第四章 多自由度系统
- 格式:ppt
- 大小:8.44 MB
- 文档页数:81
第4章 多自由度系统振动分析的数值计算方法用振型叠加法确定多自由度系统的振动响应时,必须先求得系统的固有频率和主振型。
当振动系统的自由度数较大时,这种由代数方程求解系统固有特性的计算工作量很大,必须利用计算机来完成。
在工程中,经常采用一些简单的近似方法计算系统的固有频率及主振型,或将自由度数较大的复杂结构振动问题简化为较少阶数的振动问题求解,以得到实际振动问题的近似分析结果。
本章将介绍工程上常用的几种近似解法,适当地选用、掌握这类实用方法,无论对设计研究或一般工程应用都将是十分有益的。
§4.1 瑞利能量法瑞利(Rayleigh )能量法又称瑞利法,是估算多自由系统振动基频的一种近似方法。
该方法的特点是:①需要假定一个比较合理的主振型;②基频的估算结果总是大于实际值。
由于要假设主振型,因此,该方法的精度取决于所假设振型的精度。
§4.1.1 第一瑞利商设一个n 自由度振动系统,其质量矩阵为[]M 、刚度矩阵为[]K 。
多自由度系统的动能和势能一般表达式为{}[]{}{}[]{}/2/2TTT x M x U x K x ⎫=⎪⎬=⎪⎭&& (4.1.1)当系统作某一阶主振动时,设其解为{}{}(){}{}()sin cos x A t x A t ωαωωα=+⎫⎪⎬=+⎪⎭&(4.1.2)将上式代入式(4.1.1),则系统在作主振动时其动能最大值max T 和势能最大值max U 分别为{}[]{}{}[]{}2max max /2/2TTT A M A U A K A ω⎫=⎪⎬=⎪⎭(4.1.3)根据机械能守恒定律,max max T U =,即可求得{}[]{}{}[]{}()2I TTA K A R A A M A ω== (4.1.4)其中,()I R A 称为第一瑞利商。
当假设的位移幅值列向量{}A 取为系统的各阶主振型{}i A 时,第一瑞利商就给出各阶固有频率i ω的平方值,即{}[]{}{}[]{}2(1,2,,)Ti i i Ti i A K A i n A M A ω==L(4.1.5)在应用上式时,我们并不知道系统的各阶主振型{}i A ,只能以假设的振型{}A 代入式(4.1.4),从而求出的相应固有频率i ω的估计值。
《汽车振动基础》课程教学大纲一、课程基本信息课程类别:专业选修课适用专业:汽车车辆工程专业先修课程:汽车构造、汽车诊断与维修总学时:56学分:3二、课程教学目的与基本要求本课程主要任务是,学习汽车机械振动力学的基本理论和方法及分析振动问题的数学方法。
主要内容包括:单自由度系统的振动、两个自由度系统的振动、多自由度系统的振动,连续系统的振动,并介绍了求解特征值问题和系统响应的近似方法及数值计算方法,简要叙述了非线性振动和随机振动的基本概念和理论。
三、教学时数分配四、教学内容与要求第一章绪论(一)教学目的:理解机械振动的概念,了解振动系统研究方法,掌握振动的分类,会分析振动问题并提出解决方法。
(二)教学内容:1 基本要素 2 研究方法 3 分类和表示方法(三)重点:振动系统基本要素(四)难点:振动系统分类和表示方法第二章单自由度系统的振动(一)本章教学目的:理解单自由度系统的自由振动的概念,掌握单自由度系统的强迫振动,掌握汽车车身单自由度系统的振动。
(二)教学内容:1 自由振动 2 强迫振动 3 非简谐激励下的强迫振动4 汽车车身单自由度系统的振动(三)重点:单自由度系统的自由振动(四)难点:汽车车身单自由度系统的振动第三章二自由度系统的振动(一)教学目的:了解二自由度系统的运动微分方程,掌握无阻尼二自由度系统的振动,有阻尼二自由度振动系统和汽车的二自由度系统的振动。
(二)教学内容:1 二自由度系统的运动微分方程2 无阻尼二自由度系统的振动3 有阻尼二自由度振动系统4 汽车的二自由度系统的振动(三)重点:无阻尼二自由度系统的振动(四)难点:汽车的二自由度系统的振动第四章多自由度系统的振动(一)本章教学目的:理解多自由度振动系统的运动微分方程,掌握固有振型的正交性、模态坐标和正则坐标和汽车多自由度振动模型。
(二)教学内容:1 多自由度振动系统的运动微分方程2 固有振型的正交性、模态坐标和正则坐标3 多自由度系统的响应4 拉格朗日方程在振动分析中的应用5 汽车多自由度振动模型(三)重点:固有振型的正交性、模态坐标和正则坐标(四)难点:汽车多自由度振动模型第五章随机振动理论(一)教学目的:了解随机振动概述及随机振动的统计特性,线性振动系统的随机响应计算。
62 / 2962习 题4-1 在题3-10中,设m 1=m 2=m ,l 1=l 2=l ,k 1=k 2=0,求系统的固有频率和主振型。
解:由题3-10的结果22121111)(l g m l g m m k k +++=,2221l gm k -=,2212l g m k -=,22222l gm k k += 代入m m m ==21,021==k k ,l l l ==21可求出刚度矩阵K 和质量矩阵M⎥⎦⎤⎢⎣⎡=m m M 00;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=l mg lmg l mg l mg K 3 由频率方程02=-M p K ,得0322=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=mp l mg l mg lmgmp l mg B 0242222242=+-∴l g m p l g m p ml g p )22(1-=∴ ,lgp )22(2+= 为求系统主振型,先求出adjB 的第一列⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=l mg mp lmg adjB 2分别将频率值21p p 和代入,得系统的主振型矩阵为题4-1图63 / 2963⎥⎦⎤⎢⎣⎡-=112)1(A ⎥⎦⎤⎢⎣⎡+=112)2(A4-2 题4-2图所示的均匀刚性杆质量为m 1,求系统的频率方程。
解:设杆的转角θ和物块位移x 为广义坐标。
利用刚度影响系数法求刚度矩阵k 。
设0,1==x θ,画出受力图,并施加物体力偶与力2111,k k ,由平衡条件得到,222111a k b k k +=, a k k 221-=设1,0==x θ,画出受力图,并施加物体力偶与力2212,k k ,由平衡条件得到,12k a k 2-=, a k k 222=得作用力方程为⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡--++⎭⎬⎫⎩⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡0000312222221221x a k a k a k a k b k x m a m θθ由频率方程02=-M K p ,得031222222212221=----+p m a k ak a k p a m a k b k4-3 题4-3图所示的系统中,两根长度题4-3图题4-2图64 / 2964为l 的均匀刚性杆的质量为m 1及m 2,求系统的刚度矩阵和柔度矩阵,并求出当m 1=m 2=m 和k 1=k 2=k 时系统的固有频率。