第1讲圆和圆的位置关系
- 格式:doc
- 大小:651.50 KB
- 文档页数:6
24.2 与圆有关的位置关系教学内容1.设⊙O的半径为r,点P到圆心的距离OP=d,那么有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.不在同一直线上的三个点确定一个圆.3.三角形外接圆及三角形的外心的概念.4.反证法的证明思路.教学目标1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,那么有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.3.了解三角形的外接圆和三角形外心的概念.4.了解反证法的证明思想.复习圆的两种定理和形成过程,并经历探究一个点、两个点、•三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P•到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题.重难点、关键1.•重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.2.难点:讲授反证法的证明思路.3.关键:由一点、二点、三点、•四点作圆开始导出不在同一直线上的三个点确定一个圆.教学过程一、复习引入〔学生活动〕请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.老师点评:〔1〕在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.〔2〕圆规:一个定点,一个定长画圆.〔3〕都等于半径.〔4〕经过画图可知,圆外的点到圆心的距离大于半径;•圆内的点到圆心的距离小于半径.二、探索新知由上面的画图以及所学知识,我们可知:设⊙O的半径为r,点P到圆心的距离为OP=d那么有:点P在圆外⇒d>r点P在圆上⇒d=r点P在圆内⇒d<r反过来,也十清楚显,如果d>r⇒点P在圆外;如果d=r⇒点P在圆上;如果d<r⇒点P在圆内.因此,我们可以得到:这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.下面,我们接下去研究确定圆的条件:〔学生活动〕经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.〔1〕作圆,使该圆经过点A,你能作出几个这样的圆?〔2〕作圆,使该圆经过点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?〔3〕作圆,使该圆经过点A、B、C三点〔其中A、B、C三点不在同一直线上〕,•你是如何做的?你能作出几个这样的圆?老师在黑板上演示:〔1〕无数多个圆,如图1所示.〔2〕连结A、B,作AB的垂直平分线,那么垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.lBA(1) (2) (3)〔3〕作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示.在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C•三个点的距离相等〔中垂线上的任一点到两边的距离相等〕,所以经过A、B、C三点可以作一个圆,并且只能作一个圆.也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.下面我们来证明:经过同一条直线上的三个点不能作出一个圆.证明:如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线L1,又在线段BC的垂直平分线L2,•即点P为L1与L2点,而L1⊥L,L2Alm BAC ED OF ⊥L ,这与我们以前所学的“过一点有且只有一条直线与直线垂直〞矛盾. 所以,过同一直线上的三点不能作圆.上面的证明方法与我们前面所学的证明方法思路不同,它不是直接从命题的得出结论,而是假设命题的结论不成立〔即假设过同一直线上的三点可以作一个圆〕,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到命题成立.这种证明方法叫做反证法. 在某些情景下,反证法是很有效的证明方法.例1.某地出土一明代残破圆形瓷盘,如以下图.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心. 作法:〔1〕在残缺的圆盘上任取三点连结成两条线段; 〔2〕作两线段的中垂线,相交于一点. 那么O 就为所求的圆心. 三、稳固练习教材P100 练习1、2、3、4. 四、应用拓展例2.如图,梯形ABCD 中,AB ∥CD ,AD=BC ,AB=48cm ,CD=30cm ,高27cm ,求作一个圆经过A 、B 、C 、D 四点,写出作法并求出这圆的半径〔比例尺1:10〕分析:要求作一个圆经过A 、B 、C 、D 四个点,应该先选三个点确定一个圆,•然后证明第四点也在圆上即可.要求半径就是求OC 或OA 或OB ,因此,•要在直角三角形中进行,不妨设在Rt △EOC 中,设OF=x ,那么OE=27-x 由OC=OB 便可列出,•这种方法是几何代数解. 作法分别作DC 、AD 的中垂线L 、m ,那么交点O 为所求△ADC 的外接圆圆心. ∵ABCD 为等腰梯形,L 为其对称轴 ∵OB=OA ,∴点B 也在⊙O 上 ∴⊙O 为等腰梯形ABCD 的外接圆 设OE=x ,那么OF=27-x ,∵OC=OB222215(27)24x x +=-+ 解得:x=20∴221520+=25,即半径为25m .五、归纳总结〔学生总结,老师点评〕 本节课应掌握:点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d ,那么;;.P d r P d r P d r ⇔>⎧⎪⇔=⎨⎪⇔<⎩点在圆外点在圆上点在圆内 2.不在同一直线上的三个点确定一个圆. 3.三角形外接圆和三角形外心的概念.4.反证法的证明思想.5.以上内容的应用.六、布置作业1.教材P110 复习稳固 1、2、3. 2.选用课时作业设计.第一课时作业设计一、选择题.1.以下说法:①三点确定一个圆;②三角形有且只有一个外接圆;•③圆有且只有一个内接三角形;④三角形的外心是各边垂直平分线的交点;⑤三角形的外心到三角形三边的距离相等;⑥等腰三角形的外心一定在这个三角形内,其中正确的个数有〔• 〕A.1 B.2 C.3 D.42.如图,Rt△ABC,∠C=90°,AC=3cm,BC=4cm,那么它的外心与顶点C的距离为〔〕.A.2.5 B.2.5cm C.3cm D.4cmB ACBACDO3.如图,△ABC内接于⊙O,AB是直径,BC=4,AC=3,CD平分∠ACB,那么弦AD长为〔〕A.522 B.52C.2 D.3二、填空题.1.经过一点P可以作_______个圆;经过两点P、Q可以作________•个圆,•圆心在_________上;经过不在同一直线上的三个点可以作________个圆,•圆心是________的交点. 2.边长为a的等边三角形外接圆半径为_______,圆心到边的距离为________.3.直角三角形的外心是______的中点,锐角三角形外心在三角形______,钝角三角形外心在三角形_________.三、综合提高题.1.如图,⊙O是△ABC的外接圆,D是AB上一点,连结BD,并延长至E,连结AD,•假设AB=AC,∠ADE=65°,试求∠BOC的度数.B AC O2.如图,通过防治“非典〞,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图24-49所示,A、B、C•为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.BAC3.△ABC 中,AB=1,AC 、BC 是关于x 的一元二次方程〔m+5〕x 2-〔2m-5〕x+12=0两个根,外接圆O 的面积为4π,求m 的值.答案:一、1.B 2.B 3.A二、1.无数,无数,线段PQ 的垂直平分线,一个,三边中垂线 2.33 a 36a 3.斜边 内 外 三、1.100°2.连结AB 、BC ,作线段AB 、BC 的中垂线,两条中垂线的交点即为垃圾回收站所在的位置. 3.∵πR 2=4π,∴R=12,∵AB=1,∴AB 为⊙O 直径,∴AC 2+BC 2=1,即〔AC+BC 〕2-2AC ·BC=1, ∴〔255m m -+〕2-•2·125m +=1,m 2-18m-40=0,∴m=20或m=-2, 当m=-2时,△<0〔舍去〕, ∴m=20.[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
圆与圆的位置关系(一)教学目标:能根据圆的方程判断圆与圆的位置关系(外离、外切、相交、内切、内含);2010年考试说明要求B 。
