后可匀速下滑,重力加速度大小为g .则在上升过程中恒力F 做的功为( C )A .FhB .mghC .2mghD .无法确定解析:把物体放在顶端,发现物体在轻微扰动后可匀速下滑,则物体受力平衡,则有F f =mg sin θ.上滑过程中,物体也做匀速直线运动,受力平衡,则有F =mg sin θ+F f =2mg sin θ,则在上升过程中恒力F 做的功W =F ·h sin θ=2mg sin θ·hsin θ=2mgh ,故选项C正确.4.一木块前端有一滑轮,绳的一端系在右方固定处,水平穿过滑轮,另一端用恒力F拉住,保持两股绳之间的夹角θ不变,如图所示,当用力F 拉绳使木块前进s 时,力F 对木块做的功(不计绳重和滑轮摩擦)是( B )A .Fs cos θB .Fs (1+cos θ)C .2Fs cos θD .2Fs 解析:方法一:如图所示,力F 作用点的位移l =2s cos θ2,故拉力F 所做的功W =Fl cos α=2Fs cos2θ2=Fs (1+cos θ).方法二:可看成两股绳都在对木块做功W =Fs +Fs cos θ=Fs (1+cos θ),则选项B 正确.求解恒力做功的两个注意(1)恒力做功的大小只与F 、l 、α这三个量有关,与物体是否还受其他力、物体运动的速度、加速度等其他因素无关,也与物体运动的路径无关.(2)F 与l 必须具有同时性,即l 必须是力F 作用过程中物体的位移. 考向3 求变力做功的常用方法 方法1:利用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数个无穷小的位移上的恒力所做功的代数和,此法在中学阶段常应用于求解大小不变、方向改变的变力做功问题.5.(多选)如图所示,小球质量为m ,一不可伸长的悬线长为l ,把悬线拉到水平位置后放手,设小球运动过程中空气阻力F m 大小恒定,则小球从水平位置A 到竖直位置B 的过程中,下列说法正确的是( BD )A .重力不做功B .悬线的拉力不做功C .空气阻力做功为-F m lD .空气阻力做功为-12F m πl解析:重力在整个运动过程中始终不变,小球在重力方向上的位移为l ,所以W G =mgl ,故A 错误;因为拉力F T 在运动过程中始终与运动方向垂直,拉力不做功,故B 正确;F m 所做的总功等于每个小弧段上F m 所做功的代数和,运动的弧长为12πl ,故阻力做的功为WF m =-(F m Δx 1+F m Δx 2+…)=-12F m πl ,故C 错误,D 正确.方法2:用F x 图象求变力做功在F x 图象中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x 轴上方的“面积”为正,位于x 轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况(如三角形、矩形、圆等规则的几何图).6.轻质弹簧右端固定在墙上,左端与一质量m =0.5 kg 的物块相连,如图甲所示,弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=0.2.以物块所在处为原点,水平向右为正方向建立x 轴,现对物块施加水平向右的外力F ,F 随x 轴坐标变化的情况如图乙所示,物块运动至x =0.4 m 处时速度为零,则此时弹簧的弹性势能为(g 取10 m/s 2)( A )A.3.1 J B.3.5 J C.1.8 J D.2.0 J解析:物块与水平面间的摩擦力为F f=μmg=1 N.现对物块施加水平向右的外力F,由Fx图象与x轴所围面积表示功可知F做功W=3.5 J,克服摩擦力做功W f=F f x=0.4 J.由于物块运动至x=0.4 m处时,速度为0,由功能关系可知,W-W f=E p,此时弹簧的弹性势能为E p=3.1 J,选项A正确.方法3:“转化法”求变力做功通过转换研究的对象,可将变力做功转化为恒力做功,用W=Fl cosα求解,如轻绳通过定滑轮拉动物体运动过程中拉力做功问题.7.如图所示,水平粗糙地面上的物体被绕过光滑定滑轮的轻绳系着,现以大小恒定的拉力F拉绳的另一端,使物体从A点起由静止开始运动.