流体力学第5章 平面势流理论
- 格式:ppt
- 大小:2.74 MB
- 文档页数:105
第六章:势流理论一.内容总结:二元流动包括平面流动和轴对称流动。
对于不可压缩流体的平面定常势流可以引入流函数和速度势函数。
而不可压缩平面势流速度势函数和流函数均满足拉普拉斯方程。
速度势函数的等值线与流函数等值线正交,流函数的等值线与流线重合。
本章研究物体在静止理想流体中平面运动时,流体对物体的作用力。
求解势流问题的思路为:当物体在流体中运动,即物体与流体之间产生相对运动时,物体受到流体的作用力。
对于理想流体的运动不存在切应力,理想流体中运动的物体表面上只受到法向的压力作用。
因此要解决在流场中物体所受的作用力,只要把物体表面上合压力求出即可。
由伯努利方程可知,若物面上(理想流体中无分离绕流时物面与流线重合)的速度分布已知可求出物面上压力分布,再沿物面积分便可求出物体受到的合压力。
因此,问题归结为求出流场的速度分布,对于不可压缩平面流动,求速度分布的问题又可归结为求速度势函数和流函数问题。
1. 势流问题求解的思路 基本方程 : 20ϕ∇= 无旋流动20ψ∇=二维不可压缩流动V grad φ=G即得到三个速度分量u v 伯努立方程压力,,w →→P 再由边界条件→ 积分 spds ∫便求得了合力,因此只要确定V ϕ→→p G就可积分求合力了。
对于二维不可压缩无旋流动,整个问题的关键在于找到满足边界条件的ϕ或ψ。
求速度势ϕ的方法:因为方程是线性方程, 几个解的线性之和仍满足拉普拉斯方程。
20ϕ∇=根据已知知识确定应选的势流. 简单平面势流的表示式 1) 等速直线运动等速V 平行x 轴的平行流动速度势和流函数为: 0V x ϕ= 0V y ψ=2) 源和汇源心在坐标原点时速度势和流函数在平面极坐标下为: ln 2Q r ϕπ= 2Q ψθπ= 式中为源 为汇0Q >0Q <3) 旋涡速度势和流函数在平面极坐标下为: 2ϕθπΓ= ln 2r ψπΓ=−4)偶极子速度势和流函数为:222M x z x y ϕπ=+ 222M yx yψπ=−+ 221214sin p p p c V θρ∞∞−==− 在位置上,指向与X 轴成β角. 0z M :称偶极矩,由汇指向源。
第五章 势流理论5-1流速为u 0=10m/s 沿正向的均匀流与位于原点的点涡叠加。
已知驻点位于(0,-5),试求: (1)点涡的强度;(2)(0,5)点的流速以及通过驻点的流线方程。
答:(1)求点涡的强度Γ:设点涡的强度为Γ,则均匀流的速度势和流函数分别为:x u 01=ϕ,y u 01=ψ;点涡的速度势和流函数为:xy arctg πϕ22Γ-=,r y x ln 2)ln(221222ππψΓ=+Γ=; 因此,流动的速度势和流函数为:θπθπϕϕϕ2cos 20021Γ-=Γ-=+=r u x y arctg x u , r y u y x y u ln 2sin )ln(202122021πθπψψψΓ+=+Γ+=+=;则速度分布为:2202y x yu y x u +⋅Γ+=∂∂=∂∂=πψϕ, 222yx x x y v +⋅Γ=∂∂-=∂∂=πψϕ; 由于)5,0(-为驻点,代入上式第一式中则得到:0)5(052220=-+-⋅Γ+πu , 整理得到:ππ100100==Γu 。
(2)求)5,0(点的速度:将π100=Γ代入到速度分布中,得到:222222050102100102y x y y x y y x y u u ++=+⋅+=+⋅Γ+=πππ,2222225021002yx x y x x y x x v +=+⋅=+⋅Γ=πππ; 将0=x 、5=y 代入上述速度分布函数,得到:201010505501022=+=+⨯+=u (m/s ),05005022=+⨯=v (m/s );(3)求通过)5,0(点的流线方程:由流函数的性质可知,流函数为常数时表示流线方程C =ψ,则流线方程为:C y x y u =+Γ+21220)ln(2π;将0=x 、5=y 代入,得到:5ln 5050)50ln(21005102122+=+⨯+⨯=ππC ;则过该点的流线方程为:5ln 5050)ln(2100102122+=++y x y ππ,整理得到:5ln 55)ln(52122+=++y x y5-2平面势流由点源和点汇叠加而成,点源位于(-1,0),其流量为θ1=20m 3/s ,点汇位于(2,0)点,其流量为θ2=40m 3/s ,已知流体密度为ρ=1.8kg/m 3,流场中(0,0)点的压力为0,试求点(0,1)和(1,1)的流速和压力。