知识点回顾:1.圆与圆的位置关系:设圆C1:222()()x a y b r -+-=和圆C2:222()()x m y n k -+-=,r k ≥,且设两圆圆心距为d ,则有:(1)d=k+r 两圆外切;(2)d=k-r两圆内切;(3)d >k+r两圆外离;(4)d <k+r两圆内含;(5)k-r <d <k+r 两圆相交.2.相交两圆的公共弦所在直线方程:设圆C1∶221110x y D x E y F ++++=和圆C2∶++22y x 0222=++F y E x D ,则过两圆交点的直线方程为0)()()(212121=-+-+-F F y E E x D D 3.公切线长度的求法______________ 基础训练:1.圆16521222222=-+-=-++)()与()()(y x y x 的位置关系为___________ 2.圆027********=-++=-++y y x x y x 与的位置关系为_____________. 3.半径为13,且与直线2x+3y-10=0切于点P(2,2)的圆方程方程为_____________ 4.已知以C(-4,3)为圆心的圆与圆122=+y x 相切,则圆C 的方程为_____________ 典型例题:已知点B '为圆A :22(1)8x y -+=上任意一点,点B(-1,0),线段BB '的垂直平分线和线段AB '相交于点M.(1)求点M 的轨迹E 的方程;(2)已知点00(,)M x y 为曲线E 上任意一点,求证:点0000324(,)22x y P x x ---关于直线0022x x y y +=的对称点为定点,并求出该定点的坐标.在平面直角坐标系xOy 中 ,已知以O 为圆心的圆与直线l :(34)y mx m =+-,()m R ∈恒有公共点,且要求使圆O 的面积最小.(1)写出圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内动点P 使||PA 、||PO 、||PB 成等比数列,求PA PB ⋅的范围;(3)已知定点Q (4-,3),直线l 与圆O 交于M 、N 两点,试判断tan QM QN MQN ⋅⨯∠是否有最大值,若存在求出最大值,并求出此时直线l 的方程,若不存在,给出理由.18、如图,已知圆心坐标为的圆M 与x 轴及直线x y 3=分别相切于A 、B 两点,另一圆N 与圆M 外切、且与x 轴及直线x y 3=分别相切于C 、D 两点,(1)求圆M 和圆N 的方程;(2)过点B 作直线MN 的平行线l ,求直线l 被圆N 截得的弦的长度.检测与反馈:1.圆36)1()7(1)2()3(2222=-+-=++-y x y x 与的位置关系为___________2.圆033023222222=--+=+-+y x y x y x y x 与的位置关系为_________3.过点A(0,6)且与圆C:0101022=+++y x y x 切于原点的圆方程为_________4.圆心在y 轴上,且与直线,01234:1=+-y x l 直线01243:2=--y x l 都相切的 圆的方程为_______________5.设集合{}{})0()1()1(,4),(22222<≤-+-=≤+=r r y x y x N y x y x M )(,,当N N M =⋂时,则实数r 的取值范围______________11、直线20x y +=与圆222x y +=相交于,A B 两点,O 为原点,则OA OB ⋅=; 13、已知直线01=+-y kx 与圆C :422=+y x 相交于A ,B 两点,若点M 在圆C 上,且有OB OA OM +=(O 为坐标原点),则实数k = ;。
3·6圆和圆的位置关系1.圆与圆的五种位置关系:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.因此只从公共点的个数来考虑,可分为相离、相切、相交三种.(2)相交2.两圆相内切或外切时,两圆的连心线一定经过切点,都是轴对称图形,对称轴是它们的连心线.3.在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A =R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2,所以O1O2=O1B-O2B,即d=R-r:反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d =R-r.设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r<d<R=r(R≥r)(4)两圆内切d=R-r(R>r)(5)两圆内含d<R-r(R>r)同心圆d=04.定理:相交两圆的连心线垂直平分两圆的公共弦.1.两个同样大小的肥皂泡黏(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.【解析】∵OP =OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2× 90°-60°=120°.2.如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?【解析】(1)设⊙O与⊙P外切于点A.∴ PA=OP-OA=8-5,∴ PA=3cm.(2)设⊙O与⊙p内切于点B.∴ PB=OP+OB=8+5,∴ PB=13cm.(3)如图7-101,⊙O2与以O1为圆心的同心圆相交于A、B、C、D.3.求证:四边形ABCD是等腰梯形.分析:欲证明四边形ABCD是等腰梯形,只需证明AB∥CD,AD=BC且AB≠CD即可.【解析】证明:连结O1O2,∵⊙O2与以O1为圆心的圆相交于A、B、C、D,∴ AB⊥O1O2,DC⊥O1O2.∴ AB∥CD.在⊙O2中,∵AB∥CD,又∵ AB≠CD,∴四边形ABCD是等腰梯形.4.已知:如图7-102,A是⊙O1、⊙O2的一个交点,点P是O1O2的中点.如果过A的直线MN垂直于PA,交⊙O1于M,交⊙O2于N.那么AM与AN有什么关系呢?是O1O2中点,由平行线等分线段定理可得AC=AD,而得结论.【解析】证明:过点O1、O2分别作O1C⊥MN,O2D⊥MN,垂足为C、D,又∵ PA⊥MN,∴ PA∥O1C∥O2D,∵O1P=O2P,∴ AC=AD.∴ AM=AN.。
图1扇形、圆与圆的位置关系一、圆和圆的位置关系.1、外离、外切、相交、内切、内含(包括同心圆)这五种位置关系的定义.(1)外离: 两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(2)外切: 两个圆有惟一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时, 叫做这两个圆外切.这个惟一的公共点叫做切点.(3)相交: 两个圆有两个公共点,此时叫做这个两个圆相交.(4)内切: 两个圆有惟一的公共点,并且除了这个公共点以外,一个圆上的都在另一个圆的内部时,叫做这两个圆内切.这个惟一的公共点叫做切点.(5)内含: 两个圆没有公共点, 并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.两圆同心是两圆内的一个特例. 2、相切两圆的性质:如果两个圆相切,那么切点一定在连心线上. 3、 相交两圆的性质:相交两圆的连心线垂直平分公共弦. 二、弧长及扇形的面积1、圆周长公式: 圆周长C=2πR (R 表示圆的半径)2. 弧长公式: 弧长180R n l π= (R 表示圆的半径, n 表示弧所对的圆心角的度数)3、扇形定义:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.4、弓形定义:由弦及其所对的弧组成的图形叫做弓形. 弓形弧的中点到弦的距离叫做弓形高. 5、圆的面积公式.2R S π= (R 表示圆的半径) 6、扇形的面积公式:扇形的面积3602R n S π=扇形 (R 表示圆的半径, n 表示弧所对的圆心角的度数)※弓形的面积公式:(如图5) (1)当弓形所含的弧是劣弧时, 三角形扇形弓形S S S -= (2)当弓形所含的弧是优弧时, 三角形扇形弓形S S S += (3)当弓形所含的弧是半圆时, 扇形弓形S R S ==221π提高试题1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A. (4+cm B. 9 cmC. D.cm第1题 第2题2、如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( )A .22B .2C .1D .23、已知两圆的半径为R,r 分别是方程X 2-5X+6=0两根,两圆的圆心距为1,两圆的位置关系是( ) A.外离 B.外切 C.内切 D.相交4、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 ( )A .8πB .9πC .10πD .11π 5、一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 ( ).A .1B .34C .12D .136、 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为( )A .B .C .D .7、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连接DP ,DP 交AC 于点Q .若QO=PQ ,则QA QC的值为( ) (A )132-(B )32(C )23+(D )23+8、已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( ) (A )30° (B )45° (C )60° (D )75°9、如图,已知平行四边形ABCD ,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切。
圆和圆的位置关系(一)教学目标:1.掌握圆和圆的几种位置关系的概念及相切两圆连心线的性质.2.能够根据两圆不同的位置关系,写出两个圆半径的和或差与圆心距之间的关系式;反过来,由两圆半径的和或差与圆心距的大小关系,判定两圆的位置关系.3.结合本节课的教学内容培养学生亲自动手实验,学会观察图形,主动获得知识的能力.4.继续培养学生运用旧知识探求新知识的能力.教学重点:圆和圆的五种位置关系的概念及相切两圆的连心线的性质.教学难点:理解相切两圆连心线性质的证明.教学过程:一、新课引入:教师板书课题:“7.13圆和圆的位置关系(一)”.回顾:点和圆三种位置关系到直线和圆的三种位置关系操作:把课前准备好的两个不等圆的纸版拿出来,同桌两人动手实验,发现圆和圆的位置关系有五种情况的过程,由学生上黑板公布自已发现的五种情况。
二、新课讲解:请两名同学上黑板讲解得到五种位置关系的方法.全班同学参与评议,同时观察图形具有的特点.找一名同学以两圆公共点的个数为依据,摆放出两圆各种不同的位置:找一名同学利用运动变化的观点来得到两圆的位置.设⊙O1为动圆,⊙O2为定圆,当⊙O1向⊙O2运动时,两圆的位置关系的变化如下:由学生实验得到结论,教师引导学生回答,教师概括总结:圆和圆的位置关系五种情况及各自的概念.(1)两圆外离:略(2)两圆外切(3)两圆相交(4)两圆内切(5)两圆内含这五种情况也可以归纳为三类:(2)相交设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r<d<R=r(R≥r)(4)两圆内切d=R-r(R>r)(5)两圆内含d<R-r(R>r)同心圆d=01、练习题:⊙O1和⊙O2的半径分别为3cm和4cm,设(1)O1O2=8厘米; (2)O1O2=7厘米;(3)O1O5=5厘米; (4)O1O2=1厘米;(5)O1O2=0.5厘米; (6)O1和O2重合.请回答⊙O1与⊙O2的位置关系怎样?结合图7-96讲解“把经过两圆心的直线叫做连心线”.那么两圆外切、内切的切点与连心线有怎样的关系呢?得出:两圆的性质:如果两圆相切,那么切点一定在连心线上.例1 如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?三、课堂小结:(一)本节所学的知识点:1.圆和圆的位置关系的概念.3.相切两圆连心线的性质.(二)本节课所学的方法:1.会利用公共点的个数和定义判定两圆的位置关系.2.会用两圆半径和圆心距的关系判定两圆的位置关系.3.学会两圆相切连心线必过这两圆的切点.四、布置作业教材P.137习题7.5 A组 2 、3、4.。
