原子吸收分光光度法与紫外-可见分光光度法
- 格式:docx
- 大小:20.79 KB
- 文档页数:2
火焰原子吸收光谱法(判断题)1. 原子吸收分光光度法与紫外-可见光光度法都是利用物质对辐射的吸收来进行分析的方法,因此,两者的吸收机理完全相同。
(×)2. 原子吸收分光光度计中单色器在原子化系统之前。
(×)3. 原子吸收分光光度法中,光源的作用是产生180 nm到375 nm的连续光谱。
(×)4. 在原子吸收分光光度法中,一定要选择共振线作为分析线。
(×)5. 原子化器的作用是将试样中的待测元素转化为基态原子蒸气。
(√)6. 释放剂能消除化学干扰,是因为他能与干扰元素行程更稳定的化合物。
(√)7. 原子吸收法测定血清钙时,加入EDTA作为释放剂。
(×)8. 在原子吸收分光光度法中,物理干扰是非选择性的,对试样中各种元素的影响基本相同。
(√)9. 采用标准加入发可以消除背景吸收的影响。
(×)10. 在原子吸收分光光度法中,可以通过峰值吸收的测量来确定待测原子的浓度。
(√)11. 化学干扰是非选择性的,对试样中所有元素的影响基本相同。
(×)12. 在原子吸收分光光度法中可以用连续光源校正背景吸收,因为被测元素的原子蒸气对连续光源不产生吸收。
(×)13 原子吸收光谱是线状光谱,而紫外吸收分光光度法是带状光谱。
(√)14 在原子吸收的实际测定中,基态原子数不能代表待测元素的总原子数。
(×)15 火焰原子化法的原子化效率只有10%左右。
(√)16 原子吸收分光光度法测定试样时,采用标准加入法可以有效地消除物理干扰。
(√)17 背景吸收在原子吸收光谱分子中会使吸光度增加,导致结果偏高。
(√)18. 塞曼效应校正背景,其校正波长范围广。
(√)19.原子吸收光度法测定低浓度试样时,应选择次灵敏线。
(×)20. 原子吸收光度法测定高浓度试样时,应选择最灵敏线。
(×)21. 火焰原子吸收光谱仪中,大多数空心阴极灯一般都是工作电流越小,分析灵敏度越低。
原子吸收分光光度法与紫外-可见吸收光谱法两种方法都遵循
朗伯-比耳定律
朗伯-比耳定律是物理化学中的基本定律,描述了波长相同的光线经过同一距离内不同浓度的介质吸收后的光强度变化。
该定律可以表示为:
A = εlc
其中,A 表示吸光度,ε 表示吸光度系数,l 表示光程长度,c 表示溶液浓度。
根据这个公式,原子吸收分光光度法和紫外-可见吸收光谱法都可以衡量溶液中物质的浓度。
原子吸收分光光度法通过将样品物质转化为气态并进入火焰、石墨等热源中,使其原子被激发至高能态,然后根据原子的特定跃迁过程发射的光谱吸收法测定样品中的元素。
紫外-可见吸收光谱法通过对样品中所含物质在紫外-可见光区域(200-800 nm)内的吸收进行测量,其中吸光度与样品中溶质浓度之间成正比关系。
该方法广泛应用于有机化学、药学、生物化学中的定量分析。
因此,这两种方法共同遵循朗伯-比耳定律,通过衡量吸光度来推断样品中所含物质的浓度。
绪论1.仪器分析:以物质的某些物理或化学性质(光、电、热、磁等)为基础,并借助于特殊的设备,对待测物质进行定性、定量及结构分析和动态分析的一类方法,又称物理分析法。
2.检出限:供试品中被测物能被检测出的最低量(信噪比3:1)。
3.定量限:供试品中被测组分能被定量测定的最低量(信噪比10:1)。
4.灵敏度:物质单位浓度或单位质量的变化引起响应信号值变化的程度称为方法的灵敏度,用S 表示。
信号变化量/浓度变化量,标准曲线斜率越大,灵敏度越高。
光谱绪论5.光学分析法:基于物质发射的电磁辐射或物质与辐射相互作用后产生的辐射信号或发生的信号变化来测定物质的性质、含量和结构的一类仪器分析方法。
6.波数:每cm长度中波的数目,单位cm-17.吸收:物质选择性吸收特定频率的辐射能(光子的能量等于原子、分子或离子的基态和激发态能量之差),并从低能级跃迁到高能级的过程。
8.发射:物质吸收能量从基态跃迁到激发态,激发态不稳定,物质以光的形式释放能量重新回到基态的过程。
9.可见光:波长在400~750nm范围的光。
10.单色光:具有同一波长、同一能量的光。
11.复合光:由不同波长的光组合成的光。
