鲁棒控制理论与设计 第二章 泛函空间与逼近理论
- 格式:pdf
- 大小:327.76 KB
- 文档页数:14
鲁棒控制理论
鲁棒控制理论是一种系统工程学的控制理论,由美国科学家陆奇和国际系统工程的其他学者创造,旨在解决复杂的系统控制问题。
鲁棒控制理论提出了一种处理不确定性、复杂性和时间变化的新方法,其目标是建立一种能够针对系统模型中的离散不确定性和模型更新进行控制的机制,以实现最优的系统控制运行状态。
鲁棒控制的优点是它能够可靠的实现最优控制,即使系统模型受到不确定性和模型更新的影响,也能够有效地解决复杂系统控制问题。
鲁棒控制主要由以下三部分组成:模型,估计和控制。
首先,在模型构建方面,鲁棒控制理论针对复杂系统提出了新的离散不确定模型,解决了传统控制理论中模型不精确的问题,使模型更加准确、可靠,从而有效地控制复杂系统;其次,在参数估计方面,鲁棒控制提出了基于Kalman滤波公式的鲁棒参数估计方法,能够有效地处理系统中的测量噪声和估计误差,解决模型和估计不确定性的问题;最后,在控制方面,鲁棒控制结合了最优控制理论和去抖动技术,以实现良好的系统控制,有效解决模型不精确和时间变化带来的控制问题,提高系统控制性能和精度。
由于鲁棒控制理论对复杂系统控制问题的普遍性和可靠性,它已经得到了广泛的应用。
目前,鲁棒控制理论在自动化控制、机器人、智能车辆、飞行器控制等多个学科领域广泛应用,在系统设计、仿真验和控制实现等方面取得了重大的成果。
总之,鲁棒控制理论是一种实用性强、能够普遍应用于复杂系统
控制的系统工程技术,它不仅可以可靠地实现最优控制,而且能够有效解决复杂系统控制问题。
因此,鲁棒控制理论为复杂系统的控制提供了一种有效的解决方案,促进了控制学的发展,并为未来的自动控制应用奠定了基础。
最优控制问题的鲁棒H∞控制设计最优控制理论在工程系统控制中具有重要的应用价值。
然而,传统的最优控制方法在系统模型存在不确定性或外部干扰的情况下可能无法有效应对。
为了克服这一问题,鲁棒控制方法被引入到最优控制中,并且在实际应用中取得了显著的成果。
本文将探讨最优控制问题的鲁棒H∞控制设计方法及其应用领域。
一、鲁棒控制概述鲁棒控制是一种针对不确定性或外部干扰具有克服能力的控制方法。
其目标是在不确定性环境中实现系统稳定性和性能要求。
最常见的鲁棒控制方法之一是H∞控制,该方法通过优化问题来设计控制器,以抑制系统中不确定性的影响。
二、最优控制问题最优控制问题旨在通过选择最佳控制策略来实现系统的最优性能。
在没有不确定性时,可以使用动态规划、变分法等方法求解最优控制问题。
然而,在实际应用中,系统往往存在参数不确定性或外部干扰,导致最优控制问题变得更加复杂。
因此,需要引入鲁棒控制方法来解决这些问题。
三、鲁棒H∞控制设计方法鲁棒H∞控制方法是一种常用的鲁棒控制方法,其基本思想是在保证系统稳定性的前提下,优化系统对外部干扰的抑制能力。
鲁棒H∞控制设计问题可以被描述为一个优化问题,目标是最大化系统的H∞性能指标,并且确保控制器对系统模型不确定性具有鲁棒性。
为了实现鲁棒H∞控制设计,可以采用两种常用的方法:线性矩阵不等式(LMI)方法和基于频域分析的方法。
LMI方法通过求解一组线性矩阵不等式来得到控制器参数,从而实现系统的鲁棒H∞控制设计。
基于频域分析的方法则通过频域特性分析来设计控制器,以实现系统对不确定性的鲁棒性。
四、鲁棒H∞控制设计的应用领域鲁棒H∞控制设计方法在工程领域有广泛的应用。
它可以应用于飞行器姿态控制、机器人控制、智能电网控制等多个领域。
以飞行器姿态控制为例,鲁棒H∞控制设计可以有效提高飞行器对外部干扰的鲁棒性,并且保证姿态跟踪性能。
在机器人控制领域,鲁棒H∞控制设计可以提高机器人对环境不确定性的抑制能力,以实现精确的轨迹跟踪。
第一章概述§1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control)1.1.1 名义系统和实际系统(nominal system)控制系统设计过程中,常常要先获得被控制对象的数学模型。
在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。
这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。