若从A点运动至B点和从B点运动至C点的过程中拉力F做的功分别为W1、W2,图中AB=BC,且动摩擦因数处处相同,则在物体的运动过程中( D )A.摩擦力增大,W1>W2 B.摩擦力减小,W1<W2C.摩擦力增大,W1<W2 D.摩擦力减小,W1>W2解析:物体受力如图所示,由平衡条件得F N +F sin θ=mg ,滑动摩擦力F f =μF N =μ(mg -F sin θ),物体从A 向C 运动的过程中细绳与水平方向夹角θ增大,所以滑动摩擦力减小,由于物体被绕过光滑定滑轮的轻绳系着,拉力为恒力,所以拉力做的功等于细绳对物体所做的功,根据功的计算式W =FL cos θ,θ增大,F 不变,在相同位移L 上拉力F 做的功减小,故D 正确,A 、B 、C 错误.考点2 功率的分析和计算1.公式P =Wt和P =Fv 的区别P =Wt是功率的定义式,P =Fv 是功率的计算式. 2.平均功率的计算方法 (1)利用P =Wt.(2)利用P =F ·v cos α,其中v 为物体运动的平均速度. 3.瞬时功率的计算方法(1)利用公式P =Fv cos α,其中v 为t 时刻的瞬时速度. (2)P =F ·v F ,其中v F 为物体的速度v 在力F 方向上的分速度. (3)P =F v ·v ,其中F v 为物体受到的外力F 在速度v 方向上的分力.(2019·某某某某模拟)(多选)质量为m 的物体静止在光滑水平面上,从t=0时刻开始受到水平力的作用.力的大小F 与时间t 的关系如图所示,力的方向保持不变,则( )A .3t 0时刻的瞬时功率为5F 20t 0mB .3t 0时刻的瞬时功率为15F 20t 0mC .在t =0到3t 0这段时间内,水平力的平均功率为23F 20t 04mD .在t =0到3t 0这段时间内,水平力的平均功率为25F 20t 06m[审题指导] 根据题意和F t 图象做出v t 图象再进行计算,注意平均功率和瞬时功率的计算式不同.【解析】 根据F t 图线,在0~2t 0时间内的加速度a 1=F 0m,2t 0时刻的速度v 2=a 1·2t 0=2F 0m t 0,0~2t 0时间内位移x 1=v 22·2t 0=2F 0m t 20,故0~2t 0时间内水平力做的功W 1=F 0x 1=2F 20m t 20;在2t 0~3t 0时间内的加速度a 2=3F 0m ,3t 0时刻的速度v 3=v 2+a 2t 0=5F 0mt 0,故3t 0时刻的瞬时功率P 3=3F 0v 3=15F 20t 0m ,在2t 0~3t 0时间内位移x 2=v 2+v 32·t 0=7F 0t 22m ,故2t 0~3t 0时间内水平力做的功W 2=3F 0·x 2=21F 20t 202m ,因此在0~3t 0时间内的平均功率P =W 1+W 23t 0=25F 20t 06m ,故B 、D 正确.【答案】 BD1.如图,一长为L 的轻杆一端固定在光滑铰链上,另一端固定一质量为m 的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω匀速转动,当杆与水平方向夹角为60°时,拉力的功率为( C )A .mgLωB.32mgLω C.12mgLωD.36mgLω 解析:由能的转化与守恒可知:拉力的功率等于克服重力的功率,P F =P G =mgv y =mgv cos60°=12mgωL ,故选C.2.跳绳运动员质量m =50 kg,1 min 跳N =180次.假设每次跳跃中,脚与地面的接触时间占跳跃一次所需时间的2/5,试估算该运动员跳绳时克服重力做功的平均功率为多大?解析:跳跃的周期T =60180 s =13 s ,每个周期内在空中停留的时间t 1=35T =15s.运动员跳起时视为竖直上抛运动,设起跳初速度为v 0, 由t 1=2v 0g 得v 0=12gt 1.每次跳跃人克服重力做的功为W =12mv 20=18mg 2t 21=25 J ,克服重力做功的平均功率为P =W T =2513W =75 W.