简谐振动的旋转矢量图示法 PPT
- 格式:ppt
- 大小:267.00 KB
- 文档页数:14
2.旋转矢量图法及其应用同学们好!旋转矢量法可以形象地表示简谐振动位移和时间关系,便于确定初相位,研究振动的合成。
下面我们一起学习旋转矢量法。
简谐振动的平衡位置为坐标原点O 点,水平向右为轴正方向,自原点O 点做一个矢量,矢量长度等于振幅A ,叫振幅矢量。
初始时刻,矢量A 与x 轴夹角等于振动的初相位ψ。
矢量A 从这位置以ω的角速度沿逆时针方向匀速转动,在任一时刻t , 矢量A 与轴所成角度为ωt+ψ。
矢量A 在轴上的投影点与简谐振子的小球同步运动,位移相等,它在x 轴上的投影与时间用关系可用简谐振动方程表示。
矢量A 旋转一周,同时矢量的矢端在轴上的投影点完成一次简谐振动,投影点的运动可以形象地表示简谐振动,这种方法叫做旋转矢量法。
使用旋转矢量法还可以形象地了解简谐振动的振幅、角频率、初相位的物理意义。
显然,矢量A 做圆周运动的周期对应简谐振动的周期T ;矢量A 的圆周运动角速度对应简谐振动的角频率ω;初始时刻,旋转矢量的角度对应简谐振动的初相位ψ。
另外,使用旋转矢量法可以方便的确定物体的振动状态或初相位。
1. 由相位确定振动状态(1)简谐振动的相位是π/3,求振动状态I .旋转矢量图中,矢量A 的相位等于π/3,矢量A 的投影是物体的位移,等于A /2, 下一时刻矢量A 逆时针转动,所以简谐振动的小球向x 轴负方向运动。
(2)如果简谐振动的相位等于3π/2,求振动状态。
在旋转矢量图中,矢量A 的相位等于3π/2,矢量的投影点在x 轴的投影恰好在原点O , 所以物体的位移等于0, 矢量A 做逆时针转动,所以简谐振动的小球向x 轴正方向运动。
x x x2.由振动状态求初相位初始时刻,简谐振动的物体位移是A/2, 物体向x轴正方向运动,也就是速度大于0,初相位是多少?图中,矢量A在x轴的投影是A/2,表明矢量在第一或第四象限,且投影点向x轴正方向运动,从图示来看矢量A只能在第四象限。
因此初相位等于5π/3或-π/3。