鲁棒控制理论与设计 第二章 泛函空间与逼近理论
- 格式:pdf
- 大小:327.76 KB
- 文档页数:14
鲁棒控制理论
鲁棒控制理论是一种系统工程学的控制理论,由美国科学家陆奇和国际系统工程的其他学者创造,旨在解决复杂的系统控制问题。
鲁棒控制理论提出了一种处理不确定性、复杂性和时间变化的新方法,其目标是建立一种能够针对系统模型中的离散不确定性和模型更新进行控制的机制,以实现最优的系统控制运行状态。
鲁棒控制的优点是它能够可靠的实现最优控制,即使系统模型受到不确定性和模型更新的影响,也能够有效地解决复杂系统控制问题。
鲁棒控制主要由以下三部分组成:模型,估计和控制。
首先,在模型构建方面,鲁棒控制理论针对复杂系统提出了新的离散不确定模型,解决了传统控制理论中模型不精确的问题,使模型更加准确、可靠,从而有效地控制复杂系统;其次,在参数估计方面,鲁棒控制提出了基于Kalman滤波公式的鲁棒参数估计方法,能够有效地处理系统中的测量噪声和估计误差,解决模型和估计不确定性的问题;最后,在控制方面,鲁棒控制结合了最优控制理论和去抖动技术,以实现良好的系统控制,有效解决模型不精确和时间变化带来的控制问题,提高系统控制性能和精度。
由于鲁棒控制理论对复杂系统控制问题的普遍性和可靠性,它已经得到了广泛的应用。
目前,鲁棒控制理论在自动化控制、机器人、智能车辆、飞行器控制等多个学科领域广泛应用,在系统设计、仿真验和控制实现等方面取得了重大的成果。
总之,鲁棒控制理论是一种实用性强、能够普遍应用于复杂系统
控制的系统工程技术,它不仅可以可靠地实现最优控制,而且能够有效解决复杂系统控制问题。
因此,鲁棒控制理论为复杂系统的控制提供了一种有效的解决方案,促进了控制学的发展,并为未来的自动控制应用奠定了基础。
最优控制问题的鲁棒H∞控制设计最优控制理论在工程系统控制中具有重要的应用价值。
然而,传统的最优控制方法在系统模型存在不确定性或外部干扰的情况下可能无法有效应对。
为了克服这一问题,鲁棒控制方法被引入到最优控制中,并且在实际应用中取得了显著的成果。
本文将探讨最优控制问题的鲁棒H∞控制设计方法及其应用领域。
一、鲁棒控制概述鲁棒控制是一种针对不确定性或外部干扰具有克服能力的控制方法。
其目标是在不确定性环境中实现系统稳定性和性能要求。
最常见的鲁棒控制方法之一是H∞控制,该方法通过优化问题来设计控制器,以抑制系统中不确定性的影响。
二、最优控制问题最优控制问题旨在通过选择最佳控制策略来实现系统的最优性能。
在没有不确定性时,可以使用动态规划、变分法等方法求解最优控制问题。
然而,在实际应用中,系统往往存在参数不确定性或外部干扰,导致最优控制问题变得更加复杂。
因此,需要引入鲁棒控制方法来解决这些问题。
三、鲁棒H∞控制设计方法鲁棒H∞控制方法是一种常用的鲁棒控制方法,其基本思想是在保证系统稳定性的前提下,优化系统对外部干扰的抑制能力。
鲁棒H∞控制设计问题可以被描述为一个优化问题,目标是最大化系统的H∞性能指标,并且确保控制器对系统模型不确定性具有鲁棒性。
为了实现鲁棒H∞控制设计,可以采用两种常用的方法:线性矩阵不等式(LMI)方法和基于频域分析的方法。
LMI方法通过求解一组线性矩阵不等式来得到控制器参数,从而实现系统的鲁棒H∞控制设计。
基于频域分析的方法则通过频域特性分析来设计控制器,以实现系统对不确定性的鲁棒性。
四、鲁棒H∞控制设计的应用领域鲁棒H∞控制设计方法在工程领域有广泛的应用。
它可以应用于飞行器姿态控制、机器人控制、智能电网控制等多个领域。
以飞行器姿态控制为例,鲁棒H∞控制设计可以有效提高飞行器对外部干扰的鲁棒性,并且保证姿态跟踪性能。
在机器人控制领域,鲁棒H∞控制设计可以提高机器人对环境不确定性的抑制能力,以实现精确的轨迹跟踪。
第一章概述§1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control)1.1.1 名义系统和实际系统(nominal system)控制系统设计过程中,常常要先获得被控制对象的数学模型。
在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。
这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。
经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。
1.1.2不确定性和摄动(Uncertainty and Perturbation)如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。
