流体力学:第5章 势流理论-上
- 格式:ppt
- 大小:3.07 MB
- 文档页数:55
概念第一章绪论连续介质:但流体力学研究的是流体的宏观运动,不以分子作为流动的基本单元,而是以流体质点为基本单元,把流场看做是由无数流体质点组成的连续体。
流体质点:流场中一个体积很小并可以忽略其几何尺寸,但与分子相比,这个体积可容纳足够多的分子数目的流体元,有一个稳定的平均特性,即满足大数定律理想流体:忽略流体黏性的流体,即μ=0.可压缩流体与不可压缩流体:简单地讲,密度为常数的流体为不可压缩流体,如水、石油及低速流动的气体。
反之,密度不为常数的流体为可压缩流体。
牛顿流体与非牛顿流体:根据流体流动时切应力与流速梯度之间的关系,即牛顿内摩擦定律。
凡是符合牛顿内摩擦定律的成为牛顿流体,如水、空气、石油等。
否则为非牛顿流体,如污泥、泥石流、生物流体、高分子溶液等动力粘度与运动粘度:动力粘度又成为动力黏度系数,动力黏度是流体固有的属性。
运动粘度又称为运动粘性系数,运动黏性系数则取决于流体的运动状态体积力与表面力:体积力亦称质量力,是一种非接触力,即外立场对流体的作用,且外立场作用于流体每一质点上,如重力、惯性力、离心力。
表面力是一种表面接触力,指流体与流体之间或流体与物体之间的相互作用,主要指压力、切应力、阻力等定常流与非定常流:又称恒定流与非恒定流。
若流场中流体质点的所有运动要素均不随时间变化,则这种流动称为定常流;反之只要有一个运动要素随时间变化则为非定常流大气层分为5层:对流层、同温层、中间层、电离层及外逸层第二章流体运动学描述流体质点的位置、速度及加速度的两种方法,即拉格朗日法和欧拉法质点导数:亦称随体导数,表示流体质点的物理量对时间的变化率,亦即跟随流体质点求导数那布拉P9流体质点的运动轨迹称为迹线流线:此曲线上任一点的切线方向就是该点流速方向依照一定次序经过流场中某一固定点的各个质点连线称为脉线,也叫序线。
流体线:在流场中任意指定的一段线,该段线在运动过程中始终保持由原来那些规定的质点所组成。
第五章理想流体流动•欧拉运动方程•伯努利方程及其应用•开尔文涡线定理•能量守恒定律•速度势函数与流函数什么是理想流体?为什么要研究理想流体?第一节理想流体的欧拉运动方程式完整的求解一个流动问题有几个未知数?:p压力u:r速度zy x u u :u ,,速度完整的描述此流动问题需要有几个方程?:=∂∂+∂∂+∂∂z u y u x u zy x 质量守恒方程动量方程个分量有矢量方程3,欧拉运动方程柯西方程()()()()T div g v v t v dt v d ρ1+=∇⋅+∂∂=v v v vv ⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z y x f z u u y u u x u u tu zx yx xx x x z x y x x xτττρ1⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z y xf z u u y u u x u u t u zy yy xy y yz yy yx yτττρ1⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z y xf z u u y u u x u u t u zz yz xz z z z z y z x z τττρ1矢量形式()()()p grad g v v tv ρ1−=∇⋅+∂∂v v v v⎟⎠⎞⎜⎝⎛∂∂−=∂∂+∂∂+∂∂+∂∂x p f z u u y u u x u u t u x x z x y x x x ρ1⎟⎟⎠⎞⎜⎜⎝⎛∂∂−=∂∂+∂∂+∂∂+∂∂y p f zu u y u u x u u t u y yz y y y x yρ1⎟⎠⎞⎜⎝⎛∂∂−=∂∂+∂∂+∂∂+∂∂z p f z u u y u u