第八章第2节 原子吸收分光光度仪
- 格式:pdf
- 大小:632.69 KB
- 文档页数:21
原子吸收分光光度计演示实验
原子吸收分光光度计演示实验是一种测定物质成份的方法,主要应用在各种介质中,如:水分析、土壤分析、合成材料分析、锂电池分析等。
它采用原子吸收分光光度计完成,将原子物质紫外线辐射分解成具有不同光谱的特征波长,根据不同的元素的特征吸收波长
确定。
由于原子吸收波长是元素特性的表现形式,因此可以在物质中筛选出特定元素并进
行测量,用来表征物质成份。
原子吸收分光光度计演示实验实际运用有以下几个特点:
1、测量灵敏度高。
原子吸收分光光度计演示实验有着很强的检测灵敏度,可以使元
素的检测更加精准。
2、测数结果准确。
因为原子吸收分光光度计演示实验使用的是原子物质的紫外线辐射,所以可以精确的测量出特定元素的含量。
3、可以检测多种元素。
原子吸收分光光度计演示实验不仅可以检测单一元素,也可
以检测多种元素,形成复杂混合物质,可以准确地分析物质成份。
4、可以保证试样完整性。
原子吸收分光光度计演示实验不需要进行化学反应,因此
试样完整性可以得到保证,而且可以有效减少气体污染排放,是一种环保的测量方法。
原子吸收分光光度计演示实验逐渐受到关注,其准确度高,测量灵敏度高,环保性强。
它的应用可以大大提高对物质成份的测量,为元素组分的细致研究提供了可靠的技术和工具。
光谱原子吸收分光光度计
光谱原子吸收分光光度计是一种用于分析样品中金属元素含量的仪器。
它基于光谱原子吸收光度法,利用原子或离子对特定波长的光吸收的特性来确定样品中金属元素的浓度。
光谱原子吸收分光光度计主要由以下部分组成:
1. 光源:产生特定波长的光源,常用的光源包括中空阴极灯或者电弧灯。
2. 光束分光装置:将产生的光束分成两个部分,一个用于照射样品,另一个用于参比。
3. 采样系统:将样品溶液引入光谱池中,通常包括进样器、雾化器和石墨炉等部件。
4. 光谱池:样品通过光谱池时,特定波长的光被金属元素吸收,吸收量与金属元素的浓度成正比。
5. 检测系统:使用光电转换装置,如光电倍增管或者光电二极管等,将光谱池中通过的光信号转化为电信号。
6. 信号处理系统:将电信号进行放大、滤波和数字化处理,最后显示或输出浓度结果。
在使用光谱原子吸收分光光度计时,首先根据待测金属元素的特定波长选择光源和光谱池。
然后将样品处理并进样到光谱池中,光源照射样品后,检测系统会记录光谱池通过的吸收光的强度。
通过与标准曲线进行比对,可以得出待测样品中金属元素的浓度。
原子吸收分光光度计应用及维护工作原理:元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。
在一定浓度范围内,其吸收强度与试液中被的含量成正比。
其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL ,式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。
利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度的装置称为原子吸收分光光度计。
它有单光束,双光束,双波道,多波道等结构形式。
其基本结构包括光源,原子化器,光学系统和检测系统。
它主要用于痕量元素杂质的分析,具有灵敏度高及选择性好两大主要优点。
广泛应用于特种气体,金属有机化合物,金属醇盐中微量元素的分析。
但是测定每种元素均需要相应的空心阴极灯,这对检测工作带来不便。
应用一、实验部分、试剂Cr标准溶液1000ug/mlCr空心阴极灯、仪器工作条件干燥120℃,斜坡10s,保持10s,180℃,斜坡5s,保持10s;灰化1300℃,斜坡10s,保持15s;原子化2600℃,4s,停气;清洗2800℃,5s、标准使用溶液的配置铬标准使用溶液:吸取铬标准储备液(1mg/ml)于100ml容量瓶中,加入2%硝酸至刻度、此溶液的浓度为100ug/ml。
