鲁棒控制理论第二章
- 格式:ppt
- 大小:459.50 KB
- 文档页数:31
目前对鲁棒控制的研究多使用状态反馈,但在许多实际问题中,系统的状态往往是不能直接测量的,此时难以应用状态反馈控制律实现系统控制。
有时即使系统的状态可以直接测量,但考虑到实施控制的成本和系统的可靠性等因素,同样需要运用输出反馈来实现系统控制。
因此,研究控制系统的输出反馈镇定及其控制器设计具有重要的理论意义和实际应用价值。
本文基于Lyapunov稳定性理论和线性矩阵不等式(LMI )方法,对不确定时滞系统研究了输出反馈控制器的设计方法,针对不确定的时滞系统设计了输出反馈控制器,保证闭环系统渐近稳定,运用MATLAB中的LMI工具箱求解控制器参数,并用SIMULINK对实际系统进行了仿真实验,通过仿真实例证明了控制器设计方法能够达到较好的控制效果,而且具有较强的鲁棒性和稳定性,证明了设计方法的有效性。
关键词:鲁棒控制;输出反馈;线性矩阵不等式;不确定性;时滞AbstractAt prese nt,people ofte n use state feedback con trol law to study robust control,but in many practical problems,the system state often cannot be measured directly,it is difficult to use state feedback con trol law to con trol the system.Sometimes,eve n if the state can be measured directly,but,c on sideri ng the cost of impleme nti ng the con trol and reliability of the system and other factors,the state feedback control cannot achieve acceptable effect .If the output feedback law can achieve the performa nee requireme nts of the closed-loop system,then it can be selected withpriority.Therefore,the output feedback stabilization of uncertain systems and controller design has important theoretical and practical value.This paper is based on Lyap unov stability theory and Lin ear MatrixInequality(LMI)methods.For uncertain time-delay systems with norm bounded un certa in parameters,the paper studied the output feedback con troller con troller desig n methods.The controller parameters were worked out by means of LMI toolbox in MATLAB.Simulatio n of the actual system was con ducted on the basis of the SIMULINK toolbox in Matlab,the results of which proved that the new controller desig n method could achieve better con trol effect and was more robust and stable.Key words:Robust con trol;Output feedback;L in esr Matrix In equality(LMI); Un certai nty;Time-delay目录第1章概述 (1)1.1输出反馈概述 (1)1.2鲁棒控制理论概述 (1)第2章基本理论 (4)2.1系统的非结构不确定性 (4)2.2系统的结构不确定性 (5)2.3线性矩阵不等式 (5)2.4 L YAPUNO稳定性理论 (8)第3章输出反馈控制器设计 (13)3.1不确定时滞系统的静态输出反馈控制器设计 (13)3.2具有控制时滞的不确定时滞系统静态输出反馈控制器设计 (16)3.3不确定时滞系统的动态输出反馈控制器设计 (21)结论 (26)参考文献 (27)致谢 (28)第1章概述1.1输出反馈概述在许多实际问题中,系统的状态往往是不能直接测量的,故难以应用状态反馈控制律来对系统进行控制。