12.光的互补:若两种不同颜色的单色光按一定的强度比例混合得到白光,那么就称这两种单色光为互补色光,这种现象称为光的互补。
如黄-蓝;蓝绿-红13.光谱法:物质内部发生能级跃迁,记录由能级跃迁所产生的辐射能强度随波长的变化,所得的图谱称为光谱,利用光谱进行定性定量和结构分析的方法。
14.非光谱法:不涉及物质内部能级的跃迁,仅通过测量电测辐射的某些基本性质(反射、折射、干涉、衍射和偏振)变化的分析方法。
UV-Vis15.紫外-可见光分光光度法:利用待测物质具有选择吸收紫外-可见光辐射的特性,所产生的吸收光谱进行定性、定量及结构分析的方法。
16.最大吸收波长:最大吸收峰峰高处所对应的波长。
17.吸收曲线:不同波长的光通过待测物质,经待测物质吸收后,测量其对不同波长光的吸收程度(即吸光度A),以辐射波长λ为横坐标,吸光度A为纵坐标,作图得到该物质的吸收光谱或吸收曲线。
原子吸收分光光度法与紫外可见吸收光度法异同点
相同点:
1)都是依据样品对入射光的吸收进行测量的.
2)两种方法都遵循朗伯-比耳定律.
3)就设备而言,均由四大部分组成,即光源,单色器,吸收池(或原子化器),检测器.
3.1 概述
不同点:
1)吸收物质的状态不同.
紫外可见光谱:溶液中分子,离子,宽带分子光谱,可以使用连续光源.
原子吸收光谱:基态原子,窄带原子光谱,必须使用锐线光源.
2)单色器与吸收池的位置不同.
紫外可见:光源→单色器→比色皿.
原子吸收:光源→原子化器→单色器.
1. 选择性高,干扰少.共存元素对待测元素干扰少,一般不需分离共存元素.。
1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点?答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性.不同点:原子吸收光谱法紫外――可见分光光度法(1) 原子吸收分子吸收(2) 线性光源连续光源(3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件(4) 需要原子化装置(吸收池不同)无(5) 背景常有影响,光源应调制(6) 定量分析定性分析、定量分析(7) 干扰较多,检出限较低干扰较少,检出限较低2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点?答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析.不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法(1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光)发射光谱吸收光谱发射光谱(2)测量信号发射谱线强度吸光度荧光强度(3)定量公式lgR=lgA + blgc A=kc If=kc(4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源(5)入射光路和检测光路直线直线直角(6)谱线数目可用原子线和原子线(少)原子线(少)离子线(谱线多)(7)分析对象多元素同时测定单元素单元素、多元素(8)应用可用作定性分析定量分析定量分析(9)激发方式光源有原子化装置有原子化装置(10)色散系统棱镜或光栅光栅可不需要色散装置(但有滤光装置)(11)干扰受温度影响严重温度影响较小受散射影响严重(12)灵敏度高中高(13)精密度稍差适中适中按照电磁辐射的本质,光谱又可分为分子光谱和原子光谱。
分子光谱是由于分子中电子能级变化而产生的。
原子光谱可分为发射光谱、原子吸收光谱、原子荧光光谱和X- 射线以及X- 射线荧光光谱。
前三种涉及原子外层电子跃迁,后两种涉及内层电子的跃迁。
目前一般认为原子光谱仅包括前三种。
原子发射光谱分析是基于光谱的发射现象;原子吸收光谱分析是基于对发射光谱的吸收现象;原子荧光光谱分析是基于被光致激发的原子的再发射现象。
一、名词解释1. 原子吸收灵敏度:也称特征浓度,在原子吸收法中,将能产生1%吸收率即得到0.0044的吸光度的某元素的浓度称为特征浓度。
