第2章多自由度体系
- 格式:pdf
- 大小:795.30 KB
- 文档页数:60
船体振动基础1第章多自由度系统的振第2章多自由度系统的振动一、引言二、两自由度系统的振动三、多自由度系统的振动四、振动方程建立的其他方法2有阻尼的多自由度系统振动1、拉格朗日方程式1、拉格朗日方程式P38拉格朗日法是建立微分方程一种简单的方法:先求出系统的动能、势能,进而得出质量矩阵和刚度矩阵.优点:系统的动能和势能都是标量,无需考虑力的方向。
141、拉格朗日方程式P38拉格朗日第二类方程式适用于完整约束的系统。
完整约束完整约束:当约束方程本身或约束方程通过积分后可以下式所示的形式表示时,称为完整约束。
不完整约束:当约束方程本含有不能积分的速度项时,系统的约束称为不完整约束。
具有不完整约束的系统,系统的自由度不等于广义坐标数自由度数小于广义坐标数于广义坐标数,自由度数小于广义坐标数。
151、拉格朗日方程式P3811•位移方程和柔度矩阵P40对于静定结构,有时通过柔度矩阵建立位移方程比通过对于静定结构有时通过m1x1x2以准静态方式作用在梁上。
梁只产生位移(即挠度),不产生加速度。
的静平衡位置为坐标P1=1 f11 f21 f12P2=1 f22(1)P1 = 1、P2 = 0 时 m1 位移:x1 = f11 m2 位移:x2 = f 21 (3)P1、P2 同时作用 m1 位移: 位移 x1 = f11 P 1 + f12 P 2 m2 位移:x2 = f 21 P 1 + f 22 P 2(2)P1 = 0、P2 = 1 时 m1 位移:x1 = f12 m2 位移:x2 = f 22P1 m1 x1 x2 P2 m2P1=1 f11 f21 f12 P1 m1 x1P2=1 f22 P2 m2 x2P 同时作用时 1、P 2 同时作用时:x1 = f11P 1 + f12 P 2 x2 = f 21P 1 + f 22 P 2矩阵形式 X = FP 矩阵形式:⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦f ij 柔度影响系数f12 ⎤ f 22 ⎥ ⎦⎡ f11 F=⎢ ⎣ f 21⎡P 1⎤ P=⎢ ⎥ ⎣ P2 ⎦物理意义: 系统仅在第 j 个坐标受到 单位力作用时相应于第 i 个坐标上产生的位移柔度矩阵P1 m1 x1P2 m2 x2P1(t) m1 m2P2(t)&1 m1 & x&2 m2 & xX = FP⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P 1⎤ ⎢P ⎥ f 22 ⎥ ⎦⎣ 2 ⎦当P 1、P 2 是动载荷时 集中质量上有惯性力存在⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P && 1 (t ) − m1 x1 ⎤ ⎢ P (t ) − m & ⎥ f 22 ⎥ & x 2 2⎦ ⎦⎣ 2⎡ x1 ⎤ ⎡ f 11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21位移方程:f 12 ⎤⎛ ⎡ P1 (t ) ⎤ ⎡m1 ⎜⎢ −⎢ ⎥ ⎥ ⎜ f 22 ⎦⎝ ⎣ P2 (t ) ⎦ ⎣ 0&1 ⎤ ⎞ 0 ⎤⎡ & x ⎟ ⎥ ⎢ ⎥ &2 ⎦ ⎟ m2 ⎦ ⎣ & x ⎠&& ) X = F ( P − MXP1(t) m1 m2P2(t)⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦⎡P 1 (t ) ⎤ P=⎢ ⎥ P ( t ) ⎣ 2 ⎦&1 m1 & x&2 m2 & x位移方程 位移方程:&& ) X = F ( P − MX也可按作用力方程建立方程:&& + KX = P MX刚度矩阵&& + X = FP FMX柔度矩阵与刚度矩阵的关系 柔度矩阵与刚度矩阵的关系:&& KX = P − MX若K非奇异F=K−1FK = I&& ) X = K −1 ( P − MX应当注意:对于允许刚体运动产生的系统(即具有刚体自由度的系统) , 柔度矩阵不存在。
船体振动基础1第2章多自由度系统的振动第章多自由度系统的振一、引言二、两自由度系统的振动2上节课内容的回顾1.几个重要概念主振型第阶主振型第二阶主振型多自由度系统主振型,第一阶主振型,第二阶主振型基频,第一阶固有频率,第二阶固有频率,……主振动,模态个自度系自上节课内容的回顾2.两个自由度系统的自由振动(P37)⎬⎫=++−=−++00)(2212111x k k x k xm x k x k k xm &&&&⎭)(2321222个自度系自上节课内容的回顾2.两个自由度系统的自由振动(P41-43)m &&⎭⎬⎫=++−=−++0)(0)(23212222212111x k k x k xm x k x k k x&&①假设简谐形式的解振动时,两个质量按相同频率和相位角作简谐振动。
()()⎭⎬⎫+=+=θωθωt A x t A x n n sin sin 2211上节课内容的回顾将简谐振动解代入运动方程式上节课内容的回顾解特征方程式的根,可以得到:上节课内容的回顾将特征值代入②的振幅A1和振幅A2,得到对应于和的振幅A1和振幅A2之间的两个确定的比值:21ω上节课内容的回顾⑥主振动的确定。
z 系统以某一阶固有频率按其相应的主振型作振动,z 称为系统的主振动(1)(1)⎫第一阶主振动为:()1111(1)(1)(1)22111111sin()sin()sin x A t xA t A t ωθωθβωθ=+⎪⎬=+=+⎪⎭第二阶主振动为:(2)(2)1122sin()x A t ωθ⎫=+⎪()(2)(2)(2)22222122sin()sin x A t A t ωθβωθ⎬=+=+⎪⎭z 系统作主振动时,各点同时经过静平衡位置和到达最大偏离位置,z 以确定的频率和振型作简谐振动。
上节课内容的回顾⑦一般情况下自由振动的通解。
并非在任何情况下系统都会作主振动形式的运动,一般情况下系统运动方程的通解为上述两种主振动的叠加:o在一般情况下,系统的自由振动是两种不同频率的主振动的线性组合,其结果不一定是简谐振动。