一、圆与圆的位置关系1. 圆与圆的位置关系圆与圆的位置关系可以是两圆相交、两圆相切(内切或外切)、两圆相离、两圆内含.设两个圆为1O 、2O ,半径分别为1R 、2R ,且12R R ≥,1O 与2O 间距离为d ,那么就有 12d R R >+⇔两圆相离; 12d R R =+⇔两圆相外切; 12d R R =-⇔两圆相内切; 1212R R d R R -<<+⇔两圆相交; 12d R R <-⇔两圆内含(这里12R R ≠).2. 连心线的性质连心线是指通过两圆圆心的一条直线.连心线是它的对称轴.两圆相切时,由于切点是它们唯一的公共点,所以切点一定在对称轴上. 如果两圆1O 、2O 相交于A 、B 两点,那么12O O 垂直平分AB .如果两个半径不相等的圆1O 、圆2O 相离,那么内公切线交点、外公切线交点都在直线12O O 上,并且 直线12O O 上,并且直线12O O 平分两圆外公切线所夹的角和两圆内公切线所夹的角. 如果两条外公切线分别切圆1O 于A 、B 两点、切圆2O 于C 、D 两点,那么两条外公切线长相等,且AB 、 CD 都被12O O 垂直平分.一、圆与圆位置关系的确定【例1】 右图是北京奥运会自行车比赛项目标志,图中两车轮所在圆的位置关系是( )A .内含B .相交C .相切D .外离【例2】 如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )A .内含B .外切C .相交D .外离例题知识点圆与圆的位置关系(1)【例3】 右图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是A .外离B .相交C .外切D .内切【例4】 如图,日食图中表示太阳和月亮的分别为两个圆,这两个圆的位置关系是 .【例5】 图中圆与圆之间不同的位置关系有( )A .2种B .3种C .4种D .5种【例6】 大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为( )A .外离B .外切 C.相交 D .内含【例7】 已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( ) A .相交 B .内含 C .内切 D .外切【例8】 已知1O ⊙与2O ⊙的半径分别为5cm 和3cm ,圆心距127cm O O =,则两圆的位置关系是( )A .外离B .外切C .相交D .内切【例9】 两圆的圆心坐标分别是)0,和()01,,它们的半径分别是3和5,则这两个圆的位置关系是( ) A .相交B .外离C .外切D .内切【例10】 已知⊙O 1、⊙O 2的半径分别为6和3,O 1、O 2的坐标分别是(5,0)和(0,6),则两圆的位置关系是( ) A .相交 B .外切 C .内切 D .外离【例11】 分别以梯形ABCD 的上底AD 、下底BC 的长为直径作⊙1O 、⊙2O ,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是____________.【例12】 如图,A ⊙,B ⊙的半径分别为1cm ,2cm ,圆心距AB 为5cm .如果A ⊙由图示位置沿直线AB向右平移3cm ,则此时该圆与B ⊙的位置关系是_____________.【例13】 已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根,且122O O =,则1O ⊙和2O ⊙的位置关系是 .【例14】 已知1O ⊙与2O ⊙半径的长是方程27120x x -+=的两根,且1212O O =,则1O ⊙与2O ⊙的位置关系是___________.【例15】 已知关于x 的一元二次方程()22104x R r x d -++=无实数根,其中R r 、分别是12O O ⊙、⊙的半径,d 为此两圆的圆心距,则12O O ⊙、⊙的位置关系为______________.【例16】 已知1O ⊙和2O ⊙的半径分别是一元二次方程28209x x -+=的两根,且121OO =,则1O ⊙和2O ⊙的位置关系是_________.【例17】 如图,1O ⊙和2O ⊙的半径为1和3,连接12O O 交2O ⊙于点P ,128O O =,若将1O ⊙绕点P 按顺时针方向旋转360︒,则1O ⊙与2O ⊙共相切_______次.【例18】 如图,点A B ,在直线MN 上,11AB =厘米,A B ,的半径均为1厘米.A 以每秒2厘米的速度自左向右运动,与此同时,B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为1r t =+(0)t ≥.(1)试写出点A B ,之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?【例19】 如图,A B 、⊙⊙的圆心A B ,在直线l 上,两圆半径都为1cm ,开始时圆心距4cm AB =,现A B ⊙⊙,同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,A ⊙运动的时间为 秒.l【例20】 如右图a ,在矩形ABCD 中,20cm AB =,4cm BC =,点P 从A 开始沿折线A B C D ---以4cm/s的速度移动,点Q 从C 开始沿CD 边以1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动.设运动时间为(s)t . (1)t 为何值时,四边形APQD 为矩形?(2)如右图b ,如果P ⊙和Q ⊙的半径都是2cm ,那么t 为何值时,P ⊙和Q ⊙外切?图a二、圆与圆位置关系的性质【例21】 已知1O 和2O 外切,它们的半径分别为2cm 和5cm ,则12O O 的长是( )A .2cmB .3cmC .5cmD .7cm【例22】 O 的半径为3cm ,点M 是O 外一点,4OM cm =,则以M 为圆心且与⊙O 相切的圆的半径是 cm .【例23】1O ⊙和2O ⊙相切,1O ⊙的直径为9cm ,2O ⊙的直径为4cm .则12O O 的长是_________.【例24】 如图,1O ,2O ,3O 两两相外切,1O 的半径11r =,2O 的半径22r =,3O 的半径33r =,则123O O O △是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形【例25】 若A ⊙和B ⊙相切,它们的半径分别为8cm 和2cm ,则圆心距AB 为_______________.【例26】已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是( ) A.01d<d>d>D.01≤或5dd<<B.5d>C.01<<或5【例27】一条皮带安装在半径是14和4的两只皮带轮上(皮带紧绷且不相交),若皮带在两只轮子切点间的距离是24,那么两轮圆心间的距离是___________.5和4cm,这两个圆的圆心距是【例28】已知相切两圆的半径分别为cm【例29】已知⊙O1和⊙O2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O1O2的取值范围在数轴上表示正确的是.A BC D。
1、圆与圆的位置关系:圆心距d与r1和r2之间的关系:(1)外离: d>r1+r2,圆与圆之间没有交点;(2)外切: d=r1+r2,圆与圆之间有一个交点;(3)相交:│r2-r1│<d<r1+r2;圆与圆之间有两个交点;(4)内切: d=│r1-r2│,圆与圆之间有一个交点;(5)内含: d<│r2-r1│,圆与圆之间没有交点.(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离⎧⎨⎩外离内含,相切⎧⎨⎩外切内切.【例1】已知⊙A、⊙B相切,圆心距为10cm,其中⊙A的半径为4cm,求⊙B的半径.【例2】定圆O的半径是4cm,动圆P的半径是1cm.当两圆相切时,点P与点O的距离是多少?【例3】已知两个圆互相内切,圆心距是2cm,如果一个圆的半径是3cm,那么另一个圆的半径是多少?【例4】已知⊙O1和⊙O2的半径分别为1和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切【例5】如图,施工工地的水平地面上,有三根外径都是1m的水泥管,两两相切地堆放在一起,其最高点到地面的距离是.【例6】一个等腰梯形的高恰好等于这个梯形的中位线.若分别以这个梯形的上底和下底为直径作圆,这两个圆的位置关系是()A.相离B.相交C.外切D.内切【例7】两圆的圆心坐标分别是(3,0)和(0,1),它们的半径分别是3和5,则这两个圆的位置关系是()A.相离B.相交C.外切 D.内切1.已知线段AB=7cm.现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,则⊙A和⊙B的位置关系是()A.内含B.相交 C.外切 D.外离2.已知⊙O 1与⊙O 2相切,⊙O 1的半径为9 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是( )A .1 cmB .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm3.如图,⊙1o 、⊙2o 相内切于点A ,其半径分别是8和4,将⊙2o 沿直线1o 2o 平移至两圆相外切时,则点2o 移动的长度是( )A.8 B.16 C.8或16 D 以上答案都不对4.已知两圆的半径分别是5和6,圆心距x 满足不等式组522841314x x x x +⎧+>⎪⎨⎪-<+⎩,则两圆的位置关系是( )A .内切 B .外切 C .相交 D .外离5.如图,两等圆⊙O 和⊙O ′相外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点, 则∠AOB 等于( ) A.90° B.60° C .45° D.30°6. 在△ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若⊙A ,⊙B 的半径分别为1cm ,4cm ,则⊙A ,⊙B 的位置关系是 ( ) A .外切 B .内切 C .相交 D .外离7. 如图,某城市公园的雕塑是由3个直径为1m 的圆两两相垒立在水平的地面上,则雕塑的最高点到地面的距离为( ) A .232+ B.233+ C.222+D. 223+9. 仔细观察如图所示的卡通脸谱,图中没有出现的两圆的位置关系是 .第3题图第5题图10. 若两圆的半径分别为3和4,两个圆相交,则两圆的圆心距的取值范围是 .11. 半径分别为6cm 和4cm 的两圆相切,则它们的圆心距为 cm12. 已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2 的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 .13. 已知:如图,三个半圆以此相外切,它们的圆心都在x 轴的正半轴上并与直线y x 相切,设半圆C 1、半圆C 2、半圆C 3的半径分别是r 1、r 2、r 3,则当r 1=1时,r 3=14.如图,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E.你认为图中有哪些相等的线段?为什么?B第9题图 第13题图。