第五章理想流体流动•欧拉运动方程•伯努利方程及其应用•开尔文涡线定理•能量守恒定律•速度势函数与流函数什么是理想流体?为什么要研究理想流体?第一节理想流体的欧拉运动方程式完整的求解一个流动问题有几个未知数?:p压力u:r速度zy x u u :u ,,速度完整的描述此流动问题需要有几个方程?:=∂∂+∂∂+∂∂z u y u x u zy x 质量守恒方程动量方程个分量有矢量方程3,欧拉运动方程柯西方程()()()()T div g v v t v dt v d ρ1+=∇⋅+∂∂=v v v vv ⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z y x f z u u y u u x u u tu zx yx xx x x z x y x x xτττρ1⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z y xf z u u y u u x u u t u zy yy xy y yz yy yx yτττρ1⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z y xf z u u y u u x u u t u zz yz xz z z z z y z x z τττρ1矢量形式()()()p grad g v v tv ρ1−=∇⋅+∂∂v v v v⎟⎠⎞⎜⎝⎛∂∂−=∂∂+∂∂+∂∂+∂∂x p f z u u y u u x u u t u x x z x y x x x ρ1⎟⎟⎠⎞⎜⎜⎝⎛∂∂−=∂∂+∂∂+∂∂+∂∂y p f zu u y u u x u u t u y yz y y y x yρ1⎟⎠⎞⎜⎝⎛∂∂−=∂∂+∂∂+∂∂+∂∂z p f z u u y u u x u u t u z z z z y z xz ρ1矢量形式剪应力全部=0压应力=压强即正应力=-p根据牛顿第二定律得x 方向的运动方程式为()dt du dxdydzdydz x p p dydz p dxdydz X x ρρ=⎟⎠⎞⎜⎝⎛∂∂+−+上式简化后得同理zoyx微元六面体A A1A2dx xPp ∂∂−21dxxP p ∂∂+21pdtdu x p X x=∂∂−ρ1dtdu z p Z dt du y p Y zy =∂∂−=∂∂−ρρ11111xy z du p X x dt du p Y y dt du p Z z dtρρρ∂−=∂∂−=∂∂−=∂对静止流体的欧拉平衡方程式和理想流体的欧拉运动方程式进行对比101010p X x p Y y p Z zρρρ∂−=∂∂−=∂∂−=∂把上式的三个方程依次乘以i、j、k后相加可得理想流体运动方程的矢量形式,即:1d p dt ρ=uf -∇(,,)d dx dy dz dt dt dt dt==r u dz dtdu dy dt du dx dt du dz zpdy y p dx x p Zdz Ydy Xdx z y x++=∂∂+∂∂+∂∂−++)(1)(ρ由于稳定流时流线与迹线重合,质点沿流线运动,由流线上微元矢量(dx,dy,dz)与时间间隔dt所构成的导数便是流体质点的速度,即将欧拉拉运动微分方程式中各式分别乘以dzdy dx ,,相加得(4-4)伯努利方程的推导——分量方法式(4-4)等号右端可变为222211()()22y x z x x y y z z x y z du du du dx dy dz u du u du u du d u u u d u dt dt dt++=++=++=因此)(21)()(1)(2u d dp Zdz Ydy Xdx dz z p dy y p dx x pZdz Ydy Xdx =−++=∂∂+∂∂+∂∂−++ρρ1()()y x z du du du p p pXdx Ydy Zdz dx dy dz dx dy dzx y z dt dt dt ρ∂∂∂++−++=++∂∂∂•思考一下什么情况下左端的项可以消去?–静止流体–稳定流,且沿流线积分–稳定流,且沿涡线积分–稳定流,且为无旋流动•右端三项分别为:重力势能,动能和压力能•可以写成水头的形式,即单位重量流体的能量•利用伯努利方程,如何通过测压力来测量流速?CvpU E =++=22ρ伯努利方程的适用条件第三节开尔文涡线定理•开尔文涡线定理的表述–理想正压流体在有势力场中运动时,连续流场内沿封闭流体线的速度环量不随时间变化–如果理想流体初始状态静止或绕任意封闭流体线的速度环量为0,则流体运动必然是无旋运动–如果理想正压流体在势力场中运动时,如某一时刻无旋,则流场始终无旋。
第六章势流理论本章内容:1.势流问题求解的思路2.库塔----儒可夫斯基条件3. 势流的迭加法绕圆柱的无环绕流,绕圆柱的有环绕流4.布拉休斯公式5.库塔----儒可夫斯基定理学习这部分内容的目的有二:其一,获得解决势流问题的入门知识,即关键问题是求解速度势。
求出速度势之后,可按一定的步骤解出速度分布、压力分布,以及流体和固体之间的作用力。
其二,明确两点重要结论:1)园柱体在理想流体中作等速直线运动时,阻力为零(达朗贝尔疑题);升力也为零。
2)园柱本身转动同时作等速直线运动时,则受到升力作用(麦格鲁斯效应)。
本章重点:1、平面势流问题求解的基本思想。