经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。
1.1.2不确定性和摄动(Uncertainty and Perturbation)如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。
如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。
模型不确定性包括:参数、结构及干扰不确定性等。
1.1.3 不确定系统的控制经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。
以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。
事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。
鲁棒控制及其发展概述摘要本文首先介绍了鲁棒控制理论的发展过程;接下来主要介绍了研究鲁棒多变量控制过程中两种常用的分析方法:方法以及分析方法;最后给出了鲁棒控制理论的应用及其控制方法,不仅仅用在工业控制中,它被广泛运用在经济控制、社会管理等很多领域。
随着人们对于控制效果要求的不断提高,系统的鲁棒性会越来越多地被人们所重视,从而使这一理论得到更快的发展。
并且指出了目前鲁棒控制尚未解决的问题以及研究的热点问题。
关键词:鲁棒控制;鲁棒多变量控制;鲁棒控制;分析方法一、引言鲁棒控制(Robust Control)方面的研究始于20世纪50年代。
在过去的20年中,鲁棒控制一直是国际自控界的研究热点。
以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。
控制系统的鲁棒性研究是现代控制理论研究中一个非常活跃的领域,鲁棒控制问题最早出现在上个世纪人们对于微分方程的研究中。
最早给出鲁棒控制问题的解的是Black在1927年给出的关于真空开关放大器的设计,他首次提出采用反馈设计和回路高增益的方法来处理振控管特信各大范围波动。
之后,Nyquist频域稳定性准则和Black回路高增益概念共同构成了Bode的经典之著[1]中关于鲁棒控制设计的基础。
20世纪60年代之前这段时间可称为经典灵敏度设计时期。
此间问题多集中于SISO系统,根据稳定性、灵敏度的降低和噪声等性能准则来进行回路设计。
20世纪六七十年代中鲁棒控制只是将SISO系统的灵敏度分析结果向MIMO进行了初步的推广[2],灵敏度设计问题包括跟踪灵敏度、性能灵敏度和特征值/特征向量灵敏度等的设计。
20世纪80年代,鲁棒设计进入了新的发展时期,此间研究的目的是寻求适应大范围不确定性分析的理论和方法。
二、正文1. 鲁棒控制理论方法在工程中应用最多,它以输出灵敏度函数的范数作为性能指标,旨在可能发生“最坏扰动”的情况下,使系统的误差在无穷范数意义下达到极小,从而将干扰问题转化为求解使闭环系统稳定并使相应的范数指标极小化的输出反馈控制问题。
鲁棒控制理论基础章1. 引言鲁棒控制是指当系统受到外界干扰时,仍能保持一定稳定性的控制方法。
鲁棒控制方法的出现,是为了解决传统控制方法在系统故障和外界干扰下容易失效的问题。
鲁棒控制理论也因此应运而生。
本章将介绍鲁棒控制理论的基础知识,包括鲁棒性概念、鲁棒控制设计指标及鲁棒控制设计方法。
2. 鲁棒性概念2.1 鲁棒性定义鲁棒性是指控制系统能够在一定程度上抵抗外界干扰、模型不确定性和参数扰动等不利因素的性能。
在控制系统中,外部干扰是不可避免的,特别是在现代控制领域中,系统模型和控制器参数的不确定性也是普遍存在的。
因此,了解和掌握鲁棒性理论对于控制系统稳定性的提高和鲁棒性能的设计至关重要。
2.2 鲁棒性评价指标鲁棒性评价指标通常采用灵敏度函数和鲁棒稳定裕度等指标来评估系统的鲁棒性能。
其中,灵敏度函数是指系统输出间的变化与系统输入间的变化之间的关系,鲁棒稳定裕度则是指系统在一定范围内满足稳定性要求的能力。
2.3 鲁棒性的分类鲁棒性可分为参数鲁棒性和结构鲁棒性两种。
参数鲁棒性是指系统在参数变化时对系统鲁棒性的影响,即当有一个扰动作用到系统参数上时,系统是否能够维持一定的稳定性。
结构鲁棒性是指系统在模型不精确或者模型存在未知扰动时,仍能够保证鲁棒稳定性。