高二数学复习考点知识与题型专题讲解2.5.2 圆与圆的位置关系【考点梳理】考点一:两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系如下:位置关系外离外切相交内切内含图示d 与r 1,r 2的关系 d >r 1+r 2 d =r 1+r 2|r 1-r 2|< d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|(2)代数法:设两圆的一般方程为C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0),C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程得⎩⎨⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个2个1个0个【题型归纳】题型一:判断圆与圆的位置关系1.(2022·全国·高二课时练习)已知圆221:210()C x y x my m +-++=∈R 的面积被直线210x y ++=平分,圆222:(2)(3)25C x y ++-=,则圆1C 与圆2C 的位置关系是( )A .外离B .相交C .内切D .外切2.(2022·江苏·高二课时练习)已知圆221:()()4C x a y b -+-=(a ,b 为常数)与222:20C x y x +-=.若圆心1C 与圆心2C 关于直线0x y -=对称,则圆1C 与2C 的位置关系是( )A .内含B .相交C .内切D .相离3.(2022·天津市第九十五中学益中学校高二期末)圆222830x y x y +++-=与圆()()22225x y -+-=的位置关系为()A .外切B .内切C .相交D .相离题型二:求圆的交点坐标4.(2021·全国·高二课时练习)圆心在直线x ﹣y ﹣4=0上,且经过两圆x 2+y 2﹣4x ﹣3=0,x 2+y 2﹣4y ﹣3=0的交点的圆的方程为( ) A .x 2+y 2﹣6x +2y ﹣3=0B .x 2+y 2+6x +2y ﹣3=0C .x 2+y 2﹣6x ﹣2y ﹣3=0D .x 2+y 2+6x ﹣2y ﹣3=05.(2021·江苏·高二专题练习)若圆C 的圆心在直线40x y --=上,且经过两圆22460x y x +--=和22460x y y +--=的交点,则圆C 的圆心到直线3450x y ++=的距离为( ) A .0B .85C .2D .1856.(2022·山西·运城市景胜中学高二阶段练习(文))设点(1,0)A ,(4,0)B ,动点P 满足2||||PA PB =,设点P 的轨迹为1C ,圆2C :22((3)4x y +-=,1C 与2C 交于点,M N ,Q 为直线2OC 上一点(O 为坐标原点),则MN MQ ⋅=( )A .4B .C .2D题型三:圆与圆的位置关系求参数范围7.(2022·全国·高二课时练习)已知圆()()()22:140C x y m m ++-=>和两点()2,0A -,()10B ,,若圆C 上存在点P ,使得2PA PB =,则m 的取值范围是( )A .[8,64]B .[9,64]C .[8,49]D .[9,49]8.(2022·全国·高二课时练习)若圆()()2221:10C x y r r +-=>上存在点P ,且点P 关于直线y =x 的对称点Q 在圆()()222:211C x y -+-=上,则r 的取值范围是( )A .1⎤⎦B .C .⎡⎣D .(]0,19.(2022·江苏·高二课时练习)已知圆1O :2216x y +=和圆2O :22268240x y mx my m +--+=有且仅有4条公切线,则实数m 的取值范围是( )A .()(),11,-∞-⋃+∞B .()1,1-C .()(),23,-∞-⋃+∞D .()2,3- 题型四:圆与圆的位置求圆的方程10.(2022·全国·高二单元测试)若圆22210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点(,)C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程是()A .24480y x y -++=B .22220y x y +-+=C .24480y x y +-+=D .2210y x y ---=11.(2022·全国·高二课时练习)已知圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=,若圆1C 与圆2C 有且仅有一个公共点,则实数a 等于A .14B .34C .14或45D .34或1412.(2019·安徽马鞍山·高二期中)已知半径为1的动圆与圆C :()()225316x y +++=相切,则动圆圆心的轨迹方程是( )A .()()225325x y +++=B .()()225325x y -+-=或()()22539x y -+-= C .()()22539x y -+-=D .()()225325x y +++=或()()22539x y +++=题型五:圆的公共弦长问题(参数、弦长问题)13.(2022·全国·高二专题练习)已知圆221:420C x y x y +-+=与圆222:240C x y y +--=相交于A 、B 两点,则圆()()22:331C x y ++-=上的动点P 到直线AB 距离的最大值为( )A1B .1C .12+D 1 14.(2022·四川资阳·高二期末(理))已知圆221:20C x y x ++=,圆222:60C x y y +-=相交于P ,Q 两点,其中1C ,2C 分别为圆1C 和圆2C 的圆心.则四边形12PC QC 的面积为( )A .3B .4C .6D .15.(2021·广东·人大附中深圳学校高二期中)若圆221:4C x y +=与圆()222:2600C x y ay a ++-=>的公共弦长为=a ( )A .1B .1.5C .2D .2.5题型六:圆的共切线问题16.(2022·全国·高二专题练习)已知圆()()22:211M x y -+-=,圆()()22:211N x y +++=,则下列不是M ,N 两圆公切线的直线方程为( ) A .0y =B .430x y -=C .20x y -=D .20x y +17.(2022·江苏·高二课时练习)若直线l 与圆()221:11C x y ++=,圆()222:14C x y -+=都相切,切点分别为A 、B ,则AB =( )A .1B.18.(2022·江苏·高二课时练习)在平面直角坐标系xOy 中,圆1C :222660x y x y ++-+=与圆2C :224240x y x y +-++=,则两圆的公切线的条数是( ) A .4条B .3条C .2条D .1条题型七:圆与圆位置关系的综合类问题19.(2022·陕西·武功县普集高级中学高二阶段练习(理))已知圆C :22240x y x y m +--+=.(1)若圆C 与圆D :22(2)(2)1x y +++=有三条外公切线,求m 的值;(2)若圆C 与直线20x y +-=交于两点M ,N ,且OM ON ⊥(O 为坐标原点),求m 的值.20.(2022·全国·高二单元测试)已知圆1C :²²4230x y x y +---=,圆2:?²20C x y x m +-+=,其中51m -<<.(1)若1m =-,判断圆1C 与2C 的位置关系,并求两圆公切线方程(2)设圆1C 与圆2C 的公共弦所在直线为l ,且圆2C 的圆心到直线l 的距离为2,求直线l 的方程以及公共弦长21.(2021·江苏·高二专题练习)已知圆221:(1)1C x y -+=与圆222:80C x y x m +-+=.(1)若圆1C 与圆2C 恰有3条公切线,求实数m 的值;(2)在(1)的条件下,若直线0x n +=被圆2C 所截得的弦长为2,求实数n 的值.【双基达标】一、单选题22.(2021·黑龙江·勃利县高级中学高二期中)两圆224210x y x y +-++=与224410x y x y ++--=的公切线有( )A .1条B .2条C .3条D .4条23.(2019·江西省大余县新城中学高二阶段练习)圆221:430C x y x +-+=与圆222:(1)(4)C x y a ++-=恰有三条公切线,则实数a 的值是( )A .4B .6C .16D .3624.(2022·全国·高二课时练习)圆1O 的方程为()()22231x y ++-=,圆2O 的圆心为()21,7O .(1)若圆2O 与圆1O 外切,求圆2O 的方程;(2)若圆2O 与圆1O 交于A 、B 两点,且AB =2O 的方程.25.(2022·全国·)已知圆1C 与y 轴相切于点(03),,圆心在经过点(21),与点(23)--,的直线l 上. (1)求圆1C 的方程;(2)若圆1C 与圆222:6350C x y x y +--+=相交于M ,N 两点,求两圆的公共弦长.【高分突破】一:单选题26.