Classified Index: TP273U.D.C: 681.513.3Thesis for the Master Degree in EngineeringRESEARCHES ON ROBUST CONTROL AND APPLICATION OF NON-MINIMUM PHASESYSTEMSWenjun Candidate: Fan Supervisor: Associate Prof. Ma JieAcademic Degree Applied for: Master of EngineeringSpeciality: Control Science and Engineering Affiliation: Control and Simulation CenterDate of Defence: June, 2009Degree Conferring Institution: Harbin Institute of Technology摘 要本文以磁悬浮球和一级倒立摆两个典型的非最小相位系统为研究对象,对只有一个不稳定极点的非最小相位系统采用混合灵敏度设计,对同时具有不稳定零、极点的非最小相位系统采用复合控制,并分别在磁悬浮球系统和一级倒立摆系统中实现。
首先,分别建立磁悬浮球系统和一级倒立摆系统的数学模型,并将非线性模型线性化,分别分析系统的能控性以及系统中包含的不确定性因素。
其次,研究了灵敏度设计中的鲁棒性、加权函数选择原则、优化指标等问题,针对只有不稳定极点的磁悬浮球系统,先运用PV控制将其稳定,测试系统对象特性,得到名义对象和不确定性界后再运用混合灵敏度设计,通过转化成H∞标准问题求解控制器。
然后,针对同时具有不稳定零、极点的非最小相位系统,研究输出反馈鲁棒性设计的极限,并采用复合控制方案,以倒立摆系统为例,先用经典控制稳定摆角回路,再对位置回路进行H∞输出反馈控制设计。
鲁棒控制发展与理论鲁棒控制的发展与理论摘要:首先介绍了鲁棒控制的发展过程,之后主要介绍了H?控制理论、?理论的发展、研究内容和实际应用,和鲁棒控制尚待解决的问题及研究热点。
关键词:鲁棒控制理论、H?控制理论、?理论、分析、综合 1 概述传统控制器都是基于系统的数学模型建立的,因此,控制系统的性能好坏很大程度上取决于模型的精确性,这正是传统控制的本质。
现代控制理论可以解决多输入、多输出( MIMO )控制系统地分析和控制设计问题,但其分析与综合方法也都是在取得控制对象数学模型基础上进行的,而数学模型的精确程度对控制系统性能的影响很大,往往由于某种原因,对象参数发生变化使数学模型不能准确地反映对象特性,从而无法达到期望的控制指标,为解决这个问题,控制系统的鲁棒性研究成为现代控制理论研究中一个非常活跃的领域。
简单地说,鲁棒控制( Robust Control )就是对于给定的存在不确定性的系统,分析和设计能保持系统正常工作的控制器。
鲁棒振定是保证不确定性系统的稳定性,而鲁棒性能设计是进一步确定保有某种指标下的一定的性能。
根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。
以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。
鲁棒控制自其产生便得到了广泛的注目和蓬勃发展。
其实人们在系统设计时,常常会考虑到鲁棒性的问题。
当前这一理论的研究热点是在非线形系统中控制问题,另外还有一些关于鲁棒控制的理论如结构异值理论和区间理论等。
2 鲁棒控制理论的发展最早给出鲁棒控制问题解的是Black在1927年给出的关于真空关放大器的设计,他首次提出采用反馈设计和回路高增益的方法来处理真空管特性的大范围波动。
之后,Nquist( 奈奎斯特 )频域稳定性准则和Black回路高增益概念共同构成了Bode( 伯德 )的经典之著中关于鲁棒控制设计的基础。
20世纪60年代之前这段时期可称为经典灵敏度设计时期。
此间问题多集中于SISO(单变量)系统,根据稳定性、灵敏度的降低和噪声等性能准则来进行回路设计。
4.程序及说明应用MATLAB的Robust Control Toolbox可编写设计程序(文件名sushinf.m),以下是程序中主要内容的说明:(1)构成系统的名义模型,并计算和绘制系统的频率特性曲线(图12.6 ),图中的两条曲线分别为车体速度响应和加速度响应。