3. 鲁棒控制设计指标3.1 灵敏度函数在鲁棒控制设计中,灵敏度函数是一个重要的工具,其可以用来评估系统的稳定性。
针对灵敏度函数,可以设计出控制器,通过控制器来提高系统的稳定性。
3.2 鲁棒稳定裕度鲁棒稳定裕度是衡量鲁棒控制系统对于系统变化的一种指标。
通过定义不同的鲁棒稳定裕度,可以使得鲁棒控制系统更加健壮。
3.3 状态观测器状态观测器可以更加准确地预估系统的状态,提供更加精确的控制信号。
在鲁棒控制系统中,设计一个稳健的状态观测器可以提高系统的稳定性。
4. 鲁棒控制设计方法4.1 H∞控制H∞控制是一种经典的鲁棒控制方法,其通过最小化灵敏度函数,使得系统具有一定稳定性。
◎鲁棒控制理论控制系统的鲁棒性研究是现代控制理论研究中一个非常活跃的领域。
鲁棒控制问题最早出现在上个世纪人们对于微分方程的研究中,Black首先在他的1927年的一项专利上应用了鲁棒控制。
什么叫做鲁棒性?实际上这个名字是一个音译,其英文拼写为Robust,也就是健壮和强壮的意思。
控制专家用这个名字来表示当一个控制系统中的参数发生摄动时系统能否保持正常工作的一种特性或属性。
20世纪六七十年代,状态空间的结构理论的形成是现代控制理论的一个重要突破。
状态空间的结构理论包括能控性和能观性、反馈镇定和输入输出模型的状态空间实现理论,它连同最优控制理论和卡尔曼滤波理论一起,使现代控制理论形成了严谨完整的理论体系,并且在宇航和机器人控制等应用领域取得了惊人的成就。
但是这些理论要求系统的模型必须是已知的,而大多实际的工程系统都运行在变化的环境中,要获得精确的数学模型是不可能的,因此,很多理论在实际的应用中并没有得到很好的效果。
到了1972年,鲁棒控制这个术语在文献中首先被提出,但是对于它的精确定义至今还没有一致的说法。
其主要分歧就在于对于摄动的定义上面,摄动分很多种,是否每种摄动都要包括在鲁棒性研究中呢?尽管存在分歧,但是鲁棒性的研究没有受到阻碍,其发展的势头有增无减。
鲁棒控制理论发展到今天,已经形成了很多引人注目的理论其中控制理论是目前解决鲁棒性问题最为成功且较完善的理论体系。
Zames在1981年首次提出了这一著名理论,他考虑了对于一个单输入单输出系统的控制系统,设计一个控制器,使系统对于扰动的反映最小在他提出这一理论之后的20年里,许多学者发展了这一理论,使其有了更加广泛的应用当前这一理论的研究热点是在非线形系统中控制问题另外还有一些关于鲁棒控制的理论如结构异值理论和区间理论等鲁棒控制理论的应用不仅仅用在工业控制中,它被广泛运用在经济控制社会管理等很多领域随着人们对于控制效果要求的不断提高,系统的鲁棒性会越来越多地被人们所重视,从而使这一理论得到更快的发展----摘自于中国公众科技网。
最优控制问题的鲁棒H∞控制设计随着科技的发展,控制理论在工程领域发挥着越来越关键的作用。
最优控制是控制理论中的一个重要分支,它的目标是在给定的约束条件下,使系统的性能达到最佳。
然而,实际系统常常受到各种不确定因素的干扰,这就需要应用鲁棒控制来解决这些问题。
本文将探讨最优控制问题的鲁棒H∞控制设计。
1. 引言最优控制问题是控制理论中的一个经典问题,它的目标是在给定的约束条件下,通过合适的控制策略使系统的性能达到最佳。
最优控制的方法有很多种,比如动态规划、最优化理论等。
而鲁棒控制是一种可以应对系统参数不确定性或者外部干扰的控制方法。
H∞控制是鲁棒控制的一种重要方法,可以有效地抑制系统的不确定性,并在一定程度上保证系统的稳定性和性能。
2. 最优控制与鲁棒控制的结合最优控制问题的解决需要考虑系统的性能以及各种约束条件,而鲁棒控制则可以应对系统参数变化或者外部扰动对系统性能的影响。
将最优控制和鲁棒控制相结合,可以得到更加鲁棒的控制策略。
在最优控制问题中引入鲁棒性的考虑,可以通过引入H∞范数来描述系统的性能和不确定性。
H∞范数可以有效地衡量系统的响应对不确定因素的敏感程度,通过优化H∞范数,可以得到更加鲁棒的控制策略。
3. 鲁棒H∞控制设计的方法鲁棒H∞控制设计的关键是确定系统的H∞范数和设计合适的控制器来优化H∞范数。
通常可以采用以下步骤进行鲁棒H∞控制设计:(1) 确定系统的数学模型,并分析系统的不确定性和外部干扰。
(2) 设计系统的H∞性能指标,可以根据系统的需求和约束条件来确定。
(3) 根据系统的H∞指标和约束条件,设计合适的控制器结构。
