流体力学第5章 平面势流理论
- 格式:ppt
- 大小:2.74 MB
- 文档页数:105
第六章:势流理论一.内容总结:二元流动包括平面流动和轴对称流动。
对于不可压缩流体的平面定常势流可以引入流函数和速度势函数。
而不可压缩平面势流速度势函数和流函数均满足拉普拉斯方程。
速度势函数的等值线与流函数等值线正交,流函数的等值线与流线重合。
本章研究物体在静止理想流体中平面运动时,流体对物体的作用力。
求解势流问题的思路为:当物体在流体中运动,即物体与流体之间产生相对运动时,物体受到流体的作用力。
对于理想流体的运动不存在切应力,理想流体中运动的物体表面上只受到法向的压力作用。
因此要解决在流场中物体所受的作用力,只要把物体表面上合压力求出即可。
由伯努利方程可知,若物面上(理想流体中无分离绕流时物面与流线重合)的速度分布已知可求出物面上压力分布,再沿物面积分便可求出物体受到的合压力。
因此,问题归结为求出流场的速度分布,对于不可压缩平面流动,求速度分布的问题又可归结为求速度势函数和流函数问题。
1. 势流问题求解的思路 基本方程 : 20ϕ∇= 无旋流动20ψ∇=二维不可压缩流动V grad φ=G即得到三个速度分量u v 伯努立方程压力,,w →→P 再由边界条件→ 积分 spds ∫便求得了合力,因此只要确定V ϕ→→p G就可积分求合力了。
对于二维不可压缩无旋流动,整个问题的关键在于找到满足边界条件的ϕ或ψ。
求速度势ϕ的方法:因为方程是线性方程, 几个解的线性之和仍满足拉普拉斯方程。
20ϕ∇=根据已知知识确定应选的势流. 简单平面势流的表示式 1) 等速直线运动等速V 平行x 轴的平行流动速度势和流函数为: 0V x ϕ= 0V y ψ=2) 源和汇源心在坐标原点时速度势和流函数在平面极坐标下为: ln 2Q r ϕπ= 2Q ψθπ= 式中为源 为汇0Q >0Q <3) 旋涡速度势和流函数在平面极坐标下为: 2ϕθπΓ= ln 2r ψπΓ=−4)偶极子速度势和流函数为:222M x z x y ϕπ=+ 222M yx yψπ=−+ 221214sin p p p c V θρ∞∞−==− 在位置上,指向与X 轴成β角. 0z M :称偶极矩,由汇指向源。
第五章 势流理论5-1流速为u 0=10m/s 沿正向的均匀流与位于原点的点涡叠加。
已知驻点位于(0,-5),试求: (1)点涡的强度;(2)(0,5)点的流速以及通过驻点的流线方程。
答:(1)求点涡的强度Γ:设点涡的强度为Γ,则均匀流的速度势和流函数分别为:x u 01=ϕ,y u 01=ψ;点涡的速度势和流函数为:xy arctg πϕ22Γ-=,r y x ln 2)ln(221222ππψΓ=+Γ=; 因此,流动的速度势和流函数为:θπθπϕϕϕ2cos 20021Γ-=Γ-=+=r u x y arctg x u , r y u y x y u ln 2sin )ln(202122021πθπψψψΓ+=+Γ+=+=;则速度分布为:2202y x yu y x u +⋅Γ+=∂∂=∂∂=πψϕ, 222yx x x y v +⋅Γ=∂∂-=∂∂=πψϕ; 由于)5,0(-为驻点,代入上式第一式中则得到:0)5(052220=-+-⋅Γ+πu , 整理得到:ππ100100==Γu 。
(2)求)5,0(点的速度:将π100=Γ代入到速度分布中,得到:222222050102100102y x y y x y y x y u u ++=+⋅+=+⋅Γ+=πππ,2222225021002yx x y x x y x x v +=+⋅=+⋅Γ=πππ; 将0=x 、5=y 代入上述速度分布函数,得到:201010505501022=+=+⨯+=u (m/s ),05005022=+⨯=v (m/s );(3)求通过)5,0(点的流线方程:由流函数的性质可知,流函数为常数时表示流线方程C =ψ,则流线方程为:C y x y u =+Γ+21220)ln(2π;将0=x 、5=y 代入,得到:5ln 5050)50ln(21005102122+=+⨯+⨯=ππC ;则过该点的流线方程为:5ln 5050)ln(2100102122+=++y x y ππ,整理得到:5ln 55)ln(52122+=++y x y5-2平面势流由点源和点汇叠加而成,点源位于(-1,0),其流量为θ1=20m 3/s ,点汇位于(2,0)点,其流量为θ2=40m 3/s ,已知流体密度为ρ=1.8kg/m 3,流场中(0,0)点的压力为0,试求点(0,1)和(1,1)的流速和压力。
