(结构动力学)多自由度体系运动方程
- 格式:ppt
- 大小:395.00 KB
- 文档页数:82
船体振动基础1第章多自由度系统的振第2章多自由度系统的振动一、引言二、两自由度系统的振动三、多自由度系统的振动四、振动方程建立的其他方法2有阻尼的多自由度系统振动1、拉格朗日方程式1、拉格朗日方程式P38拉格朗日法是建立微分方程一种简单的方法:先求出系统的动能、势能,进而得出质量矩阵和刚度矩阵.优点:系统的动能和势能都是标量,无需考虑力的方向。
141、拉格朗日方程式P38拉格朗日第二类方程式适用于完整约束的系统。
完整约束完整约束:当约束方程本身或约束方程通过积分后可以下式所示的形式表示时,称为完整约束。
不完整约束:当约束方程本含有不能积分的速度项时,系统的约束称为不完整约束。
具有不完整约束的系统,系统的自由度不等于广义坐标数自由度数小于广义坐标数于广义坐标数,自由度数小于广义坐标数。
151、拉格朗日方程式P3811•位移方程和柔度矩阵P40对于静定结构,有时通过柔度矩阵建立位移方程比通过对于静定结构有时通过m1x1x2以准静态方式作用在梁上。
梁只产生位移(即挠度),不产生加速度。
的静平衡位置为坐标P1=1 f11 f21 f12P2=1 f22(1)P1 = 1、P2 = 0 时 m1 位移:x1 = f11 m2 位移:x2 = f 21 (3)P1、P2 同时作用 m1 位移: 位移 x1 = f11 P 1 + f12 P 2 m2 位移:x2 = f 21 P 1 + f 22 P 2(2)P1 = 0、P2 = 1 时 m1 位移:x1 = f12 m2 位移:x2 = f 22P1 m1 x1 x2 P2 m2P1=1 f11 f21 f12 P1 m1 x1P2=1 f22 P2 m2 x2P 同时作用时 1、P 2 同时作用时:x1 = f11P 1 + f12 P 2 x2 = f 21P 1 + f 22 P 2矩阵形式 X = FP 矩阵形式:⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦f ij 柔度影响系数f12 ⎤ f 22 ⎥ ⎦⎡ f11 F=⎢ ⎣ f 21⎡P 1⎤ P=⎢ ⎥ ⎣ P2 ⎦物理意义: 系统仅在第 j 个坐标受到 单位力作用时相应于第 i 个坐标上产生的位移柔度矩阵P1 m1 x1P2 m2 x2P1(t) m1 m2P2(t)&1 m1 & x&2 m2 & xX = FP⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P 1⎤ ⎢P ⎥ f 22 ⎥ ⎦⎣ 2 ⎦当P 1、P 2 是动载荷时 集中质量上有惯性力存在⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P && 1 (t ) − m1 x1 ⎤ ⎢ P (t ) − m & ⎥ f 22 ⎥ & x 2 2⎦ ⎦⎣ 2⎡ x1 ⎤ ⎡ f 11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21位移方程:f 12 ⎤⎛ ⎡ P1 (t ) ⎤ ⎡m1 ⎜⎢ −⎢ ⎥ ⎥ ⎜ f 22 ⎦⎝ ⎣ P2 (t ) ⎦ ⎣ 0&1 ⎤ ⎞ 0 ⎤⎡ & x ⎟ ⎥ ⎢ ⎥ &2 ⎦ ⎟ m2 ⎦ ⎣ & x ⎠&& ) X = F ( P − MXP1(t) m1 m2P2(t)⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦⎡P 1 (t ) ⎤ P=⎢ ⎥ P ( t ) ⎣ 2 ⎦&1 m1 & x&2 m2 & x位移方程 位移方程:&& ) X = F ( P − MX也可按作用力方程建立方程:&& + KX = P MX刚度矩阵&& + X = FP FMX柔度矩阵与刚度矩阵的关系 柔度矩阵与刚度矩阵的关系:&& KX = P − MX若K非奇异F=K−1FK = I&& ) X = K −1 ( P − MX应当注意:对于允许刚体运动产生的系统(即具有刚体自由度的系统) , 柔度矩阵不存在。
结构动力学思考题made by 云屹思考题一1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同?主要区别为:(1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响;(2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化;(3)动力学的求解方法通常与荷载类型有关,静力学一般无关。
运动方程的不同:动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。
2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数;静力自由度:确定结构体系在空间中的几何位置的独立参数。
意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。
3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体4、在结构振动的过程中引起阻尼的原因有哪些?(1)材料的摩擦或材料变形引起的热耗散;(2)构件连接处或结构构件与非结构构件之间的摩擦;(3)结构外部介质的阻尼。
5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变?如果满足条件:(1)线性问题;(2)重力的影响预先被平衡;则动位移的运动方程不会改变,否则会改变。
思考题二1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]?k ij:由第j自由度的单位位移所引起的第i自由度的力;m ij:由第j自由度的单位加速度所引起的第i自由度的力。
依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。
2、如何用刚度矩阵和质量矩阵,以矩阵的形式表示多自由度体系的势能和动能?{}[]{}1=2TT u M u {}[]{}1=2TV u K u3、建立多自由度体系运动方程的直接动力平衡法和拉格朗日方程法的优缺点是什么? (1)直接动力平衡法:优点:概念直观,易于通过各个结构单元矩阵建立整体矩阵,便于计算机编程。