(2021·黑龙江·双鸭山一中高二阶段练习)以下四个命表述正确的是( )个①若点()1,2A ,圆的一般方程为222410x y x y ++-+=,则点A 在圆外 ②圆C :2228130+--+=x y x y 的圆心到直线4330x y -+=的距离为2 ③圆1C :2220x y x ++=与圆2C :224840x y x y +--+=恰有三条公切线④两圆22440x y x y ++-=与222120x y x ++-=的公共弦所在的线方程为:260x y ++= A .1B .2C .3D .427.(2021·江苏·高二专题练习)已知圆()221:24C x a y ++=与圆()22:1C x y b +-=有且仅有1条公切线,则2211a b +的最小值为( ) A .6B .7C .8D .928.(2017·江西南昌·高二阶段练习(文))与圆222212:26260,:4240C x y x y C x y x y ++--=+-++=都相切的直线有A .1条B .2条C .3条D .4条29.(2022·全国·高二课时练习)已知Rt PAB 的直角顶点P 在圆(()22:11C x y +-=上,若点(),0A t -,()(),00B t t >,则t 的取值范围为( ) A .(]0,2B .[]1,2C .[]2,3D .[]1,330.(2022·全国·高二)已知半径为1的动圆与圆()()225716x y -++=相切,则动圆圆心的轨迹方程是( ) A .()()225725x y -++=B .()()225717x y -+-=或()()225715x y -++=C .()()22579x y -+-=D .()()225725x y -++=或()()22579x y -++=二、多选题31.(2022·江苏·南京市中华中学高二开学考试)已知圆()()221:1311C x y -+-=与圆2222:2230C x y x my m ++-+-=,则下列说法正确的是( )A .若圆2C 与x 轴相切,则2m =B .若3m =-,则圆C 1与圆C 2相离C .若圆C 1与圆C 2有公共弦,则公共弦所在的直线方程为()246220x m y m +-++=D .直线210kx y k --+=与圆C 1始终有两个交点32.(2022·全国·高二专题练习)圆221:20+-=Q x y x 和圆222:240++-=Q x y x y 的交点为A ,B ,则( )A .公共弦AB 所在直线的方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1Q 上一动点,则P 到直线AB 1+ 33.(2022·江苏·高二单元测试)设有一组圆()()()22:4R k C x k y k k -+-=∈,下列命题正确的是( )A .不论k 如何变化,圆心k C 始终在一条直线上B .存在圆kC 经过点(3,0) C .存在定直线始终与圆k C 相切D .若圆k C 上总存在两点到原点的距离为1,则k ⎛∈⋃ ⎝⎭⎝⎭34.(2022·重庆市实验中学高二期末)已知直线l :10kx y k --+=与圆C :()()222216x y -++=相交于A ,B 两点,O 为坐标原点,下列说法正确的是( )A .AB 的最小值为.若圆C 关于直线l 对称,则3k =C .若2ACB CAB ∠=∠,则1k =或17k =-D .若A ,B ,C ,O 四点共圆,则13k =-35.(2022·江苏南通·高二期末)已知圆1O :225x y +=和圆2O :22(4)13x y -+=相交于A ,B 两点,且点A 在x 轴上方,则( ) A .||4AB =B .过2O 作圆1O 的切线,切线长为C .过点A 且与圆2O 相切的直线方程为3210x y -+=D .圆1O 的弦AC 交圆2O 于点D ,D 为AC 的中点,则AC 的斜率为7236.(2022·广东·高二阶段练习)已知点(),P x y 是圆()22:14C x y -+=上的任意一点,直线()):1130l m x y m ++-=,则下列结论正确的是( ) A .直线l 与圆C 的位置关系只有相交和相切两种 B .圆C 的圆心到直线l C .点P 到直线43160++=x y 距离的最小值为2D .点P 可能在圆221x y +=上37.(2022·河北石家庄·高二期末)设m R ∈,直线310mx y m --+=与直线310x my m +--=相交于点(,)P x y ,线段AB 是圆22:(2)(1)9C x y +++=的一条动弦,Q 为弦AB 的中点,||AB = )A .点P 在定圆22(2)(2)8x y -+-=上B .点P 在圆C 外C .线段PQ 长的最大值为6D .PA PB ⋅的最小值为15-38.(2022·浙江省杭州学军中学高二期中)过点(A 作圆221:4C x y +=的切线l ,P是圆222:40C x y x +-=上的动点,则下列说法中正确的是( )A .切线l 40y -+=B .圆1C 与圆2C 的公共弦所在直线方程为1x = C .点P 到直线l 的距离的最小值为1D .点O 为坐标原点,则AO OP ⋅的最大值为4 三、填空题39.(2022·江苏·徐州华顿学校高二阶段练习)设两圆22110C x y +-=:与圆222240C x y x y +-+=:的公共弦所在的直线方程为_______40.(2022·全国·高二课时练习)已知两圆O :224x y +=,C :22224510x ax y ay a -+-+-=,当两圆相交时,实数a 的取值范围是______.41.(2022·江苏·高二课时练习)已知圆221:(1)(2)4C x y -+-=和圆222:(2)(1)2C x y -+-=交于,A B 两点,直线l 与直线AB 平行,且与圆2C 相切,与圆1C 交于点,M N ,则MN =__________.42.(2022·全国·高二课时练习)已知圆1C 的标准方程是()()224425x y -+-=,圆222:430C x y x my +-++=关于直线10x +=对称,则圆1C 与圆2C 的位置关系为______.43.(2022·北京房山·高二期末)心脏线,也称心形线,是一个圆上的固定一点在该圆绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名.心脏线的平面直角坐标方程可以表示为22x y ay ++=0a >,则关于这条曲线的下列说法: ①曲线关于x 轴对称;②当1a =时,曲线上有4个整点(横纵坐标均为整数的点); ③a 越大,曲线围成的封闭图形的面积越大; ④与圆()222x a y a ++=始终有两个交点. 其中,所有正确结论的序号是___________.四、解答题44.(2022·全国·高二单元测试)已知圆()222:0O x y r r +=>,直线:40l kx y k --=,当k =l 与圆O 恰好相切. (1)求圆O 的方程;(2)若直线l 上存在距离为2的两点M ,N ,在圆O 上存在一点P ,使得0PM PN ⋅=,求实数k 的取值范围.45.(2022·江苏·高二阶段练习)已知圆22:(1)4C x y -+=. (1)若直线l 经过点(1,3)A -,且与圆C 相切,求直线l 的方程;(2)若圆2221:2280C x y mx y m +--+-=与圆C 相切,求实数m 的值.46.(2022·上海市行知中学高二期中)已知圆()()22:10C x y a a ++=>,定点()(),0,0,A m B n ,其中,m n 为正实数,(1)当9a =时,若对于圆C 上任意一点P 均有PA PO λ=成立(O 为坐标原点),求实数,m λ的值;(2)当2,4m n ==时,对于线段AB 上的任意一点P ,若在圆C 上都存在不同的两点,M N ,使得点M 是线段PN 的中点,求实数a 的取值范围47.(2022·江苏·高二课时练习)若圆221:C x y m +=与圆222:68160C x y x y +--+=相外切.(1)求m 的值;(2)若圆1C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,P 为第三象限内一点且在圆1C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.48.(2022·江苏·高二单元测试)已知圆()22:24M x y -+=,点()()1,R P t t -∈.(1)若1t =,半径为1的圆N 过点P ,且与圆M 相外切,求圆N 的方程;(2)若过点P 的两条直线被圆M 截得的弦长均为且与y 轴分别交于点S 、T ,34ST =,求t .49.(2022·广东揭阳·高二期末)过点()3,1P 作圆()22:11C x y -+=的两条切线,切点分别为A ,B ;(1)求直线AB 的方程;(2)若M 为圆上的一点,求MAB △面积的最大值.【答案详解】1.B【分析】由圆1C 的面积被直线210x y ++=平分,可得圆心在直线上,求出m ,进而利用圆心距与半径和以及半径差的关系可得圆1C 与圆2C 的位置关系.【详解】因为圆1C 的面积被直线210x y ++=平分,所以圆1C 的圆心1,2m ⎛⎫- ⎪⎝⎭在直线210x y ++=上,所以12102m ⎛⎫+⨯-+= ⎪⎝⎭,解得2m =,所以圆1C 的圆心为(1,1)-,半径为1.因为圆2C 的圆心为(2,3)-,半径为5,所以125C C ==, 故125151C C -<<+,所以圆1C 与圆2C 的位置关系是相交. 故选:B . 2.B【分析】由对称求出,a b ,再由圆心距与半径关系得圆与圆的位置关系.【详解】222:(1)1C x y -+=,2(1,0)C ,半径为1r =,2(1,0)C 关于直线0x y -=的对称点为(0,1),即(,)1C 01,所以0,1a b ==,圆1C 半径为2R =,12C C =13R r R r -=<<=+,所以两圆相交. 故选:B . 3.A【分析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可. 【详解】由22222830(1)(4)20x y x y x y +++-=⇒+++=,该圆的圆心为(1,4)--,半径为圆()()22225x y -+-=的圆心为(2,2)= 所以两圆的半径和等于两圆的圆心距,因此两圆相外切, 故选:A 4.A【分析】求出两个圆的交点,再求出中垂线方程,然后求出圆心坐标,求出半径,即可得到圆的方程.