2、势流迭加法3、物面条件,无穷远处条件4、绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
5、四个简单势流的速度势函数,流函数及其流线图谱。
6、麦马格鲁斯效应的概念7、计算任意形状柱体受流体作用力的卜拉修斯定理8、附加惯性力,附加质量的概念本章难点:1.绕圆柱有环流,无环流流动的结论,即速度分布,压力分布,压力系数分布,驻点位置,流线图谱,升力,阻力,环流方向等。
2.任意形状柱体受流体作用力的卜拉修斯定理3.附加惯性力,附加质量的概念§6-1 几种简单的平面势流平面流动:平面上任何一点的速度、加速度都平行于所在平面,无垂直于该平面的分量;与该平面相平行的所有其它平面上的流动情况完全一样。
例如:1)绕一个无穷长机翼的流动,2)船舶在水面上的垂直振荡问题,由于船长比宽度及吃水大得多,且船型纵向变化比较缓慢,可以近似认为流体只在垂直于船长方向的平面内流动,如图6-2所示。
如果我们在船长方向将船分割成许多薄片,并且假定绕各薄片的流动互不影响的话,则这一问题就可以按平面问题处理。
这一近似方法在船舶流体力学领域内称为切片理论。
一、均匀流流体质点沿x轴平行的均匀速度Vo ,如图6-5所示,V x=V o , V y =0平面流动速度势的全微分为dx V dy V dx V dy ydx x d y x 0=+=∂∂+∂∂=ϕϕϕ 积分:φ=V ox (6-4) 如图6-3流函数的全微分为,dy V dy V dx V dy ydx x d o x y =+-=∂∂+∂∂=ψψψ 积分:ψ=V o y (6-5) 如图6-4由(6-4)和(6-5)可得: 流线:y=const ,一组平行于x轴的直线,如图6-3中的实线。
流体力学——理想不可压缩流体的平面势流内容¾基本方程组,初始条件及边界条件¾速度势函数及无旋运动的性质¾平面流动及其流函¾不可压缩流体平面无旋流动的复变函数表示¾基本的平面有势流动¾有势流动叠加P=Pa , Pa为大气压强。
在直角坐标系中有一个线性的二阶偏微分方程(拉普拉斯方程线性方程的一个优点是解的可叠加性对于定常流:则由伯努利方程得到理想不可压缩无旋流的基本方程为:边界条件静止固壁上自由面上:P = Pa 无穷远处:速度势函数及无旋运动的性质在无旋流中有若已知函数,则可求出若已知速度矢量V,则可由积分求出势函数上式中为任意常数,因此的值相对于不同的Mo点可以差一个,为某一常数,但并不影响流动的实质,因为当求流动的特征量ui, P时,常数的差别便消失不见了,所谓的结果完全一样φ涉及到单值和多值问题在单连通区域 与积分路线无关,而只与起点M0及终点M的位置 有关。
因而势函数为单值函数。
在多连通区域 , 是封闭曲线L绕某一点的圈数, 称为环量 势函数 为多值函数。
速度势函数及无旋运动的性质(已作介绍)内容 ¾ 基本方程组,初始条件及边界条件 ¾ 速度势函数及无旋运动的性质¾ ¾平面流动及其流函数 不可压缩流体平面无旋流动的复变函数表示 基本的平面有势流动 有势流动叠加¾ ¾平面流动及其流函数 平面问题是指 流动在平面内进行,即 u z = 0 ; 垂直平面的垂线上个物理量相 等即适用范围 无限长柱体,它的一个方向的尺寸比其它两个方向的尺寸大得 多,在长方向的速度分量很小,其它物理量的变化也很小。
如:低速机翼表面的压力分布问题的理论计算等,无限长的柱 体平板的绕流等研究平面无旋运动,在平面运动中,涡旋矢量Ω的三个分量为只有 而无旋,可推出存在着速度势函数 使得:速度势函数的性质我们已经讨论过了流函数的意义 如果能够找到某一函数Ψ,满足流动的可能判据 —— 连续性 方程,则称这一函数Ψ为流函数 在平面运动时,不可压缩流体的连续性方程为:若有一函数Ψ(x,y,t)并令 则连续性方程为称为流函数知道了流函数 •若与流速ux ,uy 之间的关系之后 求出流速场已知,可由• 若 ux ,uy 已知,可用积分速度势与流函数 平面流动垂直与z轴的每个平面流动 都相同,称平面流动速度势函数 速度势函数存在的条件∂w ∂v − = 0 ∂y ∂z ∂u ∂w − = 0 ∂z ∂x ∂v ∂u − = 0 ∂x ∂y此条件称 柯西—黎曼条件由高数知识可知,柯西—黎曼条件是使udx + vdy + wdz全微分的充要条件,即成为某一个函数ϕ(x ,y ,z ,t )d ϕ = udx + vdy + wdz而当 t 为参变量, ϕ(x ,y ,z ) 的全微分为∂ϕ ∂ϕ ∂ϕ dϕ = dx + dy + dz ∂x ∂y ∂z比较两式有∂ϕ u = ∂x ∂ϕ v = ∂y ∂ϕ w = ∂z∂ϕ 柱坐标 V r = ∂r 1 ∂ϕ Vθ = r ∂θ ∂ϕ Vz = ∂z把ϕ(x ,y ,z ) 称为速度势函数简称势函数无论流体是否可压缩,是否定常流只要满足无旋条件 ,总有 势函数存在。
第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。