计算公式: S=0.0044×C/A (ug/mL/1%)S——1%吸收灵敏度 C——标准溶液浓度 0.0044——为1%吸收的吸光度A——3次测得的吸光度读数均值2. 原子吸收检出限:是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量。
通常以产生空白溶液信号的标准偏差2~3倍时的测量讯号的浓度表示。
只有待测元素的存在量达到这一最低浓度或更高时,才有可能将有效分析信号和噪声信号可靠地区分开。
计算公式: D=c Kδ/A mD——元素的检出限ug/mL c——试液的浓度δ——空白溶液吸光度的标准偏差 A m——试液的平均吸光度 K——置信度常数,通常取2~3 3.荧光激发光谱:将激发光的光源分光,测定不同波长的激发光照射下所发射的荧光强度的变化,以I F—λ激发作图,便可得到荧光物质的激发光谱4.紫外可见分光光度法:紫外—可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。
这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。
5.热重法:热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。
TG基本原理:许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。
热重分析通常可分为两类:动态(升温)和静态(恒温)。
检测质量的变化最常用的办法就是用热天平(图1),测量的原理有两种:变位法和零位法。
6.差热分析;差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
仪器分析考点整理一、概念部分1、色谱法:借助于在两相间分配原理而使混合物中各组分分离的技术,称为色谱分离技术或色谱法2、基线:当色谱柱后没有组分进入检测器时,在实验操作条件下,反映检测器系统噪声随时间变化的线称为基线3、分配系数:在一定温度下组分在两相之间分配达到平衡时的浓度比称为分配系数K4、分离度:相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值:5、分配过程:物质在固定相和流动相(气相)之间发生的吸附、脱附和溶解、挥发的过程叫做分配过程。
6、相对保留时间:(α或r12)指某组分2的调整保留时间与另一组分1的调整保留时间之比:7、程序升温:程序升温色谱法,是指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称。
8、梯度洗脱:载液中含有两种(或更多)不同极性的溶剂,在分离过程中按一定的程序连续改变载液中溶剂的配比,从而改变极性,通过载液极性的变化来改变被分离组分的分离因素,以提高分离效果。
9、顶空分析:顶空分析是取样品基质(液体和固体)上方的气相部分进行色谱分析。
10、共振吸收线:电子从基态跃迁至第一激发态所产生的吸收谱线。
11、化学干扰:指待测元素与其它组分之间的化学作用所引起的干扰效应,它主要影响待测元素的原子化效率。
12、谱线轮廓:原子群从基态跃迁至激发态所吸收的谱线并不是绝对单色的几何线,而是具有一定的宽度,称之为谱线轮廓。
13、基体效应:物理干扰是指试样在转移、蒸发和原子化过程中,由于试样任何物理性质的变化而引起的干扰效应。
14、锐线光源:能发射出谱线半宽度很窄的发射线的光源。
15、担体:是一种化学惰性、多孔性的固体颗粒,主要作用是提供一个大的惰性表面,以便涂上一层薄而均匀的液膜,构成固定相。
15、在气相色谱中,程序升温适于对宽沸程样品进行分析。
16、在使用气相色谱仪之前应检查仪器各部件是否处于正常状态,对气路部分来讲,首先应进行检漏。
2016级成人高等教育中医学院本科班《仪器分析》作业班级: 姓名: 学号:第一章绪论1.仪器分析的特点。
2.仪器分析方法的类型。
3.学习仪器分析的方法。
第二章光谱分析法概论一、名词解释电磁辐射电磁波谱原子吸收光谱光谱法二、简答题1.简述光学分析法的三个过程。