由图可见,系统的加速度响应曲线正好在5hz处出现峰值。
Ac=susmoda;Bc=susmodb;Bwc=susmodbw;C=susmodc;C1=[0 Ac(2,2) Ac(2,3) Ac(2,4) 0];C2=C;Ag=Ac;Bg=[ Bwc Bc ];Cg=[ C1; C2 ];Dg=zeros(2,2);% Frequency Characteristicsw=logspace(-3,1,200);% No Control[magn,phasen]=bode(Ag,Bg,Cg,Dg,1,w);sysgb=20*log10(magn);figuresemilogx(w,sysgb)title(' SYSTEM FREQ. CHARACTERISTICS ')xlabel('Frequency --*100Hz')ylabel('Gain -- db')gridpause图12.6 无控制时系统的频率响应特性(2)计算频率加权函数并绘制频率特性图。
% Design specification3 --W1 & W3% Sensitivity Spec. -- 1/W1(s)dnw1i = [0 0.059 0.0036]; nuw1i = [1 0.006 0.0036]; svw1i = bode(nuw1i,dnw1i,w); svw1i = 20*log10(svw1i);% Robustness Spec. -- 1/W3(s)dnw3i = 0.1*[0.124 0.013 0.001]; nuw3i = [0.0025 0.5 1]; svw3i = bode(nuw3i,dnw3i,w); svw3i = 20*log10(svw3i);figuresemilogx(w,svw1i,'r',w,svw3i,'g')gridtitle('Design Specifications')xlabel('Frequency -- *100Hz'),ylabel('1/W1 & 1/W3 -- db') pause图12.7 频率加权函数1/W和1/3W1(3)利用Robust control toolbox提供的augtf()命令建立具有混合灵敏度加权矩阵函数的扩展系统模型(见式(12.3-13)-(12.3-16)).% Form an augmented plant P(s) with W1 and W3Gam = input('Input cost coefficient "Gam" =');% Gam=0.07 is avilablew1 = [Gam*dnw1i; nuw1i; Gam*dnw1i; nuw1i];w2 = [0 1; 0 1e4; 0 1; 0 1e4];w3 = [dnw3i; nuw3i; dnw3i; nuw3i];svw1i = bode(nuw1i,Gam*dnw1i,w); svw1i = 20*log10(svw1i); [A,B1,B2,C1,C2,D11,D12,D21,D22]=augtf(ag,bg,cg,dg,w1,w2,w3);(4)利用hinf ( )命令,以“2-Riccati 方程”求解系统的∞H 控制问题,得到一个∞H 控制器⎥⎦⎤⎢⎣⎡=cp cpcp cp D C B A s K )( % H_inf Optimization (the Small_Gain problem )[acp,bcp,ccp,dcp,acl,bcl,ccl,dcl,ak,bk1,bk2,ck1,ck2,dk 11,dk12,dk21,dk22]=hinf(A,B1,B2,C1,C2,D11,D12,D21,D22) pause(5) 检查是否满足设计要求(12.3-17)% Plots for evaluationing H_inf design performance% Computing L(s)=G(s)*F(s)[ al,bl,cl,dl ] = series(acp,bcp,ccp,dcp,ag,bg,cg,dg);% Computing Bode plot of the cost functionsvtt = sigma(acl,bcl,ccl,dcl,1,w); svtt = 20*log10(svtt);figuresemilogx(w,svtt) gridtitle([' COST FUNCTION Ty1u1 (Gam=',num2str(Gam),')']) xlabel('Frequency -- *100Hz') ylabel('SV -- db') pause程序运行结果表明已满足了1≤∞zw T 的条件,见图12.8图12.8 成本函数T zw 的特征值(6)比较灵敏度函数S(s)与1/W 1的奇异值、补灵敏度函数T (s )与1/W 3的奇异值(注意:设计过程中,为了满足1≤∞zwT 的条件,W 1已被调整),程序运行结果表示在图12.9和12.10, 从这些图中可看到, |)(|))((11ωωσj W j s --≤和 |)(|))((13ωωσj W j T --≤的要求已达到。