如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。
模型不确定性包括:参数、结构及干扰不确定性等。
1.1.3 不确定系统的控制经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。
以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。
事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。
鲁棒控制及其发展概述摘要本文首先介绍了鲁棒控制理论的发展过程;接下来主要介绍了研究鲁棒多变量控制过程中两种常用的分析方法:方法以及分析方法;最后给出了鲁棒控制理论的应用及其控制方法,不仅仅用在工业控制中,它被广泛运用在经济控制、社会管理等很多领域。
随着人们对于控制效果要求的不断提高,系统的鲁棒性会越来越多地被人们所重视,从而使这一理论得到更快的发展。
并且指出了目前鲁棒控制尚未解决的问题以及研究的热点问题。
关键词:鲁棒控制;鲁棒多变量控制;鲁棒控制;分析方法一、引言鲁棒控制(Robust Control)方面的研究始于20世纪50年代。
在过去的20年中,鲁棒控制一直是国际自控界的研究热点。
以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。
控制系统的鲁棒性研究是现代控制理论研究中一个非常活跃的领域,鲁棒控制问题最早出现在上个世纪人们对于微分方程的研究中。
最早给出鲁棒控制问题的解的是Black在1927年给出的关于真空开关放大器的设计,他首次提出采用反馈设计和回路高增益的方法来处理振控管特信各大范围波动。
之后,Nyquist频域稳定性准则和Black回路高增益概念共同构成了Bode的经典之著[1]中关于鲁棒控制设计的基础。
20世纪60年代之前这段时间可称为经典灵敏度设计时期。
此间问题多集中于SISO系统,根据稳定性、灵敏度的降低和噪声等性能准则来进行回路设计。
20世纪六七十年代中鲁棒控制只是将SISO系统的灵敏度分析结果向MIMO进行了初步的推广[2],灵敏度设计问题包括跟踪灵敏度、性能灵敏度和特征值/特征向量灵敏度等的设计。
20世纪80年代,鲁棒设计进入了新的发展时期,此间研究的目的是寻求适应大范围不确定性分析的理论和方法。
二、正文1. 鲁棒控制理论方法在工程中应用最多,它以输出灵敏度函数的范数作为性能指标,旨在可能发生“最坏扰动”的情况下,使系统的误差在无穷范数意义下达到极小,从而将干扰问题转化为求解使闭环系统稳定并使相应的范数指标极小化的输出反馈控制问题。
鲁棒控制理论基础章1. 引言鲁棒控制是指当系统受到外界干扰时,仍能保持一定稳定性的控制方法。
鲁棒控制方法的出现,是为了解决传统控制方法在系统故障和外界干扰下容易失效的问题。
鲁棒控制理论也因此应运而生。
本章将介绍鲁棒控制理论的基础知识,包括鲁棒性概念、鲁棒控制设计指标及鲁棒控制设计方法。
2. 鲁棒性概念2.1 鲁棒性定义鲁棒性是指控制系统能够在一定程度上抵抗外界干扰、模型不确定性和参数扰动等不利因素的性能。
在控制系统中,外部干扰是不可避免的,特别是在现代控制领域中,系统模型和控制器参数的不确定性也是普遍存在的。
因此,了解和掌握鲁棒性理论对于控制系统稳定性的提高和鲁棒性能的设计至关重要。
2.2 鲁棒性评价指标鲁棒性评价指标通常采用灵敏度函数和鲁棒稳定裕度等指标来评估系统的鲁棒性能。
其中,灵敏度函数是指系统输出间的变化与系统输入间的变化之间的关系,鲁棒稳定裕度则是指系统在一定范围内满足稳定性要求的能力。
2.3 鲁棒性的分类鲁棒性可分为参数鲁棒性和结构鲁棒性两种。
参数鲁棒性是指系统在参数变化时对系统鲁棒性的影响,即当有一个扰动作用到系统参数上时,系统是否能够维持一定的稳定性。
结构鲁棒性是指系统在模型不精确或者模型存在未知扰动时,仍能够保证鲁棒稳定性。
3. 鲁棒控制设计指标3.1 灵敏度函数在鲁棒控制设计中,灵敏度函数是一个重要的工具,其可以用来评估系统的稳定性。
针对灵敏度函数,可以设计出控制器,通过控制器来提高系统的稳定性。
3.2 鲁棒稳定裕度鲁棒稳定裕度是衡量鲁棒控制系统对于系统变化的一种指标。
通过定义不同的鲁棒稳定裕度,可以使得鲁棒控制系统更加健壮。
3.3 状态观测器状态观测器可以更加准确地预估系统的状态,提供更加精确的控制信号。
在鲁棒控制系统中,设计一个稳健的状态观测器可以提高系统的稳定性。
4. 鲁棒控制设计方法4.1 H∞控制H∞控制是一种经典的鲁棒控制方法,其通过最小化灵敏度函数,使得系统具有一定稳定性。