在逐级稀释,可分别得到标准系列溶液如下:铬:0ug/L、5.0.0ug/L、L、L、L2.试样的置备:取空心胶囊,置氟乙烯消解罐内,加硝酸5-10ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。
消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽并近干,用2%硝酸转入50ml 量瓶中,并稀释至刻度,摇匀,即得。
同法同时制备试剂空白溶液;。
取供试品溶液与对照品溶液,以石墨炉为原子化器,照原子吸收分光光度法,在测定,含铬不得过百万分之二。
原子吸收分光光度计的工作原理原子吸收分光光度计(Atomic Absorption Spectrophotometer,AAS)是一种用于分析化学中的定量分析方法。
它通过测量吸收光谱来确定待测样品中的物质量。
在分析化学中,该方法广泛应用于金属和无机物分析。
基本原理原子吸收光谱是指物质的原子吸收特定波长的光线时,产生特定吸收谱线的现象。
原子吸收谱线在可见光和紫外光区域内表现出来。
原子吸收光谱法的基本原理是,将待测样品转化为单一元素状态,然后使该元素原子吸收特定波长的光并进行测量。
整个过程包括三个主要步骤:样品的处理、原子化和吸收光的测量。
•样品处理:将待测样品转化为单一元素状态。
通常采用的方法是将样品溶液中的有机物和无机物分离。
•原子化:将经过处理后的样品转化为原子状态。
在原子化的过程中,有多种方法可供选择,其中最常用的方法是火焰原子化和石墨炉原子化。
–火焰原子化是将样品喷射到火焰中,使其被加热到高温状态,并将其转化为原子状态。
通过调节火焰的条件,可以选择性地使其他元素保持其化合价状态,只有待测元素被还原为原子状态。
–石墨炉原子化是将经过处理的样品转化为原子状态,通过将样品注入预热的石墨炉中进行原子化。
该方法具有较高的选择性和灵敏度。
•吸收光的测量:原子化后的样品被激发为原子状态,然后被高能光子激发。
测量吸收光的强度或波长,需要准确测量入射光和出射光的强度。
这种测量需要高精度、高灵敏度的光学仪器支持,最常见的光学仪器是干涉仪和单色仪。
优势与局限原子吸收光谱法广泛用于分析金属和无机物,具有以下优势:•具有较高的选择性,能够分析多种元素。
•分析灵敏度高,可用于稀土和超纯元素的分析。
•应用范围广,用于分析从自然界中取得的样品或人造样品。
然而,该方法也存在一些局限性:•仅适用于单元素分析,不能同时测量多种元素。
•这种分析技术需要高水平的技能和经验的人员进行操作。
应用领域原子吸收光谱法被广泛应用于金属和无机物分析,包括:•从自然界中获取样品的分析,如地球化学调查和地质勘探。
原子吸收分光光度计原理及分类原子吸收分光光度法又称原子吸收光谱法。
所谓原子吸收就是指气态自由原子,对于同种原子发射出来的特征光谱辐射具有吸收现象,将这种原子吸收现象应用到化学定量分析,首先必须将试样溶液中的待测元素原子化,同时还要有一个强度稳定的光源,给出同样原子光谱辐射,使之通过一定的待测元素原子区域,从而测出其消光值,然后根据消光值对标准溶液浓度关系曲线,计算出试样中待测元素的含量1 定量分析的理论依据原子吸收共振线的强度和蒸汽中原子浓度的关系,与分光光度法中分子溶液对光的吸收规律相似,一束平行的,辐射强度为Pof,频率为f的光,投射到长度为L的火焰中,火焰吸收均匀,若通过火焰后的光强度为Pf,则在频率为f 时的吸收系数K可由下式表示:Pf=Pof*e-KfL,Kf与f的关系即为吸收线的轮廓,在很大程度上它决定于火焰的温度和吸收原子周围的压力,吸收线的半宽是指吸收系数为最大值一半时的轮廓宽度,吸收与原子浓度之间有以下关系:∫Kfdf =e2Noff/mc,式中Kf为吸收系数,c为光速,e为电子电荷,m为电子质量,2Nof为单位体积内进行吸收的原子数,f为振子强度,是指每个原子可能吸收光源能量的平均电子数。