第五章理想流体流动•欧拉运动方程•伯努利方程及其应用•开尔文涡线定理•能量守恒定律•速度势函数与流函数什么是理想流体?为什么要研究理想流体?第一节理想流体的欧拉运动方程式完整的求解一个流动问题有几个未知数?:p压力u:r速度zy x u u :u ,,速度完整的描述此流动问题需要有几个方程?:=∂∂+∂∂+∂∂z u y u x u zy x 质量守恒方程动量方程个分量有矢量方程3,欧拉运动方程柯西方程()()()()T div g v v t v dt v d ρ1+=∇⋅+∂∂=v v v vv ⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z y x f z u u y u u x u u tu zx yx xx x x z x y x x xτττρ1⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z y xf z u u y u u x u u t u zy yy xy y yz yy yx yτττρ1⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z y xf z u u y u u x u u t u zz yz xz z z z z y z x z τττρ1矢量形式()()()p grad g v v tv ρ1−=∇⋅+∂∂v v v v⎟⎠⎞⎜⎝⎛∂∂−=∂∂+∂∂+∂∂+∂∂x p f z u u y u u x u u t u x x z x y x x x ρ1⎟⎟⎠⎞⎜⎜⎝⎛∂∂−=∂∂+∂∂+∂∂+∂∂y p f zu u y u u x u u t u y yz y y y x yρ1⎟⎠⎞⎜⎝⎛∂∂−=∂∂+∂∂+∂∂+∂∂z p f z u u y u u x u u t u z z z z y z xz ρ1矢量形式剪应力全部=0压应力=压强即正应力=-p根据牛顿第二定律得x 方向的运动方程式为()dt du dxdydzdydz x p p dydz p dxdydz X x ρρ=⎟⎠⎞⎜⎝⎛∂∂+−+上式简化后得同理zoyx微元六面体A A1A2dx xPp ∂∂−21dxxP p ∂∂+21pdtdu x p X x=∂∂−ρ1dtdu z p Z dt du y p Y zy =∂∂−=∂∂−ρρ11111xy z du p X x dt du p Y y dt du p Z z dtρρρ∂−=∂∂−=∂∂−=∂对静止流体的欧拉平衡方程式和理想流体的欧拉运动方程式进行对比101010p X x p Y y p Z zρρρ∂−=∂∂−=∂∂−=∂把上式的三个方程依次乘以i、j、k后相加可得理想流体运动方程的矢量形式,即:1d p dt ρ=uf -∇(,,)d dx dy dz dt dt dt dt==r u dz dtdu dy dt du dx dt du dz zpdy y p dx x p Zdz Ydy Xdx z y x++=∂∂+∂∂+∂∂−++)(1)(ρ由于稳定流时流线与迹线重合,质点沿流线运动,由流线上微元矢量(dx,dy,dz)与时间间隔dt所构成的导数便是流体质点的速度,即将欧拉拉运动微分方程式中各式分别乘以dzdy dx ,,相加得(4-4)伯努利方程的推导——分量方法式(4-4)等号右端可变为222211()()22y x z x x y y z z x y z du du du dx dy dz u du u du u du d u u u d u dt dt dt++=++=++=因此)(21)()(1)(2u d dp Zdz Ydy Xdx dz z p dy y p dx x pZdz Ydy Xdx =−++=∂∂+∂∂+∂∂−++ρρ1()()y x z du du du p p pXdx Ydy Zdz dx dy dz dx dy dzx y z dt dt dt ρ∂∂∂++−++=++∂∂∂•思考一下什么情况下左端的项可以消去?–静止流体–稳定流,且沿流线积分–稳定流,且沿涡线积分–稳定流,且为无旋流动•右端三项分别为:重力势能,动能和压力能•可以写成水头的形式,即单位重量流体的能量•利用伯努利方程,如何通过测压力来测量流速?CvpU E =++=22ρ伯努利方程的适用条件第三节开尔文涡线定理•开尔文涡线定理的表述–理想正压流体在有势力场中运动时,连续流场内沿封闭流体线的速度环量不随时间变化–如果理想流体初始状态静止或绕任意封闭流体线的速度环量为0,则流体运动必然是无旋运动–如果理想正压流体在势力场中运动时,如某一时刻无旋,则流场始终无旋。