2.光的波粒二相性基本参数3.光谱区中紫外、可见、红外对应的波长范围?4.光谱法的仪器由哪几部分组成?它们的作用是什么?三、计算题1.计算(1) 2500cm-1波数的波长(nm)(2) Na 588-995nm相应的能量(eV)(3) 670. 7nm Li线的频率(Hz)2.计算下列各种跃迁所需的能量范围(eV)及相应的波长范围(1)原子内层电子跃迁(2)原子外层电子跃迁(3)分子的电子跃迁(4)分子振动能级跃迁(5)分子转动能级跃迁3.阐述为什么原子光谱为线光谱,分子光谱为带光谱。
如果说原子光谱谱线强度分布也是峰状的,对吗?为什么?第三章紫外-可见分光光度法1.名词解释透光率吸光系数(摩尔吸光系数、百分吸光系数)发色团和助色团吸收曲线标准曲线末端吸收试剂空白2.物质对光的吸收程度可用哪几种符号表示,各代表什么含义?3.什么是朗伯-比尔定律?其物理意义是什么?4.简述导致偏离朗伯-比尔定律的原因。
5.什么是吸收曲线?制作吸收曲线的目的是什么?6.在分光光度法中,为什么要控制溶液的透光率读数范围在20%〜65%之间?若T超出上述范围,应采取何种措施?7.简述紫外-可见分光光度计的主要部件及基本功能。
8.每100mL中含有0.701mg溶质的溶液,在1cm吸收池中测得的透光率为40.0%,试计算:(1)此溶液的吸光度。
(2)如果此溶液的浓度为0.420mg/100mL,其吸光度和百分透光率各是多少?第四章红外分光光度法1.分子吸收红外光发生能级跃迁,必须满足的条件是什么?2.何为红外非活性振动?3.下列化合物能否用红外吸收光谱区别,为什么?—CH2COOCH3—COOC2H54.由茵陈篙分离出来的精油,其分子式为C12H10,UV EtO Hλ239nm(ε537),max253nm(ε340),红外光谱见课本P81,是解析其结构。
1.试比较有哪些异同点?
答:
相同点:
二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:
A=kc,仪器结构具有相似性.
不同点:
原子吸收光谱法紫外――可见分光光度法
(1)原子吸收分子吸收
(2)线性光源连续光源
(3)吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件
(4)需要原子化装置(吸收xx不同)无
(5)背景常有影响,光源应调制
(6)定量分析定性分析、定量分析
(7)干扰较多,检出限较低干扰较少,检出限较低
2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点?
答:
相同点:
属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析.
不同点:
原子发射光谱法原子吸收光谱法原子荧光光谱法
(1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光)发射光谱吸收光谱发射光谱
(2)测量信号发射谱线强度吸光度荧光强度
(3)定量公式lgR=lgA + blgc A=kc If=kc
(4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源
(5)入射光路和检测光路直线直角
(6)谱线数目可用原子线和原子线(少)原子线(少)
离子线(谱线多)
(7)分析对象多元素同时测定单元素、多元素
(8)应用可用作定性分析定量分析
(9)激发方式光源有原子化装置
(10)色散系统棱镜或光栅可不需要色散装置
(但有滤光装置)
(11)干扰受温度影响严重温度影响较小受散射影响严重
(12)灵敏度高中高
(13)精密度稍差适中
按照电磁辐射的本质,光谱又可分为分子光谱和原子光谱。
分子光谱是由于分子中电子能级变化而产生的。
原子光谱可分为发射光谱、原子吸收光谱、原子荧光光谱和X-射线以及X-射线荧光光谱。
前三种涉及原子外层电子跃迁,后两种涉及内层电子的跃迁。
目前一般认为原子光谱仅包括前三种。
原子发射光谱分析是基于光谱的发射现象;原子吸收光谱分析是基于对发射光谱的吸收现象;原子荧光光谱分析是基于被光致激发的原子的再发射现象。