流体力学势流
- 格式:ppt
- 大小:922.50 KB
- 文档页数:75
流函数和势函数公式流函数与势函数是描述流体运动的两个重要概念,在流体力学中被广泛应用。
本文将介绍流函数和势函数的基本概念、性质以及求解方法。
1.流函数的概念和性质流函数是描述在二维定常流动中,各个流线上速度矢量的旋转情况的函数。
对于二维流动,假设流体流动的速度场为V(x,y),则流函数Ψ(x,y)定义为:V=∇Ψ=(∂Ψ/∂x,∂Ψ/∂y)其中,∇Ψ是流函数Ψ的梯度向量。
流函数的性质如下:1)斜率定理:沿着流线的方向,流函数的局部斜率等于流体的速度分量。
2)流线定理:流线上的流函数值保持不变,即Ψ为常数。
3)流函数的连续性:在空间中的流函数是连续的,除非在相应的流体内有边界。
4)流函数的耗散性:流函数对时间是线性的,即流函数在时间方向上是耗散的。
2.势函数的概念和性质势函数是描述流体在无旋力场中流动时所具备的性质的函数。
无旋力场是指速度场的旋度等于零。
对于二维流动,假设流体流动的速度场为V(x,y),则势函数φ(x,y)定义为:V=∇φ=(∂φ/∂x,∂φ/∂y)其中,∇φ是势函数φ的梯度向量。
势函数的性质如下:1)势函数的梯度向量是速度向量。
2)势流是不可压缩的,即∇·V=0。
3)势函数满足拉普拉斯方程,即∇²φ=0。
4)由于速度场的旋度等于零,势函数是无旋的。
3.流函数和势函数的关系在二维流动中,流函数和势函数之间存在一种特殊的关系,称为流函数-势函数耦合关系。
根据流函数和势函数的定义,可以得到流函数和势函数的关系:Ψ = ∫(∂φ/∂y)dx + f(y)φ = ∫(∂Ψ/∂x)dy + g(x)其中,f(y)和g(x)是任意常数函数。
根据流函数-势函数耦合关系可以求解流体的速度场,并且满足连续性方程和运动方程。
4.求解流函数和势函数的方法求解流函数和势函数的方法有多种,常用的方法有分离变量法、解析法和数值法。
4.1分离变量法分离变量法是将流函数和势函数分解为各自的变量函数,并通过解偏微分方程的边值问题来确定这些变量函数。
第六章势流理论本章内容:1.势流问题求解的思路2.库塔----儒可夫斯基条件3. 势流的迭加法绕圆柱的无环绕流,绕圆柱的有环绕流4.布拉休斯公式5.库塔----儒可夫斯基定理学习这部分内容的目的有二:其一,获得解决势流问题的入门知识,即关键问题是求解速度势。
求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。
其二,明确两点重要结论:1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。
2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。
本章重点:1、平面势流问题求解的基本思想。
2、势流迭加法3、物面条件,无穷远处条件4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
5、四个简单势流的速度势函数,流函数及其流线图谱。
6、麦马格鲁斯效应的概念7、计算任意形状柱体受流体作用力的卜拉修斯定理8、附加惯性力,附加质量的概念本章难点:1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
2.任意形状柱体受流体作用力的卜拉修斯定理3.附加惯性力,附加质量的概念§6-1 几种简单的平面势流平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。
例如:1)绕一个无穷长机翼的流动,2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。
如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按一、均匀流流体质点沿x轴平行的均匀速度Vo ,如图6-5所示,V x=V o , V y =0dx V dy V dx V dy ydx x d y x 0=+=∂∂+∂∂=ϕϕϕ 积分:φ=V ox (6-4)如图6-3流函数的全微分为,dy V dy V dx V dy ydx x d o x y =+-=∂∂+∂∂=ψψψ 积分:ψ=V o y (6-5 如图6-4由(6-4)和(6-5 流线:y=const ,一组平行于x轴的直线,如图6-3 等势线:x=const ,一组平行于y轴的直线,如图6-3中的虚线。