x u u t u z z z z y z xz ρ1矢量形式剪应力全部=0压应力=压强即正应力=-p根据牛顿第二定律得x 方向的运动方程式为()dt du dxdydzdydz x p p dydz p dxdydz X x ρρ=⎟⎠⎞⎜⎝⎛∂∂+−+上式简化后得同理zoyx微元六面体A A1A2dx xPp ∂∂−21dxxP p ∂∂+21pdtdu x p X x=∂∂−ρ1dtdu z p Z dt du y p Y zy =∂∂−=∂∂−ρρ11111xy z du p X x dt du p Y y dt du p Z z dtρρρ∂−=∂∂−=∂∂−=∂对静止流体的欧拉平衡方程式和理想流体的欧拉运动方程式进行对比101010p X x p Y y p Z zρρρ∂−=∂∂−=∂∂−=∂把上式的三个方程依次乘以i、j、k后相加可得理想流体运动方程的矢量形式,即:1d p dt ρ=uf -∇(,,)d dx dy dz dt dt dt dt==r u dz dtdu dy dt du dx dt du dz zpdy y p dx x p Zdz Ydy Xdx z y x++=∂∂+∂∂+∂∂−++)(1)(ρ由于稳定流时流线与迹线重合,质点沿流线运动,由流线上微元矢量(dx,dy,dz)与时间间隔dt所构成的导数便是流体质点的速度,即将欧拉拉运动微分方程式中各式分别乘以dzdy dx ,,相加得(4-4)伯努利方程的推导——分量方法式(4-4)等号右端可变为222211()()22y x z x x y y z z x y z du du du dx dy dz u du u du u du d u u u d u dt dt dt++=++=++=因此)(21)()(1)(2u d dp Zdz Ydy Xdx dz z p dy y p dx x pZdz Ydy Xdx =−++=∂∂+∂∂+∂∂−++ρρ1()()y x z du du du p p pXdx Ydy Zdz dx dy dz dx dy dzx y z dt dt dt ρ∂∂∂++−++=++∂∂∂•思考一下什么情况下左端的项可以消去?–静止流体–稳定流,且沿流线积分–稳定流,且沿涡线积分–稳定流,且为无旋流动•右端三项分别为:重力势能,动能和压力能•可以写成水头的形式,即单位重量流体的能量•利用伯努利方程,如何通过测压力来测量流速?CvpU E =++=22ρ伯努利方程的适用条件第三节开尔文涡线定理•开尔文涡线定理的表述–理想正压流体在有势力场中运动时,连续流场内沿封闭流体线的速度环量不随时间变化–如果理想流体初始状态静止或绕任意封闭流体线的速度环量为0,则流体运动必然是无旋运动–如果理想正压流体在势力场中运动时,如某一时刻无旋,则流场始终无旋。
流体力学的路线图(之一)流体力学基础理论的学习历来被初学者视为畏途,每到学习结束要进入期末考试的时候,老师和学生一样心中难免忐忑,在流体力学这门课上挂科已经成为某种常态。
即使是学习多年的老手也会在具体问题面前感到基础尚不完备,还不够扎实。
这个问题的起源当然与流体运动规律本身的复杂性有关,这个复杂性导致流体力学与大家印象中的“学科”概念有一定的出入。
比如我们在学习高等数学时,很容易发现,数学是一门“咬文嚼字”的学科,里面充满严格定义的概念,不论学习线性代数还是微积分,都是从一些基本公理出发,循着一条严格的逻辑路线,架构起整门课程。
因为数学有这样逻辑严密的特点,所以虽然学起来也不容易,但大家一致认为数学是美的,而且不论谁写的数学书,比如微积分的书,内容都只有程度深浅的差异,而绝没有内容上的巨大差异。
流体力学则有所不同,流体的流动本身是一种连续不断的变形过程,经典的流体力学理论以连续介质假设为基础,将整个流体看作连续介质,同时将其运动看作连续运动。