【详解】由2222430,430x y x x y y +--=+--=解得两圆交点为M ⎝⎭与N ⎝⎭因为1MN k =,所以线段MN 的垂直平分线斜率21k =-;MN 中点P 坐标为(1,1) 所以垂直平分线为y =﹣x +2 由240y x x y =-+⎧⎨--=⎩解得x =3,y =﹣1,所以圆心O 点坐标为(3,﹣1)所以r 所以所求圆的方程为(x ﹣3)2+(y +1)2=13即:x 2+y 2﹣6x +2y ﹣3=0 故选:A 5.C【解析】求出过AB 两点的垂直平分线方程,再联立直线40x y --=,求得圆心,结合点到直线距离公式即可求解【详解】设两圆交点为,A B ,联立2222460460x y x x y y ⎧+--=⎨+--=⎩得1111x y =-⎧⎨=-⎩或2233x y =⎧⎨=⎩,1AB k =,则AB 中点为()1,1,过AB 两点的垂直平分线方程为()112y x x =--+=-+, 联立240y x x y =-+⎧⎨--=⎩得31x y =⎧⎨=-⎩,故圆心为()3,1-,由点到直线距离公式得334525d ⨯-+==故选:C【点睛】本题考查线段垂直平分线方程的求解,点到直线距离公式的应用,属于中档题 6.C【分析】由题意先求动点P 的轨迹1C 的方程,联立1C 和2C 求出M,N 的坐标,如图由平面几何知识和向量数量积的运算规则可求得MN MQ ⋅.【详解】设点P(,x y ),由()()A 1,0,B 4,0,2PA PB =可得()()2222214x y x y -+-+化简得动点P 的轨迹1C 的方程为:224x y +=,联立(()22224334x y x y ⎧+=⎪⎨+-=⎪⎩解得:()()M 3,1,N 0,2-,如图所示,有平面几何知识可得:()1cos 2MQ QMN MN ∠=,向量数量积的运算规则可得:()1cos 2MN MQ MN MQ QMN MN MN ⋅=⋅∠=⋅()(()22211021222MN ⎡⎤==+-=⎢⎥⎣⎦. 故选:C.【点睛】本题考查了由已知条件求动点轨迹的问题,考查了求两圆交点坐标的运算,借助于平面几何知识求向量的数量积的问题,考查了综合运算能力,属于中档题. 7.D【分析】设P 的坐标为(),x y ,由2PA PB =可得P 的轨迹为()2224x y -+=,又因为点P在圆C 上,所以两圆有公共点,从而求解即可.【详解】解:设P 的坐标为(),x y ,因为2PA PB =,()2,0A -,()10B ,,=()2224x y -+=,又因为点P 在圆()()()22:140C x y m m ++-=>上, 所以圆()2224x y -+=与圆C 有公共点,22≤且0m >, 解得949m ≤≤, 故选:D . 8.A【分析】利用对称圆,把问题转化为两圆的位置关系问题进行处理.【详解】根据题意,圆1C 的圆心坐标为(0,1),半径为r ,其关于直线y =x 的对称圆3C 的方程为()2221x y r -+=,根据题意,圆3C 与圆2C 有交点,既可以是外切,也可以是相交,也可以是内切.又圆()()222:211C x y -+-=,所以圆3C 与圆2C 的圆心距为23||C C =以只需11r r -+,解得1r ⎤∈⎦.故B ,C ,D 错误.故选:A. 9.A【分析】根据题意圆1O 、2O 相离,则1212O O r r >+,分别求圆心和半径代入计算. 【详解】圆1O :2216x y +=的圆心()10,0O ,半径14r =,圆2O :22268240x y mx my m +--+=的圆心()23,4O m m ,半径1r m =根据题意可得,圆1O 、2O 相离,则1212O O r r >+,即54m m >+ ∴,11,m故选:A . 10.C【分析】由圆与圆的对称性可得a ,再利用几何关系,求点P 的轨迹方程.【详解】由圆22210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,可知两圆半径相等且两圆圆心连线的中点在直线1y x =-上,可得2a =,即点C 的坐标为(2,2)-,所以圆P 的圆心的轨迹方程为222(2)(2)x y x ++-=,整理得24480y x y +-+=. 故选:C. 11.D【分析】先将两个圆的方程化为圆的标准方程,写出两个圆的圆心坐标和半径,然后计算两个圆的圆心之间的距离,圆心距等于两个圆的半径差的绝对值、和,得到关于a 的方程,即可解得a 的值.【详解】设圆1C 、圆2C 的半径分别为1r 、2r .圆1C 的方程可化为22(3)(2)1x y -++=,圆2C 的方程可化为22(7)(1)50x y a -+-=-. 由两圆相切得,1212C C r r =+或1212C C r r =-,∵125C C =,∴215r +=或22154r r -=⇒=或26=r 或24r =-(舍去). 因此,5016a -= 解得a =34 或5036a -= 解得14a = 故选:D.【点睛】本题考查了利用两个圆相切求解参数值的问题,属于中档题目,解题时需要准确将圆的一般方程化为圆的标准方程,利用圆心距与半径的关系建立关于参数的方程. 12.D【分析】根据动圆与圆C 相内切、相外切分类讨论进行求解即可.【详解】设动圆圆心为O ,圆C :()()225316x y +++=的圆心坐标为:(5,3)C --,半径为4.动圆与圆C 相内切时,413OC =-=,所以动圆圆心的轨迹方程()()22539x y +++=; 动圆与圆C 相外切时,415OC =+=,所以动圆圆心的轨迹方程()()225325x y +++=. 故选:D【点睛】本题考查了圆与圆的相切关系,考查了圆的定义,考查了圆的标准方程,属于基础题. 13.A【分析】判断圆1C 与2C 的位置并求出直线AB 方程,再求圆心C 到直线AB 距离即可计算作答.【详解】圆221:(2)(1)5C x y -++=的圆心1(2,1)C -,半径1r =222:(1)5C x y +-=的圆心2(0,1)C ,半径2r =,12||C C =121212||||||r r C C r r -<<+,即圆1C 与2C 相交,直线AB 方程为:10x y --=,圆()()22:331C x y ++-=的圆心(3,3)C -,半径1r =,点C 到直线AB 距离的距离2d ==,所以圆C 上的动点P 到直线AB 1. 故选:A 14.A【分析】求得12,C C PQ ,由此求得四边形12PC QC 的面积. 【详解】圆1C 的圆心为()1,0-,半径11r =; 圆2C 的圆心为()0,3,所以12C C =由2220x y x ++=、2260x y y +-=两式相减并化简得30x y +=, 即直线PQ 的方程为30x y +=,()1,0-到直线PQ,所以PQ ==,所以四边形12PC QC 的面积为1211322C C PQ ⨯⨯==. 故选:A15.A【分析】先求得公共弦所在直线方程,代入224x y +=,运算即得解【详解】由题意,圆221:4C x y +=的圆心11(0,0),2C r =;圆()222222:2600()6C x y ay a x y a a ++-=>⇔++=+,圆心22(0,),C a r -设圆心距为12C C d ,故12C C d a =由于两圆相交,故122112C C r r d r r -<<+2a <,解得12a >两圆方程作差得公共弦所在直线方程为1y a =,代入224x y +=,解得x == 解得1a =(负根舍去),满足12a > 故选:A 16.D【分析】计算两圆的圆心和半径,可得两圆相离,有四条公切线,两圆心坐标关于原点O 对称,则有两条切线过原点O ,另两条切线与直线MN 平行且相距为1,数形结合可计算四条切线方程,结合选项,即得解【详解】由题意,圆()()22:211M x y -+-=的圆心坐标为()2,1M ,半径为11r =圆()()22:211N x y +++=的圆心坐标为()2,1N --,半径为21r =如图所示,两圆相离,有四条公切线.两圆心坐标关于原点O 对称,则有两条切线过原点O , 设切线:l y kx =22111k k -=+,解得0k =或43k =, 另两条切线与直线MN 平行且相距为1,又由1:2MN l y x =,设切线1:2l y x b =+1114b=+,解得5b = 结合选项,可得D 不正确. 故选:D 17.C【分析】设直线l 交x 轴于点M ,推导出1C 为2MC 的中点,A 为BM 的中点,利用勾股定理可求得AB .【详解】如下图所示,设直线l 交x 轴于点M ,由于直线l 与圆()221:11C x y ++=,圆()222:14C x y -+=都相切,切点分别为A 、B , 则1AC l ⊥,2BC l ⊥,12//AC BC ∴,2122BC AC ==,1C ∴为2MC 的中点,A ∴为BM 的中点,1122MC C C ∴==,由勾股定理可得22113AB MA MC AC ==-故选:C.【点睛】关键点点睛:求解本题的关键在于推导出A 为M B 的中点,并利用勾股定理进行计算,此外,在直线与圆相切的问题时,要注意利用圆心与切点的连线与切线垂直这一几何性质. 18.A【分析】根据给定条件,求出两圆圆心距,再判断两圆位置关系即可作答. 【详解】圆1C :22(1)(3)4x y ++-=的圆心1(1,3)C -,半径12r =, 圆2C :22(2)(1)1x y -++=的圆心2(2,1)C -,半径21r =,2212||(12)[3(1)]5C C =--+--,显然1212||C C r r >+,即圆1C 与圆2C 外离,所以两圆的公切线的条数是4. 故选:A19.(1)11m =- (2)2m =【分析】(1)两圆有三条公切线,说明两圆外切,根据两圆外切可以求出参数的值 (2)设()11,M x y ,()22,N x y ,则OM ON ⊥等价于12120x x y y +=,直线与圆联立方程,根据韦达定理,得到关于m 的等式,即可求解m 的值 (1)由2222240(1)(2)5x y x y m x y m +--+=⇒-+-=-,知圆C 的圆心(1,2)C由圆D :22(2)(2)1x y +++=,有圆心()2,2D --,半径为1,依题意有圆C 与圆D 相外切,故||1511CD m ==⇒=-; (2)设()11,M x y ,()22,N x y ,有112x y =-,222x y =-, 由OM ON ⊥,有()()121212120220x x y y y y y y +=⇒--+=, 整理得12122y y y y +=+………①由2222402602x y x y m y y m x y⎧+--+=⇒-+=⎨=-⎩,3680m ∆=->得:92m <,易知1y ,2y 是方程的根,故有123y y +=,122m y y =代入①,得3222mm =+⇒=,满足要求,故2m =20.