第二章波函数和Schrodinger方程
- 格式:doc
- 大小:1.48 MB
- 文档页数:31
I.波函数与Schrodinger方程1. 经典波有波函数吗?量子波函数与经典波函数有什么异同?答:波函数就其本义而言不是量子力学特有的概念.任何波都有相应的波图执只是习惯上这一术语通常专用于描述量子态而不常用于经典波.经典波例如沿轴方向传播的平面单色波,波动动量对和的函数——波函数可写为,其复指数形式为,波函数给出了传播方向上时刻在点处的振动状态。
经典波的波函数通常称之为:波的表达式或波运动方程.量子力学中,把德布罗意关系 p =k 及 E =ω代入上式就得到自由粒子的波函数 ( 自由粒子的波的表达式 ).经典波与概率狡的唯一共性是叠加相干性。
但概率波函数是态函数,而态的叠加与经典波的叠加有着本质的差别.经典波函数描述的是经典波动量对时空变量的函数关系.量子力学中的概率波函数其意义不同于经典物理中的任何物理量.概率波函数虽是态函执但本身不是力学量.态函数给出的也不是物理量间的关系.概率波函数的意义是:由波函效描述微观体系各种力学量的概率分朽.作为一种约定的处理方法,经典波可表为复指数函数形式但只有它的实部才有物理意义.而概率波函数一般应为复函数.非相对论量子力学中,粒子不产生出不泯灭.粒子一定在全空间中出现,导致了概率被函数归一化问题,而经典波则不存征这个问题.概率波函数乘上一常数后,粒子在空间各点出现的相对概率不变.因而,仍描述原来的状态.而经典波中不同的波幅的波表不同的波动状态,振幅为零的态表示静止态.而量子力学中,振幅处处为零的态表示不存在粒子.另外经典波函数与量子被函数满足各自的、特征不同的波方程.2 .波函数的物理意义——微观粒子的状态完全由其被函数描述,这里“完全'的含义是什么?波函数归一化的含义又是什么 ?答:按照波函数的统计解释波函数统计地描述了体系的量子态.如已知单粒子 ( 不考虑自旋 ) 波函数为,则不仅可确定粒子的位置概率分布,而且如动员等粒子其他力学且的概率分布也均可通过而完全确定.出于量子理论与经典理论不同,它一般只能预言测量的统计结果.而只要已知体系波函数,便可由它获得该体系的一切可能物理信息.从这个意义上着,有关体系的全部信息显然都已包含在波函数中,所以我们此微现粒子的状态完全由其波函数描述,并把波函数称为态函数.非相对论量子力学中粒子不产生、不泯灭.根据波函数的统计解释,在任何时刻,粒子一定在空间出现,所以,在整个空间中发现粒子是必然事件.概率论中认为必然事件的概率等于 1 .因而,粒子在整个空间中出现的概率即概率密度对整个空间积分应等于1 .式中积分号下的无限大符号表示对整个空间积分.这个条件称为归一化条件.满足归一化条件的波函数称为归一化波函数.显然,平方可积波函数才可以归一化.3 .证明从单粒子薛定谔方程得出的粒子速度场是非旋的,即求证,其中,为几率密度,为几率流密度。
第二章 波函数与薛定谔方程(2)一、填空题1、一维谐振子处于其能量本征态n ψ,则其动能的平均值为__________;势能的平均值为___________________。
2、一维线性谐振子的量子数取n 的波函数为ψn (x ),其定态薛定谔方程为 ,与ψn (x )相对应的能量为 。
3、一般来说,把无限远处为零的波函数所描写的状态称为 ,体系能量最低的态称为 。
4、线性谐振子的x x dx d H αμωμ++-=22222212ˆ ,α为实数,则其能n E = 。
5、粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为 ,第一激发态的波函数为 。
6、基态是指 的状态,一维线性谐振子的基态波函数为 。
7、一维线性谐振子的第一激发态的能量为 、第一激发态的波函数为 。
8、t =0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ 。
9、 称为隧道效应。
答案:粒子在能量小于势垒高度时仍能贯穿势垒的现象10、 的状态称为束缚态,其能量一般为 谱。
10、处于第3激发态的线性谐振子的经典禁区为 。
