人教版初三数学圆和圆的位置关系1
- 格式:pdf
- 大小:697.97 KB
- 文档页数:9
3.6 圆和圆的位置关系学习目标:经历探索两个圆位置关系的过程,理解圆与圆之间的位置关系,了解两圆外切、内切与两圆圆心距d,半径R和r的数量关系的联系.学习重点:两圆的位置关系,相切两圆的性质.两圆的五种位置关系的描述性定义,要注意数学语言的严谨性和准确性,必须注意讲清关键性词语(如谁在谁的外部、内部、惟一公共点等).圆与圆的位置关系也可以与点和圆、直线和圆的位置关系类比记忆,每种位置关系可归纳为相离、相交、相切三类.相切两圆的性质是由圆的对称性决定的,两个圆组成的图形也是轴对称的,对称轴是连心线.学习难点:相切两圆位置关系的性质的理解.学习方法:教师讲解与学生合作交流探索法.学习过程:一、例题讲解:【例1】已知⊙A、⊙B相切,圆心距为10cm,其中⊙A的半径为4cm,求⊙B的半径.【例2】定圆O的半径是4cm,动圆P的半径是1cm.当两圆相切时,点P与点O的距离是多少?点P可以在什么样的线上移动?【例3】已知两个圆互相内切,圆心距是2cm,如果一个圆的半径是3cm,那么另一个圆的半径是多少?【例4】已知⊙O1和⊙O2的半径分别为1和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切【例5】如图,施工工地的水平地面上,有三根外径都是1m的水泥管,两两相切地堆放在一起,其最高点到地面的距离是.【例6】一个等腰梯形的高恰好等于这个梯形的中位线.若分别以这个梯形的上底和下底为直径作圆,这两个圆的位置关系是()A.相离B.相交C.外切D.内切【例7】两圆的圆心坐标分别是(,0)和(0,1),它们的半径分别是3和5,则这两个圆的位置关系是()A.相离B.相交C.外切D.内切【例8】两枚如图3-6-4同样大小的硬币,其中一个固定,另一个沿其周围滚动,滚动时两枚硬币总是保持有一点相接触(相外切),当滚动的硬币沿固定的硬币周围滚动一圈,回到原来的位置时,滚动的那个硬币自转的周数是多少?【例9】⊙O1、⊙O2、⊙O3两两外切,切点为A、B、C,它们的半径为r1、r2、r3.(1)若△O1O2O3是直角三角形,r2:r3=2:3,用r2表示r1;(2)若△O1O2O3与以A、B、C为顶点的三角形相似,则r1、r2、r3必须满足什么条件?3二、课内练习:1.已知半径为1厘米的两圆外切,半径为2厘米且和这两圆都相切的圆共有个.2.三角形三边长分别为5厘米、12厘米、13厘米,以三角形三个顶点为圆心的三个圆两两外切,则此三个圆的半径分别为.三、课后练习:1.以平面直角坐标系中的两点O1(0,3)和O2(4,0)为圆心,以8和3为半径的两圆的位置关系是()A.内切B.外切C.相离D.相交2.两圆半径之比为3:2,当此两圆外切时,圆心距是10cm,那么,当此两圆内切时,其圆心距为()A.大于2cm且小于6cm B.小于2cmC.等于2cm D.非以上取值范围3.已知⊙O1、⊙O2的半径分别为6和3,O1、O2的坐标分别是(5,0)和(0,6),则两圆的位置关系是()A.相交B.外切C.内切D.外离4.R、r是两圆的半径(R>r),d是两圆的圆心距,若方程x2-2Rx+r2=d(2r-d)有等根,则以R、r为半径的两圆的位置关系是()A.外切B.内切C.外离D.相交5.已知半径分别为r和2r的两圆相交,则这两圆的圆心距d的取值范围是()A.0<d<3r B.r<d<3r C.r<d<2r D.r≤d≤3r6.下列说法正确的是()A.没有公共点的两圆叫两圆外离 B.相切两圆的圆心距必须经过切点C.相交两圆的交点关于连心线对称D.若⊙O1、⊙O2的半径为R、r,圆心距为d,当两圆同心时,R-r>d7.已知两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过O2,则四边形O1AO2B是()A.平行四边形B.菱形C.矩形D.正方形8.半径分别为1、2、3的三圆两两外切,则以这三个圆的圆心为顶点的三角形的形状为()A.钝角三角形B.等腰三角形C.等边三角形D.直角三角形9.半径分别为1cm和2cm的两圆外切,那么与这两个圆都相切且半径为3cm的圆的个数是()A.5个B.4个C.3个D.2个10.两圆的半径分别是方程x2-12x+27=0的两个根,圆心距为9,则两圆的位置关系一定是.11.已知两圆外离,圆心距等于12,大圆的半径是7,那么小圆的半径所可能取的整数值是.12.已知两圆半径的比为3:5,当两圆内切时,圆心距为4cm,那么当此两圆外切时,圆心距应为.13.平面上两圆的位置关系可以归纳为三类,即、和.14.