第一章概述§1.1 不确定系统和鲁棒控制(Uncertain System and Robust Control)1.1.1 名义系统和实际系统(nominal system)控制系统设计过程中,常常要先获得被控制对象的数学模型。
在建立数学模型的过程中,往往要忽略许多因素:比如对同步轨道卫星的姿态进行控制时不考虑轨道运动的影响,对一个振动系统的控制过程中,不考虑高阶模态的影响,等等。
这样处理后得到的数学模型仍嫌太复杂,于是要经过降阶处理,有时还要把非线性环节进行线性化处理,时变参数进行定常化处理,最后得到一个适合控制系统设计使用的数学模型。
经过以上处理后得到的数学模型已经不能完全描述原来的物理系统,而仅仅是原系统的一种近似,因此称这样的数学模型为“名义系统”,而称真实的物理系统为“实际系统”,而名义系统与实际系统的差别称为模型误差。
1.1.2不确定性和摄动(Uncertainty and Perturbation)如立足于名义系统,可认为名义系统经摄动后,变成实际系统,这时模型误差可视为对名义系统的摄动。
如果立足于实际系统,那么可视实际系统由两部分组成:即已知的模型和未知的模型(模型误差),如果模型的未知部分并非完全不知道,而是不确切地知道,比如只知道某种形式的界限(如:范数或模界限等),则称这部分模型为实际模型的不确定部分,也说实际系统中存在着不确定性,称含有不确定部分的系统为不确定系统。
模型不确定性包括:参数、结构及干扰不确定性等。
1.1.3 不确定系统的控制经典的控制系统设计方法要求有一个确定的数学模型(可能是常规的,也可能是统计的)。
以往,由于对一般的控制系统要求不太高,所以系统中普遍存在的不确定性问题往往被忽略。
事实上,对许多要求不高的系统,在名义系统的基础上进行分析与设计已经能够满足工程要求,而对一些精度和可靠性要求较高的系统,也只是在名义系统基础上进行分析和设计,然后考虑模型的误差,用仿真的方法来检验实际系统的性能(如稳定性、暂态性能等)。
第二章鲁棒控制理论概述2.1鲁棒控制理论概述2.1.1 系统不确定性和鲁棒性控制科学所要解决的主要问题之一是针对被控对象,设计合适的控制器,使闭环系统稳定或达到一定的性能指标要求。
它经历了经典控制理论和现代控制理论两个发展阶段。
无论是经典控制理论还是现代控制理论,它们的一个明显的特点是建立在精确的数学模型基础之上。
但是,在实际应用中存在着许多不确定性,具体体现在:(1)参数的测量误差。
由于测量技术的限制,许多参数的测量值可能有相当大的误差。
尤其是某些涉及热力学、流体力学和空气动力学,以及化学反应过程的参数,往往很不容易测准,或者需要付出昂贵的代价才能测准;(2)环境和运行条件的变化。
这往往是不确定性产生的最重要的原因。
例如,内部元器件的老化;电气设备的电阻因温升而改变;炼钢炉因炉壁渐渐被钢水腐蚀变薄而导致导热系统的变化;飞机和导弹在高空或低空以高速或低速飞行时其空气动力学参数的变化非常剧烈,甚至由于燃料消耗造成导弹质量的变化和质心的位移,这些都会造成其参数较大的变化;(3)人为的简化。
为了便于研究和设计,人们往往有意略去系统中一些次要因素,用低阶的线性定常集中参数模型来代替实际的高阶、非线性甚至是时变和分布参数的系统,这样势必要引入系统模型的不确定性。
因此,在控制系统的设计过程中不可避免的问题是:如何设计控制器,使得当一定范围的参数不确定性及一定限度的未建模动态存在时,闭环系统仍能保持稳定并保证一定的动态性能,这样的系统被称为具有鲁棒性。
2.1.2鲁棒控制理论的发展概况鲁棒控制理论正是研究系统存在不确定性时如何设计控制器使闭环系统稳定且满足一定的动态性能。
自从1972年鲁棒控制(Robust Contr01)这一术语首次在期刊论文中出现以来,已有大量的书籍详细的阐述了鲁棒控制理论的产生、发展及研究现状。
鲁棒控制的早期研究常只限于微摄动的不确定性,都是一种无穷小分析的思想。
1972年鲁棒控制(Robust Control)这一术语首次在期刊论文中出现。