由于原子吸收线的宽度非常狭窄,约为十分之几纳米,因此要准确求得积分吸收系数是非常困难的,同时还要求单色仪必须具有千分之几纳米的分辨率,这就超过了一般单色仪的工作能力,为此在实际应用中,使用锐线光源测光吸收线中心位置的吸收系数(即最大吸收系数K),用谱线宽度较原子吸收线更窄的光源,如空心阴极灯发出的光,能够测定原子蒸汽的吸收系数K0,在化学分析中,为求得基态原子数N的比较值,只需要测定吸光度A,不必精确求得K0,K0与原子浓度N有线性关系,即:K0=KN,A=0.4343K0L=K′N,上式说明原子吸光度与原子蒸汽浓度有直线关系,由此可见原子吸收中的锐线光源是定量分析的基础。
2 主要部件及功能原子吸光法是利用原子蒸汽能够吸收该元素本身特征波长的现象,来进行化学分析的一种方法,此法将试样的一部分转变为原子蒸汽,再测量原子蒸汽对特征波长辐射的吸收,通过比较标准样与试样吸收值来测定试样中元素的浓度。
原子吸收分光光度计测量方法
1、标准曲线法
在仪器推荐的浓度范围内,制备含待测元素的对照品溶液至少3份,浓度依次递增,并分别加入各品种项下制备供试品溶液的相应试剂,同时以相应试剂制备空白对照溶液。
将仪器按规定启动后,依次测定空白对照溶液和各浓度对照品溶液的吸光度,记录读数。
以每一浓度3次吸光度读数的平均值为纵坐标、相应浓度为横坐标,绘制标准曲线。
按各品种项下的规定制备供试品溶液,使待测元素的估计浓度在标准曲线浓度范围内,测定吸光度,取3次读数的平均值,从标准曲线上查得相应的浓度,计算元素的含量。
2、标准加入法
取同体积按各品种项下规定制备的供试品溶液4份,分别置4个同体积的量瓶中,除(1)号量瓶外,其他量瓶分别精密加入不同浓度的待测元素对照品溶液,分别用去离子水稀释至刻度,制成从零开始递增的一系列溶液。
按上述标准曲线法自“将仪器按规定启动后”操作,测定吸光度,记录读数;将吸光度读数与相应的待测元素加入量作图,延长此直线至与含量轴的延长线相交,此交点与原点间的距离即相当于供试品溶液取用量中待测元素的含量。
再以此计算供试品中待测元素的含量。
此法仅适用于第一法标准曲线呈线性并通过原点的情况。
当用于杂质限度检查时,取供试品,按各品种项下的规定,制备供试品溶液;另取等量的供试品,加入限度量的待测元素溶液,制成对照品溶液。
照上述标准曲线法操作,设
对照品溶液的读数为a,供试品溶液的读数为b,b值应小于(a-b)。
原子吸收分光光度计热电
原子吸收分光光度计(Atomic Absorption Spectrophotometer,简称AAS)是一种用于分析金属元素含量的仪器。
它利用原子吸收
光谱法,通过测量样品中金属元素原子吸收特定波长的光线来确定
其浓度。
AAS的工作原理是将样品原子化成气态原子,然后通过特
定波长的光源照射样品,测量被样品吸收的光强度,从而得出金属
元素的含量。
热电是指利用热电效应将热能转化为电能的现象。
在原子吸收
分光光度计中,热电主要用于加热样品以将其原子化。
通常使用的
是石墨炉,通过热电效应将电能转化为热能,使得样品升温至原子
化所需的温度。
热电元件的选择和控制对于石墨炉的性能和稳定性
具有重要影响。
从技术角度来看,原子吸收分光光度计的热电系统需要具备快
速升温、稳定控温和高温均匀性等特点,以确保样品能够被有效原
子化并且测量结果准确可靠。
热电系统的设计和优化对于仪器的性
能和分析结果具有重要影响。
此外,还可以从应用角度来看,原子吸收分光光度计在环境监
测、食品安全、药物分析等领域有着广泛的应用。
热电系统的稳定性和可靠性直接影响到仪器在实际应用中的精准度和可靠性。
综上所述,原子吸收分光光度计的热电系统在仪器的工作原理和技术性能中扮演着重要角色,并且对于仪器在实际应用中的准确性和可靠性有着重要影响。
原子吸收分光光度计原理和结构1.1原子吸收光谱的产生原子吸收光谱法〔Atomic Adsorption Spectrometry,简称AAS是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的方法。
