流体力学:第5章势流理论-上
- 格式:ppt
- 大小:3.79 MB
- 文档页数:56
第六章:势流理论一.内容总结:二元流动包括平面流动和轴对称流动。
对于不可压缩流体的平面定常势流可以引入流函数和速度势函数。
而不可压缩平面势流速度势函数和流函数均满足拉普拉斯方程。
速度势函数的等值线与流函数等值线正交,流函数的等值线与流线重合。
本章研究物体在静止理想流体中平面运动时,流体对物体的作用力。
求解势流问题的思路为:当物体在流体中运动,即物体与流体之间产生相对运动时,物体受到流体的作用力。
对于理想流体的运动不存在切应力,理想流体中运动的物体表面上只受到法向的压力作用。
因此要解决在流场中物体所受的作用力,只要把物体表面上合压力求出即可。
由伯努利方程可知,若物面上(理想流体中无分离绕流时物面与流线重合)的速度分布已知可求出物面上压力分布,再沿物面积分便可求出物体受到的合压力。
因此,问题归结为求出流场的速度分布,对于不可压缩平面流动,求速度分布的问题又可归结为求速度势函数和流函数问题。
1. 势流问题求解的思路 基本方程 : 20ϕ∇= 无旋流动20ψ∇=二维不可压缩流动V grad φ=G即得到三个速度分量u v 伯努立方程压力,,w →→P 再由边界条件→ 积分 spds ∫便求得了合力,因此只要确定V ϕ→→p G就可积分求合力了。
对于二维不可压缩无旋流动,整个问题的关键在于找到满足边界条件的ϕ或ψ。
求速度势ϕ的方法:因为方程是线性方程, 几个解的线性之和仍满足拉普拉斯方程。
20ϕ∇=根据已知知识确定应选的势流. 简单平面势流的表示式 1) 等速直线运动等速V 平行x 轴的平行流动速度势和流函数为: 0V x ϕ= 0V y ψ=2) 源和汇源心在坐标原点时速度势和流函数在平面极坐标下为: ln 2Q r ϕπ= 2Q ψθπ= 式中为源 为汇0Q >0Q <3) 旋涡速度势和流函数在平面极坐标下为: 2ϕθπΓ= ln 2r ψπΓ=−4)偶极子速度势和流函数为:222M x z x y ϕπ=+ 222M yx yψπ=−+ 221214sin p p p c V θρ∞∞−==− 在位置上,指向与X 轴成β角. 0z M :称偶极矩,由汇指向源。
9899当边界壁面发生形状改变时,壁面边界层会发生分离现象,出现许多漩涡,耗散了流体的部分机械能。
由于受到压差阻力,流体的机械能也会减少。
100112v2 A2v1 A12流体从小直径的管道流往大直径的管道,假定流动是紊流流态。
实验发现,在边壁突变处流体脱离壁面,在主流与边壁之间形成环状回流区。
强剪切层:回流区与主流的分界面上流速的横向梯度很大,形成强剪切层。
剪切层上产生涡体,把时均能量转化成脉动能,大多涡体进入主流区,经过沿程发展最后耗尽动能而衰亡。
主流区的部分能量会传递到回流区在当地被消耗。
5.6.1 突扩圆管局部损失的理论公式101102112v 2A 2v 1A 12分析局部损失的大小,据伯努利方程:22121122010212()2j p p V Vh H H z z gg ααρ--=-=-++11222211()p A p A Q V V ρββ-=-22211222211()2j V V Vh V V g gααββ-=-+212()2j V V h g-=称波达-卡诺特公式,简称波达公式.103由突扩圆管的连续性,波达公式可改写成:22211112(1)22j A V Vh A g g ζ=-=ζ1、ζ2称突扩管道流动的局部损失系数或局部阻力系数。
以上两式表明:局部损失的大小与流速水头成比例。
2112(1)A A ζ=-22222221(1)22j A V V h A g g ζ=-=2221(1)A A ζ=-5.6.2 局部损失系数112v 2A 2v 1A 12104一般情形下,局部损失的算式可表示成通用公式22j V h gζ= V 表示参考断面的平均流速, ζ 是局部损失系数,一般要由实验测定。
理论上局部损失数取决于流道的局部形状变化和雷诺数。
105流道收缩:据实验研究,圆管突缩的局部损失为:210.5(1)A A ζ=-22j V h gζ=v 2A 2v 1A 1v cA c管道突缩后形成环状回流区,主流区形成过流面积最小的收缩断面,收缩断面前的流线收缩段损失较小,大部分损失发生在断面后的流线扩散段,局部损失系数值取决于收缩程度。
概念第一章绪论连续介质:但流体力学研究的是流体的宏观运动,不以分子作为流动的基本单元,而是以流体质点为基本单元,把流场看做是由无数流体质点组成的连续体。