已知两圆直径为3+r,3-r,若它们圆心距为r,则两圆的位置关系是.15.两个半径分别为6cm的圆,它们的圆心分别在另一个圆上,则其公弦的长是.16.已知⊙O1和⊙O2相内切,且⊙O1的半径6,两圆的圆心距为3,则⊙O2的半径为.17.两圆的半径之比是5:3,外切时圆心距是32,那么当这两个圆内切时,圆心距为.18.在直角坐标系中,分别以点A(0,3)与点B(4,0)为圆心,以8与3为半径作⊙A和⊙B,则这两个圆的位置关系为.19.(1)如图1两个半径为r的等圆⊙O1与⊙O2外切于点P.将三角板的直角顶点放在点P,再将三角板绕点P旋转,使三角板的两直角边中的一边PA与⊙O1相交于A,另一边PB与⊙O2相交于点B(转动中直角边与两圆都不相切),在转动过程中线段AB的长与半径r 之间有什么关系?请回答并证明你得到的结论;(2)如图2,设⊙O1和⊙O2外切于点P,半径分别为r1、r2(r1>r2),重复(1)中的操作过程,观察线段AB的长度与r1、r2之间有怎样的关系,并说明理由.。
圆与圆的位置关系知识点圆与圆的位置关系是数学中的一个重要概念,它描述了两个圆之间的相对位置。
在几何学中,我们常常遇到需要判断两个圆是否相交、相切或者相离的问题。
下面将介绍几种常见的圆与圆的位置关系,并给出相应的判定方法。
1. 相交关系:两个圆相交,意味着它们具有共同的交点。
判断两个圆是否相交的方法有多种,其中一种常用的方法是计算两个圆心之间的距离是否小于两个圆的半径之和。
如果两个圆心之间的距离大于半径之和,则两个圆相离;如果两个圆心之间的距离等于半径之和,则两个圆相切;如果两个圆心之间的距离小于半径之和,则两个圆相交。
2. 外切关系:两个圆外切,意味着它们的外切点相同。
判断两个圆是否外切的方法是计算两个圆心之间的距离是否等于两个圆的半径之和。
如果两个圆心之间的距离等于半径之和,则两个圆外切。
3. 内切关系:两个圆内切,意味着它们的内切点相同。
判断两个圆是否内切的方法是计算两个圆心之间的距离是否等于两个圆的半径之差的绝对值。
如果两个圆心之间的距离等于两个圆的半径之差的绝对值,则两个圆内切。
4. 相离关系:两个圆相离,意味着它们没有任何公共点。
判断两个圆是否相离的方法是计算两个圆心之间的距离是否大于两个圆的半径之和。
如果两个圆心之间的距离大于半径之和,则两个圆相离。
除了以上几种常见的圆与圆的位置关系外,还有一些特殊的情况需要特别注意:5. 同心圆:两个圆的圆心重合,这种情况称为同心圆。
同心圆的半径可以相等,也可以不相等。
6. 同径圆:两个圆的半径相等,但圆心不重合,这种情况称为同径圆。
7. 内含关系:一个圆完全包含在另一个圆内部,这种情况称为内含关系。
判断两个圆是否内含的方法是计算两个圆心之间的距离是否小于两个圆的半径之差的绝对值。
如果两个圆心之间的距离小于两个圆的半径之差的绝对值,则一个圆内含在另一个圆内部。
8. 外离关系:两个圆没有任何公共点,并且一个圆不包含在另一个圆内部,这种情况称为外离关系。
初三数学重要的知识点归纳初三数学知识圆和圆的位置关系1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定设两圆的半径分别为R和r,圆心距为d,那么两圆外离 d>R+r两圆外切 d=R+r两圆相交 R-r两圆内切 d=R-r(R>r)两圆内含 dr)4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
三角形的内切圆1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
与正多边形有关的概念1、正多边形的中心正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。
3、正多边形的边心距正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
正多边形和圆1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
正多边形的对称性1、正多边形的轴对称性正多边形都是轴对称图形。
一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。
3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。
弧长和扇形面积1、弧长公式n°的圆心角所对的弧长l的计算公式为 2、扇形面积公式其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。