众所周知,任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态。
能量最低的能级状态称为基态〔E=0,其余能级称为激发态能级,而能量最低的激发态则称为第一激发态。
正常情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。
如果将一定外界能量如光能提供给该基态原子,当外界光能量E恰好等于该基态原子中基态和某一较高能级之间的能级差ΔE时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。
电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。
可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。
核外电子从基态跃迁至第一激发态所吸收的谱线称为共振吸收线,简称共振线。
电子从第一激发态返回基态时所发射的谱线称为第一共振发射线。
由于基态与第一激发态之间的能级差最小,电子跃迁几率最大,故共振吸收线最易产生。
对多数元素来讲,它是所有吸收线中最灵敏的,在原子吸收光谱分析中通常以共振线为测定线。
1.2原子吸收光谱轮廓一束频率为ν强度为I的光通过厚度为L的原子蒸气,部分光被吸收,部分光被透过,透过光的强度In服从Lambert〔朗伯吸收定律In = Iexp<-knL> 〔1-1式中kn是基态原子对频率为n的光的辐射吸收系数。
不同元素原子吸收不同频率的光,透过光强度对吸收光频率作图,如下图:图1-1 Iv与v的关系由图可知,在频率n处透过光强度最小,即吸收最大。
原子吸收分光光度计定义:利用各元素的原子蒸气对光选择吸收的特性而制成的分光光度计。
工作原理元素在热解石墨炉中被加热原子化,成为基态原子蒸汽,对空心阴极灯发射的特征辐射进行选择性吸收。
在一定浓度范围内,其吸收强度与试液中被测元素的含量成正比。
其定量关系可用郎伯-比耳定律,A= -lg I/I o= -lgT = KCL ,式中I为透射光强度;I0为发射光强度;T为透射比;L为光通过原子化器光程(长度),每台仪器的L值是固定的;C是被测样品浓度;所以A=KC。
利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度的装置称为原子吸收分光光度计。
它有单光束,双光束,双波道,多波道等结构形式。
其基本结构包括光源,原子化器,光学系统和检测系统。
它主要用于痕量元素杂质的分析,具有灵敏度高及选择性好两大主要优点。
广泛应用于特种气体,金属有机化合物,金属醇盐中微量元素的分析。
但是测定每种元素均需要相应的空心阴极灯,这对检测工作带来不便原子化器主要有两大类,即火焰原子化器和电热原子化器。
火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。
电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。
前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。
火焰原子吸收分光光度计,利用空气—乙炔测定的元素可达30多种,若使用氧化亚氮—乙炔火焰,测定的元素可达70多种。
但氧化亚氮—乙炔火焰安全性较差,应用不普遍。
空气—乙炔火焰原子吸收分光光度法,一般可检测到PPm级(10-6),精密度1%左右。
国产的火焰原子吸收分光光度计,都可配备各种型号的氢化物发生器(属电加热原子化器),利用氢化物发生器,可测定砷(As)、锑(Sb)、锗(Ge)、碲(Te)等元素。
一般灵敏度在ng/ml级(10-9),相对标准偏差2%左右。
汞(Hg)可用冷原子吸收法测定。
石墨炉原子吸收分光光度计,可以测定近50种元素。