流体质点:流场中一个体积很小并可以忽略其几何尺寸,但与分子相比,这个体积可容纳足够多的分子数目的流体元,有一个稳定的平均特性,即满足大数定律理想流体:忽略流体黏性的流体,即μ=0.可压缩流体与不可压缩流体:简单地讲,密度为常数的流体为不可压缩流体,如水、石油及低速流动的气体。
反之,密度不为常数的流体为可压缩流体。
牛顿流体与非牛顿流体:根据流体流动时切应力与流速梯度之间的关系,即牛顿内摩擦定律。
凡是符合牛顿内摩擦定律的成为牛顿流体,如水、空气、石油等。
否则为非牛顿流体,如污泥、泥石流、生物流体、高分子溶液等动力粘度与运动粘度:动力粘度又成为动力黏度系数,动力黏度是流体固有的属性。
运动粘度又称为运动粘性系数,运动黏性系数则取决于流体的运动状态体积力与表面力:体积力亦称质量力,是一种非接触力,即外立场对流体的作用,且外立场作用于流体每一质点上,如重力、惯性力、离心力。
表面力是一种表面接触力,指流体与流体之间或流体与物体之间的相互作用,主要指压力、切应力、阻力等定常流与非定常流:又称恒定流与非恒定流。
若流场中流体质点的所有运动要素均不随时间变化,则这种流动称为定常流;反之只要有一个运动要素随时间变化则为非定常流大气层分为5层:对流层、同温层、中间层、电离层及外逸层第二章流体运动学描述流体质点的位置、速度及加速度的两种方法,即拉格朗日法和欧拉法质点导数:亦称随体导数,表示流体质点的物理量对时间的变化率,亦即跟随流体质点求导数那布拉P9流体质点的运动轨迹称为迹线流线:此曲线上任一点的切线方向就是该点流速方向依照一定次序经过流场中某一固定点的各个质点连线称为脉线,也叫序线。
流体线:在流场中任意指定的一段线,该段线在运动过程中始终保持由原来那些规定的质点所组成。
第六章势流理论本章内容:1.势流问题求解的思路2.库塔----儒可夫斯基条件3. 势流的迭加法绕圆柱的无环绕流,绕圆柱的有环绕流4.布拉休斯公式5.库塔----儒可夫斯基定理学习这部分内容的目的有二:其一,获得解决势流问题的入门知识,即关键问题是求解速度势。
求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。
其二,明确两点重要结论:1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。
2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。
本章重点:1、平面势流问题求解的基本思想。
2、势流迭加法3、物面条件,无穷远处条件4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
5、四个简单势流的速度势函数,流函数及其流线图谱。
6、麦马格鲁斯效应的概念7、计算任意形状柱体受流体作用力的卜拉修斯定理8、附加惯性力,附加质量的概念本章难点:1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
2.任意形状柱体受流体作用力的卜拉修斯定理3.附加惯性力,附加质量的概念§6-1 几种简单的平面势流平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。
例如:1)绕一个无穷长机翼的流动,2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。
如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。
这一近似方法在船舶流体力学领域内称为切片理论。
一、均匀流流体质点沿x轴平行的均匀速度Vo ,如图6-5所示,V x=V o , V y =0平面流动速度势的全微分为dx V dy V dx V dy ydx x d y x 0=+=∂∂+∂∂=ϕϕϕ 积分:φ=V ox (6-4) 如图6-3流函数的全微分为,dy V dy V dx V dy ydx x d o x y =+-=∂∂+∂∂=ψψψ 积分:ψ=V o y (6-5) 如图6-4由(6-4)和(6-5)可得: 流线:y=const ,一组平行于x轴的直线,如图6-3中的实线。
流体力学——理想不可压缩流体的平面势流内容¾基本方程组,初始条件及边界条件¾速度势函数及无旋运动的性质¾平面流动及其流函¾不可压缩流体平面无旋流动的复变函数表示¾基本的平面有势流动¾有势流动叠加P=Pa , Pa为大气压强。
在直角坐标系中有一个线性的二阶偏微分方程(拉普拉斯方程线性方程的一个优点是解的可叠加性对于定常流:则由伯努利方程得到理想不可压缩无旋流的基本方程为:边界条件静止固壁上自由面上:P = Pa 无穷远处:速度势函数及无旋运动的性质在无旋流中有若已知函数,则可求出若已知速度矢量V,则可由积分求出势函数上式中为任意常数,因此的值相对于不同的Mo点可以差一个,为某一常数,但并不影响流动的实质,因为当求流动的特征量ui, P时,常数的差别便消失不见了,所谓的结果完全一样φ涉及到单值和多值问题在单连通区域 与积分路线无关,而只与起点M0及终点M的位置 有关。