二、选择题1、在一维无限深势阱U x x ax a (),,=<∞≥⎧⎨⎩022中运动的质量为μ的粒子的能级为A.πμ22224 n a B.πμ22228 n a C.πμ222216 n a D.πμ222232 n a. 2、在一维无限深势阱U x x a x a (),,=<∞≥⎧⎨⎩0中运动的质量为μ的粒子处于基态,其位置几率分布最大处是A.x =0B.x a =C.x a =-D.x a =2 3、线性谐振子的能级为A.,...)3,2,1(,21=⎪⎭⎫ ⎝⎛+n n ω . B.(),....)2,1,0(,1=+n n ω .C.,...)2,1,0(,21=⎪⎭⎫ ⎝⎛+n n ω . D.(),(,,,...)n n +=1123 ω 4、线性谐振子的能量本征方程是A.2222221[]22d x E dx μωψψμ-+= . B.[]--= 22222212μμωψψd dx x E . C.[] 22222212μμωψψd dx x E -=-. D.2222221[]22d x E dx μωψψμ+=- 5、线性谐振子的第一激发态的波函数为ψαα()exp()x N x x =-122122,其位置几率分布最大处为A.x =0B.x =±μωC.x =μωD.x =±μω.6、一维无限深势阱中,粒子任意两个相邻能级之间的间隔 A.和势阱宽度成正比 B.和势阱宽度成反比 C.和粒子质量成正比 D.随量子数n 增大而增大7、一维谐振子处于01A B ψϕϕ=+,其中A 、B 为实常数,n ϕ为谐振子的第n 个归一化本征函数,则A.122=+B AB.1)(2=+B AC.1=+B AD.B A =8、对于一维方势垒的穿透问题,关于粒子的运动,正确的是 A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒。
量子力学中的薛定谔方程与波函数解析在量子力学中,薛定谔方程(Schrodinger Equation)是描述微观粒子行为的基本方程。
它以奥地利物理学家厄尔温·薛定谔(Erwin Schrodinger)的名字命名,是量子力学理论的核心。
薛定谔方程的一般形式为:iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + VΨ其中,i是虚数单位,ħ是普朗克常量除以2π,∂Ψ/∂t表示波函数关于时间的偏导数,m是粒子的质量,∇²Ψ表示波函数的拉普拉斯算子,V是势能函数,Ψ表示波函数。
波函数Ψ是描述量子粒子的状态的数学函数。
它包含了粒子的位置、动量、自旋等信息。
根据量子力学的基本假设,波函数Ψ的模的平方|Ψ|² 可以解释为在不同位置找到粒子的概率密度。
薛定谔方程是一个偏微分方程,求解它得到的波函数解析表达式可以提供关于粒子行为的重要信息。
然而,对于复杂系统,薛定谔方程的解析求解并不容易。
因此,通常采用数值方法或近似方法进行求解。
对于简单系统,我们可以得到薛定谔方程的解析解。
以一维简谐振子为例,假设势能函数V(x) = 1/2 mω²x²,其中ω是振动频率。
代入薛定谔方程,可以得到一维简谐振子的波函数解析解:Ψ(x) = (mω/πħ)^(1/4) * exp(-mωx²/2ħ) * H(n) ((mω/ħ)^(1/2)x)其中H(n)是埃尔米特多项式(Hermite Polynomial),n为非负整数。
除了一维简谐振子,薛定谔方程的解析解还可以得到其他简单系统的波函数解。
例如,无限深势阱、方势垒、氢原子等都有其特定的波函数解析表达式。
对于更复杂的系统,如多粒子体系或相互作用系统,薛定谔方程的解析解非常困难。
这时,我们常常采用数值方法,如薛定谔方程的数值求解算法(如分裂算子法、变分法等)来获得波函数的近似解。
总之,薛定谔方程与波函数解析是量子力学研究中的重要内容。
第2章波函数和薛定谔方程既然辐射和粒子都具有波动性和微粒性,那么,如何理解这两属性呢?它们如何统一起来? 经典物理观点必须被修改。
主要表现:a. 波-粒两象性P (粒子) ν λ (波)ω=ν= h E (Planck 假设)Einstein 关系k P = (P h =λ,λπ=2k ) (de Broglie 假设) de Broglie 关系 ∴ 具有确定动量的自由粒子被一平面波所描述)Et r P (i )t r k (i AAe-⋅ω-⋅==ψb. 物理量取值不一定是连续的辐射体辐射的能量取值 ν=nh E ,2,1,0n = 氢原子的能量202n 8n a eE πε⋅-=cm 10529.0em 4a 82e 200-⋅=πε=由于平常粒子的波长1010-<λÅ,所以观察不到干涉, 衍射现象。