结构动力学思考题made by 李云屹思考题一1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同?主要区别为:(1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响;(2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化;(3)动力学的求解方法通常与荷载类型有关,静力学一般无关。
运动方程的不同:动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。
2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数;静力自由度:确定结构体系在空间中的几何位置的独立参数。
意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。
3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同?4、在结构振动的过程中引起阻尼的原因有哪些?(1)材料的内摩擦或材料变形引起的热耗散;(2)构件连接处或结构构件与非结构构件之间的摩擦;(3)结构外部介质的阻尼。
5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变?如果满足条件:(1)线性问题;(2)重力的影响预先被平衡;则动位移的运动方程不会改变,否则会改变。
思考题二1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]?k ij:由第j自由度的单位位移所引起的第i自由度的力;m ij:由第j自由度的单位加速度所引起的第i自由度的力。
依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。
2、如何用刚度矩阵和质量矩阵,以矩阵的形式表示多自由度体系的势能和动能?{}[]{}1=2TT u M u {}[]{}1=2TV u K u3、建立多自由度体系运动方程的直接动力平衡法和拉格朗日方程法的优缺点是什么? (1)直接动力平衡法:优点:概念直观,易于通过各个结构单元矩阵建立整体矩阵,便于计算机编程。
第5章多自由度系统的数值计算方法在工程实践中,我们经常会遇到多自由度系统(Multiple Degree of Freedom,简称MDOF)的问题,例如振动台、建筑结构等。
这些系统通常由多个自由度所组成,因此其运动方程会比单自由度系统更加复杂。
因此,我们需要使用数值计算方法来求解这些系统。
在本章中,我们将介绍两种常见的数值计算方法,包括直接积分法和模态叠加法。
一、直接积分法直接积分法,也称为时步法或时间积分法,是一种常用的求解MDOF系统的数值计算方法。
它的基本原理是将多自由度系统的运动方程转换为一组一阶常微分方程。
然后,利用数值积分方法,如欧拉法、Runge-Kutta法等,对这组常微分方程进行求解,得到系统的运动响应。
直接积分法的主要步骤如下:1.确定系统的运动方程:根据多自由度系统的动力学原理,可以得到系统的运动方程。
一般来说,这个方程是非线性方程,通常需要进行线性化处理。
2.将运动方程转化为一阶常微分方程组:将系统的运动方程进行适当的变换,将其转化为一组一阶常微分方程。
这样,就可以使用数值积分方法对其进行求解。
3. 选择数值积分方法:选择适合系统的数值积分方法,例如欧拉法、Runge-Kutta法等。
这些方法的基本思想是将微分方程转化为差分方程,通过迭代来逼近准确解。
4.进行数值计算:根据选择的数值积分方法,进行迭代计算,得到系统的运动响应。
尽管直接积分法是一种广泛应用的数值计算方法,但也存在一些问题。
例如,随着自由度的增加,计算量会大大增加。
此外,由于数值积分方法的局限性,可能会出现数值不稳定、数值发散等问题。
二、模态叠加法模态叠加法是求解MDOF系统的另一种常用数值计算方法。
该方法基于模态分析的思想,将MDOF系统的运动方程转化为一组无耦合的一自由度系统的运动方程。
然后,按照模态响应的叠加原理,将各个模态的响应相加,得到系统的总体响应。
模态叠加法的主要步骤如下:1.确定系统的模态参数:通过模态分析方法,可以得到系统的模态参数,包括模态频率、振型等。
多自由度体系的动力响应分析多自由度体系的动力响应分析是研究多个质点或刚体组成的系统在外界作用下的运动规律和响应特性的一项重要课题。
多自由度体系是指由多个相对独立的质点或刚体组成的系统,其中每个质点或刚体都可以在三个方向上自由运动,因此系统具有多个自由度。
多自由度体系的动力学方程可由牛顿第二定律推导得出,即∑F = ma,其中∑F 表示作用在系统中各质点上的合力,m 表示质点的质量,a 表示质点的加速度。
根据每个质点的运动规律,可以得到系统在不同自由度上的运动方程。
为了简化多自由度体系动力学方程的求解,常采用试解法和模态分析法。
试解法是假设质点的位置和速度可以用特定的试解函数表示,然后将试解函数代入动力学方程中,从而得到未知系数的值。
模态分析法则是将系统的自由度进行正交分解,得到一组特征向量和特征值,将试解函数表示为特征向量的线性组合。
通过求解特征值问题,可以得到系统的固有频率和模态振型,从而分析系统的动力响应。
自由振动是指在没有外界作用的情况下,多自由度体系在初始时刻给定的初始条件下的运动。
通过求解系统的运动方程,可以得到质点位置随时间的变化规律。
自由振动的特点是系统在固有频率上做周期性的振动,同时各自由度之间存在能量的转移和耦合。
强迫振动是指在外界施加周期性的激励力下,多自由度体系的运动。
外界激励力的形式可以是单频、多频或宽频带等。
通过求解系统的运动方程,可以得到系统在激励力作用下的动力响应。
强迫振动的特点是系统在激励频率附近发生共振现象,振幅会显著增大。
阻尼振动是指当多自由度体系存在阻尼力的情况下的振动。
阻尼力可以分为线性阻尼和非线性阻尼两种情况。
线性阻尼是指阻尼力与质点速度成正比的情况,非线性阻尼是指阻尼力与质点速度的高阶项有关的情况。
根据阻尼力的形式,可以得到不同类型的阻尼振动方程。
求解阻尼振动方程,可以得到系统的动力响应,包括振动幅值、相位和能量耗散等。
多自由度体系的动力响应分析在工程领域有广泛的应用。