答案:75 W对平均功率和瞬时功率的进一步理解(1)平均功率对应的是一段时间或一个过程,并且同一物体在不同时间段的平均功率一般不同.(2)求解瞬时功率用公式P =Fv cos α,v ·cos α可理解为沿力方向的分速度,F ·cos α可理解为沿速度方向的分力.考点3 机动车启动问题1.以恒定功率启动 (1)动态过程(2)这一过程的Pt图象和vt图象如图所示:2.以恒定加速度启动(1)动态过程(2)这一过程的Pt图象和vt图象如图所示:一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t的变化如图所示.假设汽车所受阻力的大小F f恒定不变.下列描述该汽车的速度v 随时间t变化的图线中,可能正确的是( )[审题指导] 机车的输出功率可以突变,速度不能突变.【解析】 发动机功率为P 1且汽车匀速运动时,v 1=P 1F f;发动机功率为P 2且汽车匀速运动时,v 2=P 2F f .某时刻开始,若v 0<v 1,由P =Fv 及a =F -F fm可知,汽车先做加速度逐渐减小的加速运动,直至速度达到v 1;在t 1时刻,功率突然变大,牵引力突然变大,之后牵引力逐渐减至F f ,该阶段汽车也是做加速度逐渐减小的加速运动,直至速度达到v 2.故只有选项A 符合要求.【答案】 A3.(2019·某某赣中南五校模拟)(多选)质量为m 的汽车在平直路面上启动,启动过程的速度—时间图象如图所示.从t 1时刻起汽车的功率保持不变,整个运动过程中汽车所受阻力恒为F f ,则( BC )A .0~t 1时间内,汽车的牵引力做功的大小等于汽车动能的增加量B .t 1~t 2时间内,汽车的功率等于(m v 1t 1+F f )v 1 C .汽车运动的最大速度v 2=(mv 1F f t 1+1)v 1 D .t 1~t 2时间内,汽车的平均速度等于v 1+v 22解析:0~t 1时间内,汽车加速度a =v 1t 1,由牛顿第二定律F -F f =ma ,解得F =m v 1t 1+F f .t 1~t 2时间内,汽车的功率P =Fv 1=⎝ ⎛⎭⎪⎫m v 1t 1+F f v 1,选项B 正确;由P =F f v 2可得汽车运动的最大速度v 2=P F f =⎝⎛⎭⎪⎫mv 1F f t 1+1v 1,选项C 正确;根据动能定理,0~t 1时间内,汽车的牵引力做功的大小减去克服阻力做功等于汽车动能的增加量,选项A 错误;t 1~t 2时间内,汽车的平均速度大于v 1+v 22,选项D 错误.4.汽车发动机的额定功率为60 kW ,汽车的质量为5×103kg ,汽车在水平路面上行驶时,阻力是车重力的0.1倍(g 取10 m/s 2),试求:(1)若汽车保持额定功率不变从静止启动,汽车所能达到的最大速度是多大?当汽车的加速度为2 m/s 2时速度是多大?(2)若汽车从静止开始,保持以0.5 m/s 2的加速度做匀加速直线运动,这一过程能维持多长时间?解析:汽车运动中所受阻力大小为F f mg ① (1)当a =0时速度最大,牵引力等于F f 的大小, 则最大速度v max =P F f② 联立①②解得v max =12 m/s.设汽车加速度为2 m/s 2时牵引力为F 1, 由牛顿第二定律得F 1-F f =ma ③ 此时汽车速度v 1=P F 1④联立③④并代入数据得v 1=4 m/s.(2)当汽车以加速度a ′=0.5 m/s 2匀加速运动时,设牵引力为F 2, 由牛顿第二定律得F 2-F f =ma ′⑤汽车匀加速过程所能达到的最大速度v t =P F 2⑥ 联立①⑤⑥并代入数据解得t =v ta ′=16 s. 答案:(1)12 m/s 4 m/s (2)16 s机车启动的三个重要关系式(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F 阻. (2)机车以恒定加速度启动时,匀加速过程结束后功率最大,速度不是最大,即v =P F<v m=P F 阻. (3)机车以恒定功率运行时,牵引力做的功W =Pt ,由动能定理得Pt -F阻x =ΔE k ,此式经常用于求解机车以恒定功率启动过程的位移或速度.。