微观粒子,如电子1≈λÅ,因此在原子线度下可能显示出波动性。
而在宏观测量尺度下,几乎也不显示波动性。
将粒子所具有的微粒性和波动性统一起来,这在经典物理学中看来是不可能的,因经典粒子 经典波√原子性(整体性) ⨯实在物理量的空间分布 ⨯轨道 √干涉,衍射这两者是不相容的。
描述微观粒子既不能用经典粒子,也不能用经典波,当然也不能用经典粒子和经典波来描述。
§1 波函数的统计解释一、波函数的引入描述自由粒子可用平面波波函数)(Et r p ipAe -⋅=ψ来描述。
如果粒子处于随时间和位置变化的力场中运动,这样的微观粒子的运动状态也可以用较复杂的波(,)r t ψ完全描述。
二、波函数的解释1、经典物理学中粒子与波的有关概念经典概念中粒子意味着: 1.有一定质量、电荷等“颗粒性”的属性;2.有确定的运动轨道,每一时刻有一定位置和速度。
经典概念中波意味着:1. 某种实在的物理量的空间分布作周期性的变化; 2.干涉、衍射现象,即相干叠加性。
2、对波粒二象性的两种错误的看法 (1). 波由粒子组成波是由粒子组成的,把波看成是由大量粒子相互作用而在空间形成的一种疏密相间的周期分布。
================精选公文范文,管理类,工作总结类,工作计划类文档,欢迎阅读下载============== --------------------精选公文范文,管理类,工作总结类,工作计划类文档,感谢阅读下载--------------------- ~ 1 ~
第二章 波函数和薛定谔方程b 第二章 波函数和薛定谔方程 § 学习指导 本章主要介绍微观粒子运动状态的描述方法、演化规律以及此带来的新特点,并以一维情况作例子进行具体说明。 根据实验,微观粒子具有波粒二象性。经典波一般用振幅A(r,t)与位相?(r,t)来描述, vvvi?(r它们可以统一写为?(r,t)?A(r,t)e,t),在量子力学中沿用坐标与时间的复值函数 vvvv?(r,t)来描述微观粒子的运动状态,称为波函数。经典情况下,模方|?(r,t)|2表示波的 强度;量子情况下,|?(r,t)|2表示粒子出现的概率密度,因此需要把波函数归一化。 波函数随时间的变化薛定谔方程确定。按照波函数的演化形式,粒子运动可以分为定态和非定态。在定态中,粒子的概率密度不随时间变化。按照定态波函数的空间形式,粒子运动可以分================精选公文范文,管理类,工作总结类,工作计划类文档,欢迎阅读下载============== --------------------精选公文范文,管理类,工作总结类,工作计划类文档,感谢阅读下载--------------------- ~ 2 ~
为束缚态和非束缚态。在束缚态中,粒子的能量取离散值,形成能级,可以很好地说明原子光谱。散射态是典型的非束缚态,可以用来描述粒子之间的碰撞,解释微观粒子的隧道贯穿现象。 真实的物理空间是三维的,但是当系统具有某些对称性时,可以约化为一维问题,例如中心势场中粒子的径向运动。近来,实验中也制备出了某些类型的一维量子力学系统。一维薛定谔方程容易求解,便于初学者理解量子力学的基本概念、熟悉常用方法和领会核心思想。 本章的主要知识点有 1. 微观粒子运动状态的描述 1)波函数 波函数?(r,t)是描述微观粒子状态的复值函数,波函数需要满足的标准条件为单值性、连续性和有界性。实际体系波函数满足平方可积条件,即2)波函数的意义 波函数的模方 vv???v2?(r,t)d??N2??。 vv2w(r,t)??(r,t) 给出t时刻粒子出现在位置r邻域单位体积内的概率,即概率密度。 因此,标================精选公文范文,管理类,工作总结类,工作计划类文档,欢迎阅读下载============== --------------------精选公文范文,管理类,工作总结类,工作计划类文档,感谢阅读下载--------------------- ~ 3 ~