但是由于流体是复杂的,实际上至今还没有完全掌握其全貌,因此流体力学在建立了基本控制方程后,就开始转而从一些特殊的流动出发,采用根据流动特点进行简化的方式,先建立物理模型,再得到数学模型,进而得到我们在书中经常看到的很多“理论”,比如不可压无旋流、旋涡动力学、水波动力学、气体动力学等等,甚至理论中还包括理论,比如不可压无旋流中还有自由流线理论,等等。
形成一个类似于俄罗斯套娃的学科结构,这种结构容易给人一种支离破碎的印象。
特别是在各个理论之间联系比较薄弱的时候,更容易给人这种印象。
似乎一门课中又包含了很多门“小课”,每门“小课”使用的数学工具也完全不同,甚至很多同行还进一步把自己分成是学气的(比如空气动力学),或者是学水的(比如学船舶的)等等。
就象旅行者要有一张地图才能更高效率地到达目的地一样,如果能有一张流体力学的地图,或者叫路线图(roadmap),应该对初学者有很大帮助。
流体力学——理想不可压缩流体的平面势流内容¾基本方程组,初始条件及边界条件¾速度势函数及无旋运动的性质¾平面流动及其流函¾不可压缩流体平面无旋流动的复变函数表示¾基本的平面有势流动¾有势流动叠加P=Pa , Pa为大气压强。
在直角坐标系中有一个线性的二阶偏微分方程(拉普拉斯方程线性方程的一个优点是解的可叠加性对于定常流:则由伯努利方程得到理想不可压缩无旋流的基本方程为:边界条件静止固壁上自由面上:P = Pa 无穷远处:速度势函数及无旋运动的性质在无旋流中有若已知函数,则可求出若已知速度矢量V,则可由积分求出势函数上式中为任意常数,因此的值相对于不同的Mo点可以差一个,为某一常数,但并不影响流动的实质,因为当求流动的特征量ui, P时,常数的差别便消失不见了,所谓的结果完全一样φ涉及到单值和多值问题在单连通区域 与积分路线无关,而只与起点M0及终点M的位置 有关。
因而势函数为单值函数。
在多连通区域 , 是封闭曲线L绕某一点的圈数, 称为环量 势函数 为多值函数。
速度势函数及无旋运动的性质(已作介绍)内容 ¾ 基本方程组,初始条件及边界条件 ¾ 速度势函数及无旋运动的性质¾ ¾平面流动及其流函数 不可压缩流体平面无旋流动的复变函数表示 基本的平面有势流动 有势流动叠加¾ ¾平面流动及其流函数 平面问题是指 流动在平面内进行,即 u z = 0 ; 垂直平面的垂线上个物理量相 等即适用范围 无限长柱体,它的一个方向的尺寸比其它两个方向的尺寸大得 多,在长方向的速度分量很小,其它物理量的变化也很小。
如:低速机翼表面的压力分布问题的理论计算等,无限长的柱 体平板的绕流等研究平面无旋运动,在平面运动中,涡旋矢量Ω的三个分量为只有 而无旋,可推出存在着速度势函数 使得:速度势函数的性质我们已经讨论过了流函数的意义 如果能够找到某一函数Ψ,满足流动的可能判据 —— 连续性 方程,则称这一函数Ψ为流函数 在平面运动时,不可压缩流体的连续性方程为:若有一函数Ψ(x,y,t)并令 则连续性方程为称为流函数知道了流函数 •若与流速ux ,uy 之间的关系之后 求出流速场已知,可由• 若 ux ,uy 已知,可用积分速度势与流函数 平面流动垂直与z轴的每个平面流动 都相同,称平面流动速度势函数 速度势函数存在的条件∂w ∂v − = 0 ∂y ∂z ∂u ∂w − = 0 ∂z ∂x ∂v ∂u − = 0 ∂x ∂y此条件称 柯西—黎曼条件由高数知识可知,柯西—黎曼条件是使udx + vdy + wdz全微分的充要条件,即成为某一个函数ϕ(x ,y ,z ,t )d ϕ = udx + vdy + wdz而当 t 为参变量, ϕ(x ,y ,z ) 的全微分为∂ϕ ∂ϕ ∂ϕ dϕ = dx + dy + dz ∂x ∂y ∂z比较两式有∂ϕ u = ∂x ∂ϕ v = ∂y ∂ϕ w = ∂z∂ϕ 柱坐标 V r = ∂r 1 ∂ϕ Vθ = r ∂θ ∂ϕ Vz = ∂z把ϕ(x ,y ,z ) 称为速度势函数简称势函数无论流体是否可压缩,是否定常流只要满足无旋条件 ,总有 势函数存在。