可以采用线性控制器,如PID控制器,或者非线性控制器,如模糊控制器等。
(4) 利用数学工具和优化算法,优化系统的H∞范数,得到最优的控制器参数。
(5) 实施最优控制器,并进行系统的仿真和实验验证。
4. 实例分析为了更好地理解鲁棒H∞控制设计的方法和效果,我们选取一个简单的控制系统进行实例分析。
鲁棒控制理论与方法鲁棒控制是现代控制理论中的一个重要分支,它致力于设计出对系统参数变化、外部扰动和建模误差具有鲁棒性的控制器,以保证系统在不确定性环境下的稳定性和性能。
本文将介绍鲁棒控制的基本理论和常用方法,以及其在工业控制、机器人控制等领域中的应用。
一、鲁棒控制基础理论鲁棒性是指控制系统对不确定性的一种抵抗能力,它可以通过针对系统模型的不确定性建立数学模型,以保证系统稳定性和性能。
鲁棒控制的基础理论包括:1. H∞ 控制理论:H∞ 控制是一种用于处理线性时不变系统鲁棒控制问题的数学工具。
该方法通过定义一个性能指标,以最小化系统输出的最坏情况下的波动来设计控制器。
2. μ合成控制理论:μ合成是一种基于描述函数的鲁棒控制方法,它将系统不确定性建模为复杂函数,并通过求解非线性最优化问题来设计控制器。
3. 鲁棒控制的小参数理论:该理论主要研究在参数扰动很小时,系统性能的鲁棒稳定性和鲁棒性问题。
二、常用的鲁棒控制方法鲁棒控制方法多种多样,下面列举几种常用的方法:1. H∞ 控制方法:H∞ 控制方法通过在系统输出和控制器输入之间引入鲁棒性加权函数来设计鲁棒控制器。
该方法适用于线性时不变系统和线性时变系统。
2. μ合成控制方法:μ合成控制方法通过优化复杂描述函数来设计鲁棒控制器。
该方法适用于线性和非线性系统,并且具有较强的泛化能力。
3. 自适应控制方法:自适应控制方法将未知参数作为反馈调整的对象,通过在线估计参数的方式设计鲁棒控制器。
该方法适用于需要适应不确定性参数的系统。
4. 鲁棒滑模控制方法:鲁棒滑模控制方法通过引入滑模面的概念,以实现对系统模型误差和扰动的高度鲁棒性。
该方法适用于非线性和时变系统。
三、鲁棒控制在工业与机器人控制中的应用鲁棒控制在工业控制和机器人控制领域具有广泛的应用,以下列举几个实际应用案例:1. 工业过程控制:鲁棒控制可以用于工业过程中对温度、压力、流量等参数的控制。
通过对系统模型的不确定性建模和鲁棒控制器的设计,可以保证工业过程的稳定性和性能。
控制理论系统鲁棒控制器设计方法鲁棒控制器设计方法是控制理论系统中的重要研究方向之一。
通过设计有效的鲁棒控制器,可以在不确定性和外部干扰的情况下保持系统的稳定性和性能。
本文将介绍一种常用的鲁棒控制器设计方法——H∞控制器设计方法,以及其在实际应用中的一些问题和挑战。
H∞控制器设计方法是鲁棒控制器设计中广泛应用的一种方法。
该方法通过鲁棒性性能指标H∞范数来描述系统的稳定性和性能,并通过优化过程来设计出满足要求的控制器。
在H∞控制器设计中,系统的不确定性和外部干扰被建模为带有加性扰动的系统。
通过引入权重函数,可以对系统的不同频率范围进行加权,从而实现对不确定性和干扰的控制。
在H∞控制器设计方法中,首先需要对系统进行数学建模。
这包括确定系统的状态方程、输入和输出方程以及系统的不确定性和外部干扰。
然后,根据系统的性能要求和鲁棒性要求,选择适当的H∞范数来描述系统的稳定性和性能指标。
一般来说,H∞范数越小,表示系统对不确定性和干扰更鲁棒。
接下来,通过优化过程来设计H∞控制器。
优化过程的目标是找到满足要求的控制器参数,使得系统的H∞范数最小。
这个过程通常通过数值优化方法来实现,例如线性矩阵不等式(LMI)方法。
通过计算和迭代,可以得到满足系统性能要求的控制器参数。
然而,H∞控制器设计方法在实际应用中面临一些挑战和问题。
首先,系统的建模可能存在不确定性和误差,这会影响控制器设计的准确性和性能。
其次,优化过程可能会面临计算复杂度的问题,尤其是在系统的维度较大的情况下。
此外,控制器的实时实施和稳定性问题也需要考虑。
针对这些问题和挑战,研究人员提出了一些改进和解决方法。
例如,可以使用系统辨识方法来改善系统的建模精度,从而提高控制器设计的准确性。
同时,优化算法的改进和并行计算技术的使用也可以显著提高控制器设计的效率。
此外,针对具体应用领域的特点,可以设计和应用一些特殊的鲁棒控制策略,例如基于自适应控制和模糊控制的方法。