(1)两圆内切,10x y ++=;(2)直线l 的方程为0x y +=【分析】(1)由1m =-,分别得到圆1C 和圆2C 的圆心,半径,然后利用圆圆的位置关系判断,再由两圆方程相减得到公切线;(2)先得到两圆公共弦所在直线l 的方程,再利用弦长公式求解. 【详解】(1)当1m =-时,圆1C 的圆心()12,1C ,半径1r =圆2C 的圆心()21,0C ,半径2r圆心距1212C C r r ==-,所以两圆内切; 因为两圆内切,所以公切线只有一条,两圆的公切线方程可由两圆方程相减得到:10x y ++=; (2)两圆公共弦所在直线l 的方程为:2230x y m +++=,圆2C 的圆心()21,0C 到直线l 2=, 于是52m +=,3m =-或7(-舍), 所以直线l 的方程为0x y +=;因为圆2C 半径22r =,弦心距d ==21.(1)12m =;(2)1n =-或7n =-.【分析】(1)由公切线条数知两圆外切,从而可得m 值;(2)求出圆2C 圆心坐标和半径,求得圆心到直线的距离,用勾股定理求得圆心到直线的距离从而得参数值.【详解】解:(1)圆221:(1)1C x y -+=,圆心1(1,0)C ,半径11r =;圆222:(4)16C x y m -+=-,圆心2(4,0)C ,半径2r因为圆1C 与圆2C 有3条公切线,所以圆1C 与圆2C 相外切,所以1212C C r r =+,即31=12m =.(2)由(1)可知,圆222:(4)4C x y -+=,圆心2(4,0)C ,半径22r =.因为直线0x n +=与圆2C 相交,弦长是2,所以圆心2C 到直线0x n ++=的距离d ===,解得1n =-或7n =-. 【点睛】结论点睛:本题实质考查圆与圆的位置关系,圆与圆的位置关系与公切线条数: 两圆圆心距离为d ,半径分别为,r R ,则相离d R r ⇔>+,公切线有4条;外切d R r ⇔=+,公切线有3条;相交R r d R r ⇔-<<+,公切线有2条;内切d R r ⇔=-,公切线有1条;内含d R r ⇔<-,无公切线. 22.C【详解】由题意,得两圆的标准方程分别为22(2)(1)4x y -++=和22(2)(2)9x y ++-=,则两圆的圆心距523d =+,即两圆外切,所以两圆有3条公切线;故选C .【点睛】本题考查圆与圆的位置关系和两圆公切线的判定;在处理两圆的公切线条数时,要把问题转化为两圆位置关系的判定:当两圆相离时,两圆有四条公切线;当两圆外切时,两圆有三条公切线;当两圆相交时,两圆有两条公切线;当两圆内切时,两圆有一条公切线;当两圆内含时,两圆没有公切线. 23.C【分析】两圆外切时,有三条公切线.【详解】圆1C 标准方程为22(2)1x y -+=, ∵两圆有三条公切线,∴两圆外切,116a =. 故选C .【点睛】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线. 24.(1)()()221716x y -+-=(2)()()221725x y -+-=或()()221727x y -+-=.【分析】(1)根据圆与圆的位置关系,求出圆2O 的半径即可写出圆2O 的方程; (2)由两圆的圆心距确定圆心到公共弦的的距离公式,从而求出圆2O 的半径即可求解. (1)圆1O 的方程为()()22231x y ++-=, 则圆心坐标为()2,3-,半径为1. 圆2O 的圆心()21,7O ,5=. 由圆2O 与圆1O 外切, 则所求圆2O 的半径为4,所以圆2O 的方程()()221716x y -+-=. (2)圆2O 与圆1O 交于A 、B 两点,且AB =所以圆1O 到AB 110=.5=,当圆2O 到AB 的距离为14951010-=时,2O 5=, 所以圆2O 的方程为()()221725x y -+-=.当圆2O 到AB 的距离为15151010+=时,圆2O = 所以圆2O 的方程为()()221727x y -+-=.综上所述,圆2O 的方程为()()221725x y -+-=或()()221727x y -+-=. 25.(1)()()224316x y -+-=(2)【分析】(1)利用两点求出直线方程l ,利用圆心在l 上又在3y =求出圆心坐标,进而求出圆的半径求出圆1C 的方程;(2)利用两圆的方程相减得到公共弦所在直线方程,求出圆心1C 到公共弦的距离,利用勾股定理求出两圆的公共弦长. (1)经过点(21),与点(23)--,的直线l 的方程为123122y x --=----,即1y x =-, 因为圆1C 与y 轴相切于点(03),,所以圆心在直线3y =上,联立31y y x =⎧⎨=-⎩解得43x y =⎧⎨=⎩可得圆心坐标为(43),, 又因为圆1C 与y 轴相切于点(03),,故圆1C 的半径为4, 故圆1C 的方程为()()224316x y -+-=. (2)圆1C 的方程为()()224316x y -+-=,即228690x y x y +--+=,圆222:6350C x y x y +--+=,两式作差可得两圆公共弦所在的直线方程为2340x y +-=,圆1C 的圆心(43),到直线2340x y +-=的距离d ==所以两圆的公共弦长为= 26.A【分析】①将点()1,2A 代入圆可判断;②将圆化为标准方程,得出圆心,利用点到直线距离公式可得;③求出两圆圆心和半径,判断位置关系可得;④两圆方程相减即可求出. 【详解】①点()1,2A 代入圆可得2212214210++⨯-⨯+=,所以点A 在圆上,故①错误; ②由2228130+--+=x y x y 可得()()22144x y -+-=,则圆心为()1,4,由点到直线的距离公式可得圆心到线4330x y -+=1=,故②错误;③圆1C 化为()2211x y ++=,圆心为()11,0C -,半径11r =,圆2C 化为()()222416x y -+-=,圆心为()22,4C ,半径24r =,则圆心距12125C C r r ==+,故两圆外切,公切线有3条,故③正确;④两圆方程相减可得260x y -+=,故公共弦所在方程为260x y -+=,故④错误,综上,正确的有1个. 故选:A. 27.D【解析】由题意可知,圆2C 内切于圆1C ,由题意可得出2241a b +=,然后将代数式2211a b +与224a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆()221:24C x a y ++=的圆心为()12,0C a -,半径为12r =,圆()22:1C x y b +-=的圆心为()20,C b ,半径为21r =,由于两圆有且仅有1条公切线,则圆2C 内切于圆1C ,所以12121C C r r =-=,可得2241a b +=,()2222222222111144559b a a b a b a b a b ⎛⎫+=++=∴++≥+= ⎪⎝⎭, 当且仅当222b a =时,等号成立, 因此,2211a b +的最小值为9. 故选:D.【点睛】结论点睛:圆与圆的位置关系:设圆1C 与圆2C 的半径长分别为1r 和2r . (1)若1212C C r r <-,则圆1C 与圆2C 内含; (2)若1212C C r r =-,则圆1C 与圆2C 内切; (3)若121212r r C C r r -<<+,则圆1C 与圆2C 相交; (4)若1212C C r r =+,则圆1C 与圆2C 外切; (5)若1212C C r r >+,则圆1C 与圆2C 外离.【分析】根据两圆的位置关系判断.【详解】解:圆1C 的标准方程:22(1)(3)36x y ++-=,圆心()11,3C -,半径16r =, 圆2C 的标准方程:22(2)(1)1x y -++=,圆心()22,1C -,21r =,因为圆心距12125C C r r ===-,所以两圆内切,所以与两圆都相切的直线有1条. 故选:A 29.D【分析】求出P 的轨迹方程,结合点P 为两圆交点且2CM,列出不等式,求出t 的取值范围.【详解】由题意得P 在以AB 为直径的圆222:M x y t +=上(去掉A ,B 两点).又因为点P 在圆(()22:11C x y +-=上,所以圆C 与圆M 有交点,因为2CM ,所以121t t -≤≤+,所以13t ≤≤.故选:D . 30.D【分析】设动圆圆心为(),x y ,两半径相加,内切两半径相减,即可求解【详解】设动圆圆心为(),x y 41=+,∴()()225725x y -++=;41=-,∴()()22579x y -++=.31.BD【分析】对A ,圆心到x 轴的距离等于半径判断即可;对B ,根据圆心间的距离与半径之和的关系判断即可;对C ,根据两圆有公共弦,两圆的方程相减可得公共弦所在直线方程求解即可;对D ,根据直线210kx y k --+=过定点()2,1以及()2,1在圆C 1内判断即可.【详解】因为221:(1)(3)11C x y -+-=,222:(1)()4C x y m ++-=,对A ,故若圆2C 与x 轴相切,则有||2m =,故A 错误;对B ,当3m =-时,1262C C =>>B 正确; 对C ,由两圆有公共弦,两圆的方程相减可得公共弦所在直线方程24(62)20x m y m +-+-=,故C 错误;对D ,直线210kx y k --+=过定点()2,1,而22(21)(13)511-+-=<,故点()2,1在圆221:(1)(3)11C x y -+-=内部,所以直线210kx y k --+=与圆1C 始终有两个交点,故D 正确.故选:BD 32.ABD【分析】两圆方程作差后可得公共弦方程,从而可判断A 的正误,求出圆1Q 的圆心坐标后求出垂直平分线的方程后可判断B 的正误,利用垂径定理计算弦长后可判断C 的正误,求出1Q 到直线的距离后可求动点到直线距离的最大值,从而可判断D 的正误.【详解】对于A ,因为圆221:20+-=Q x y x ,222:240++-=Q x y x y ,两式作差可得公共弦AB 所在直线的方程为440x y -=,即0x y -=,故A 正确;对于B ,圆221:20+-=Q x y x 的圆心为(1,0),1AB k =,则线段AB 中垂线的斜率为1-,即线段AB 中垂线方程为()011y x -=-⨯-,整理可得10x y +-=,故B 正确;对于C ,圆心()11,0Q 到0x y -=的距离为2d ==又圆1Q 的半径1r =,所以AB =C 不正确;对于D ,P 为圆1Q 上一动点,圆心()11,0Q 到0x y -=的距离为d =又圆1Q 的半径1r =,所以P 到直线AB 1,故D 正确.