因而势函数为单值函数。
在多连通区域 , 是封闭曲线L绕某一点的圈数, 称为环量 势函数 为多值函数。
速度势函数及无旋运动的性质(已作介绍)内容 ¾ 基本方程组,初始条件及边界条件 ¾ 速度势函数及无旋运动的性质¾ ¾平面流动及其流函数 不可压缩流体平面无旋流动的复变函数表示 基本的平面有势流动 有势流动叠加¾ ¾平面流动及其流函数 平面问题是指 流动在平面内进行,即 u z = 0 ; 垂直平面的垂线上个物理量相 等即适用范围 无限长柱体,它的一个方向的尺寸比其它两个方向的尺寸大得 多,在长方向的速度分量很小,其它物理量的变化也很小。
如:低速机翼表面的压力分布问题的理论计算等,无限长的柱 体平板的绕流等研究平面无旋运动,在平面运动中,涡旋矢量Ω的三个分量为只有 而无旋,可推出存在着速度势函数 使得:速度势函数的性质我们已经讨论过了流函数的意义 如果能够找到某一函数Ψ,满足流动的可能判据 —— 连续性 方程,则称这一函数Ψ为流函数 在平面运动时,不可压缩流体的连续性方程为:若有一函数Ψ(x,y,t)并令 则连续性方程为称为流函数知道了流函数 •若与流速ux ,uy 之间的关系之后 求出流速场已知,可由• 若 ux ,uy 已知,可用积分速度势与流函数 平面流动垂直与z轴的每个平面流动 都相同,称平面流动速度势函数 速度势函数存在的条件∂w ∂v − = 0 ∂y ∂z ∂u ∂w − = 0 ∂z ∂x ∂v ∂u − = 0 ∂x ∂y此条件称 柯西—黎曼条件由高数知识可知,柯西—黎曼条件是使udx + vdy + wdz全微分的充要条件,即成为某一个函数ϕ(x ,y ,z ,t )d ϕ = udx + vdy + wdz而当 t 为参变量, ϕ(x ,y ,z ) 的全微分为∂ϕ ∂ϕ ∂ϕ dϕ = dx + dy + dz ∂x ∂y ∂z比较两式有∂ϕ u = ∂x ∂ϕ v = ∂y ∂ϕ w = ∂z∂ϕ 柱坐标 V r = ∂r 1 ∂ϕ Vθ = r ∂θ ∂ϕ Vz = ∂z把ϕ(x ,y ,z ) 称为速度势函数简称势函数无论流体是否可压缩,是否定常流只要满足无旋条件 ,总有 势函数存在。
流体力学-笔记参考书籍:《全美经典-流体动力学》《流体力学》张兆顺、崔桂香《流体力学》吴望一《一维不定常流》《流体力学》课件清华大学王亮主讲目录:第一章绪论第二章流体静力学第三章流体运动的数学模型第四章量纲分析和相似性第五章粘性流体和边界层流动第六章不可压缩势流第七章一维可压缩流动第八章二维可压缩流动气体动力学第九章不可压缩湍流流动第十章高超声速边界层流动第十一章磁流体动力学第十二章非牛顿流体第十三章波动和稳定性第一章绪论1、牛顿流体:剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。
2、理想流体:无粘流体,流体切应力为零,并且没有湍流。
此时,流体内部没有内摩擦,也就没有内耗散和损失。
层流:纯粘性流体,流体分层,流速比较小;湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。
因为流速增加导致层流出现不稳定性。
定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变,3、欧拉描述:空间点的坐标;拉格朗日:质点的坐标;4、流体的粘性引起剪切力,进而导致耗散。
5、无黏流体—无摩擦—流动不分离—无尾迹。
6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dtρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。
是一个过程方程。
7、流体的几种线流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线;(),0dr U x t dr U ⇒⨯=r rP迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线;涡线:涡量场的向量线,(),,0U dr x t dr ωωω=∇⨯⇒⨯=r r r rr r P涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。
第二章 流体静力学1、压强:0limA F dFp A dA ∆→∆==∆静止流场中一点的应力状态只有压力。