流体力学势流理论
- 格式:pptx
- 大小:1.49 MB
- 文档页数:68
第六章:势流理论一.内容总结:二元流动包括平面流动和轴对称流动。
对于不可压缩流体的平面定常势流可以引入流函数和速度势函数。
而不可压缩平面势流速度势函数和流函数均满足拉普拉斯方程。
速度势函数的等值线与流函数等值线正交,流函数的等值线与流线重合。
本章研究物体在静止理想流体中平面运动时,流体对物体的作用力。
求解势流问题的思路为:当物体在流体中运动,即物体与流体之间产生相对运动时,物体受到流体的作用力。
对于理想流体的运动不存在切应力,理想流体中运动的物体表面上只受到法向的压力作用。
因此要解决在流场中物体所受的作用力,只要把物体表面上合压力求出即可。
由伯努利方程可知,若物面上(理想流体中无分离绕流时物面与流线重合)的速度分布已知可求出物面上压力分布,再沿物面积分便可求出物体受到的合压力。
因此,问题归结为求出流场的速度分布,对于不可压缩平面流动,求速度分布的问题又可归结为求速度势函数和流函数问题。
1. 势流问题求解的思路 基本方程 : 20ϕ∇= 无旋流动20ψ∇=二维不可压缩流动V grad φ=G即得到三个速度分量u v 伯努立方程压力,,w →→P 再由边界条件→ 积分 spds ∫便求得了合力,因此只要确定V ϕ→→p G就可积分求合力了。
对于二维不可压缩无旋流动,整个问题的关键在于找到满足边界条件的ϕ或ψ。
求速度势ϕ的方法:因为方程是线性方程, 几个解的线性之和仍满足拉普拉斯方程。
20ϕ∇=根据已知知识确定应选的势流. 简单平面势流的表示式 1) 等速直线运动等速V 平行x 轴的平行流动速度势和流函数为: 0V x ϕ= 0V y ψ=2) 源和汇源心在坐标原点时速度势和流函数在平面极坐标下为: ln 2Q r ϕπ= 2Q ψθπ= 式中为源 为汇0Q >0Q <3) 旋涡速度势和流函数在平面极坐标下为: 2ϕθπΓ= ln 2r ψπΓ=−4)偶极子速度势和流函数为:222M x z x y ϕπ=+ 222M yx yψπ=−+ 221214sin p p p c V θρ∞∞−==− 在位置上,指向与X 轴成β角. 0z M :称偶极矩,由汇指向源。