故选:ABD. 33.ACD【分析】对于A ,考查圆心k C 的横纵坐标关系即可判断;对于B ,把3x =,0y =代入圆k C 方程,由关于k 的方程根的情况作出判断;对于C ,判断圆心k C 到直线0x y -±=距离与半径的关系即可; 对于D ,圆k C 与以原点为圆心的单位圆相交即可判断作答.【详解】解:根据题意,圆22:()()4(R)k C x k y k k -+-=∈,其圆心为(,)k k ,半径为2, 依次分析选项:对于A ,圆心为(,)k k ,其圆心在直线y x =上,A 正确; 对于B ,圆22:()()4k C x k y k -+-=,将(3,0)代入圆的方程可得22(3)(0)4k k -+-=, 化简得22650k k -+=,364040∆=-=-<,方程无解, 所以不存在圆k C 经过点()3,0,B 错误;对于C ,存在直线y x =±,即0x y -+=或0x y --=,圆心(,)k k 到直线0x y -+=或0x y --=的距离2d =, 这两条直线始终与圆k C 相切,C 正确,对于D ,若圆k C 上总存在两点到原点的距离为1, 问题转化为圆221x y +=与圆k C 有两个交点,,则有1|3k <<,解可得:k <k <,D 正确.故选:ACD . 34.ACD【分析】判断出直线l 过定点()1,1D ,结合勾股定理、圆的对称性、点到直线的距离公式、四点共圆等知识对选项进行分析,从而确定正确答案. 【详解】直线():11l y k x =-+过点()1,1D ,圆()()22:2216C x y -++=,即224480x y x y +-+-=①, 圆心为()2,2C -,半径为4r =,由于()()22121216-++<,所以D 在圆C 内.CD =所以min AB =AB CD ⊥,所以A 选项正确.若圆C 关于直线l 对称,则直线l 过,C D 两点,斜率为21321--=--,所以B 选项错误. 设22ACB CAB θ∠=∠=,则π2π,4θθθθ++==,此时三角形ABC 是等腰直角三角形,C 到直线AB 的距离为42==解得1k =或17k =-,所以C 选项正确.对于D 选项,若,,,A B C O 四点共圆,设此圆为圆E ,圆E 的圆心为(),E a b ,,O C 的中点为()1,1-,1OC k =-,所以OC 的垂直平分线为:11,2l y x y x +=-=-,则2b a =-②, 圆E 的方程为()()2222x a y b a b -+-=+, 整理得22220x y ax by +--=③, 直线AB 是圆C 和圆E 的交线,由①-③并整理得()():422480AB a x b y --++=,将()1,1D 代入上式得()()422480a b --++=,40a b +-=④, 由②④解得3,1a b ==, 所以直线AB 即直线l 的斜率为42212463a b --==-+,D 选项正确. 故选:ACD【点睛】求解直线和圆位置关系有关题目,首先要注意的是圆和直线的位置,是相交、相切还是相离.可通过点到直线的距离来判断,也可以通过直线所过定点来进行判断. 35.ACD【分析】根据给定条件,求出点A ,B 的坐标,再结合圆的性质逐项分析、计算判断作答.【详解】依题意,由22225(4)13x y x y ⎧+=⎨-+=⎩解得12x y =⎧⎨=±⎩,则(1,2),(1,2)A B -,圆1O 的圆心1(0,0)O ,半径1r =2O 的圆心2(4,0)O ,半径2r||4AB =,A 正确;。
第1讲 圆与圆的位置关系
一、知识梳理
、r )
切点。
3、外公切线长:L=2212)r r (d --;内公切线长:L=2
212)r r (d +-
二、典型问题分析:
问题1.如图⊙O 和⊙OA 交于M 、N ,且A 在⊙O 上,弦MC 交⊙O 于点D ,连结AD ,NC ,求证:DA ⊥NC
问题2.⊙O 和⊙O 1外切于C ,AB 是外公切线, 延长⊙O 交AB 的延长线于P 点,若∠P=300,AB=2,求两圆的半径。
问题3.如图,ΔABC 的∠C =Rt ∠,BC =4,AC =3,两个外切的等圆⊙O 1,⊙O 2各与AB ,AC ,BC 相切于F ,H ,E ,G ,求两圆的半径。
问题4.如图,⊙O 1和⊙O 2相切于点P ,AB 切两圆于A ,B ,ΔPAB 的周长为40,面积为60,求P 点到AB 的距离。
问题5.如图,⊙O 与⊙O 1外离,AB ,CD 是内公切线,OO !是圆心距,⊙O 半径为4,⊙O 1半径为6,OO 1=20,求两圆内公切线所夹的锐角及内公切线长。
问题6. 已知⊙O 1与⊙O 2的半径长分别为方程01492
=+-x x 的两根,若圆心距O 1O 2的长为5,则⊙O 1与⊙O 2的位置关系如何?
问题7.如图,⊙O 1与⊙O 2外切于点P ,AB 过P 点分别交⊙O 1和⊙O 2于A 、B 两点,BD 切⊙O 2于点B ,交⊙O 1于C 、D 两点,延长CP 交⊙O 2于Q 。
(1)求证:CQ CP
AD
PA =2
2;
(2)设⊙O 2的半径为r ,⊙O 1的半径为R ,若BP =2,AD =34,求
R
r
的值; (3)若AP ∶PB =3∶2,且C 为BD 的中点,求AD ∶BC 的值。
问题8、如图,已知⊙O 1与⊙O 2相交于A 、B 两点,P 为⊙O 1上一点,PB 的延长线交⊙O 2于C ,PA 交⊙O 2于点D ,CD 的延长线交⊙O 1于点N 。
(1)过点A 作AE ∥CN 交⊙O 1于点E ,求证PA =PE ; (2)连结PN ,若PB =4,BC =2,求PN 的长。
∙
2
O 1
O
∙2题图
N
E
P
D C
B
A
问题9、如图,已知⊙O 与⊙O '相交于A 、B 两点,点O 在⊙O '上,⊙O '的弦OC 交AB 于点D 。
(1)求证:OD OC OA ⋅=2
;
(2)如果AC +BC =3OC ,⊙O 的半径为r ,求证:AB =r 3。
O '
∙
∙
3题图 O D
C
B
A
问题10、已知点A 在⊙O 上,⊙A 与⊙O 相交于B 、C 两点,⊙A 的弦BD 与⊙O 相交于E 。
(1)如图1,判定△CED 的形状,并证明你的结论;
(2)如图2,当BD 经过O 时,若⊙A 的半径为6,
CE =1,求⊙O 的半径。
4题图1
∙∙4题图2
O
E
D C
B
A
家庭作业
1. 如图,两圆外切于P ,直线交两圆于A ,B ,C ,D ,求证:∠APD +∠BPC =180°
2. 如图,⊙O 和⊙O 1内切于E ,大圆弦AD 经过O 1且交⊙O 1于B ,C ,AB :BC :CD =2:4:3,
求⊙O 1与⊙O 半径之比。
3. 如图,已知⊙O 1和⊙O 2相交于A ,B ,过A 作直线分别交⊙O 1,⊙O 2于C ,D ,过B 作直线
分别交⊙O 1,⊙O 2于E ,F ,求证:CE ∥DF
4、如图,⊙O 1与⊙O 2相交于A 、B 两点,P 为⊙O 2上一点,PA 交⊙O 1于C ,PB 的延长线交⊙O 1于D ,过D 、C 的直线交⊙O 2于E 、F 。
求证:PE =PF 。
∙
2
O 1
O ∙
第1题图
E
F
P
D
C
B
A
问题1:解:连接MN ,OA ,AN ,MN 交OA 于B , ∵MN 是公共弦,OA 为圆心距, ∴MN ⊥OA 于B , ∴∠ABN=90°, 在⊙A 中,
∵∠C 的度数等于弧MN 的度数的一半,∠BAN 的度数也等于弧MN 的度数的一半, ∴∠C=∠BAN ,
∵M 、N 、A 、D 四点共圆, ∴∠ADC=∠BNA , ∵∠BAN+∠BNA=90°, ∴∠C+∠EDC=90°, ∴∠AEC=180°-90°=90°. 答:∠AEC 的度数是90°. :
问题7:(1)证明:先证∠APD =∠BPC ,又∠BCP =∠DAP
∴△CPB ∽△APD ,∴CB CP AD PA =,即2
2
22CB CP
AD PA = ∵BC 切⊙O 2于O 2,∴CQ CP BC ⋅=2
∴CQ
CP
CQ CP CP AD PA =⋅=222 (2)解:连结O 1 O 2、O 1 A 、O 2 B ,则O 1 O 2过P 点。
证△AO 1P ∽△BO 2P ,∴AP
BP
R r =,再证AD
AP AB AD =,∴)2(2
AP AP AP AB AD +=⋅=,AP AP 2)34(22+=,解得AP =6 ∴
3
162==R r (3)解:∵C 为BD 的中点,∴BC =DC ,∴P
C D PBC S S ∆∆=。
∵AP ∶PB =3∶2,∴D A P S ∆∶
DPB S ∆=3∶2,∴DA P S ∆∶PBC S ∆=3∶1。
∵△DAP ∽△BCP ,2
⎪⎭
⎫
⎝⎛=∆∆BC DA S S PBC DAP ,∴
3=BC
DA。
问题9、
例2图
,∴
同理可得,
AC+BC=.
分析1 由结论联想到三角形的内角和定理,但是求证的两个角彼此重叠在一起,添过P点的公切线PQ可将角分解代换:∠APD=∠APB+∠BPQ+∠CPQ+∠CPD,∠QPB=∠A,∠QPC=∠D,这是弦切角等于它所夹弧所对的圆周角,又由三角形外角定理有∠BCP=∠D+∠CPD,∠CBP=∠A+∠BPA,这表面上看是将角分散了,但是“分解与重新组合”,使求证:∠APD+∠BPC=180°的结论获得了新生:∠
APD+∠BPC=∠BPC+∠PBC+∠BCP=180°.
分析2 由结论联想△APD的内角和定理,作过P点的公切线PQ,∠BPC=∠BPQ+∠CPQ,∠BPQ=∠A,∠CPQ=∠D,最后得出∠APD+∠A+∠D=∠APD+∠BPC=180°.
2、解:过O
1作圆O2的直径,
∵半径为r
1的圆内切于半径为r2的圆,切点为P,
∴E、O
1、P共线,
设AC=3x,CD=4x,DB=2x,则r
1=2x,
由相交弦定理得:AO
1•O1B=EO1•PO1,
∴5x•4x=(2r
2-2x)•2x,
解得:r
2=6x,CD=4x,DB=2x,得到r1=2x,根据相交弦定理得到AO1•O1B=EO1•PO1,代入得方程5x•4x=(2r2-2x)•2x,求出r2=6x,即可求出答案.
3、CD和EF在两圆中不相交。
连接AB,在⊙O1中,∵ABEC是圆内接四边形,∴∠CEB+∠CAB=180°,
在⊙O2中,∵ABFD是圆内接四边形,∴∠CAB=∠BFD,
那么∠CEB+∠BFD=180°,∴CE∥DF。
4、提示:连结AB、AE,证∠PEF=∠F;。