有限元 5有限条法
- 格式:pdf
- 大小:1.31 MB
- 文档页数:19
通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。
这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。
有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。
由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。
有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。
事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。
理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。
为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。
有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。
大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。
有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。
有限元法的分析过程有限元法是一种数值分析方法,用于求解实际问题的物理场或结构的数学模型。
它将连续的实体分割成离散的小单元,通过建立节点和单元之间的关系,对物理问题进行逼近和求解。
以下是一般的有限元法分析过程。
1.问题建模和离散化在有限元分析中,首先需要对实际问题进行建模,确定物理场或结构的几何形状和边界条件。
然后,将几何形状分割成一系列小单元,例如三角形、四边形或四面体等。
2.网格生成根据问题的几何形状和离散化方式,生成网格。
网格是由一系列节点和单元组成的结构,节点用于描述问题的几何形状,单元用于划分问题域。
通常,节点和单元的位置和数量会直接影响有限元法的精度和计算效率。
3.插值函数和基函数的选择有限元法中的节点通常表示问题域中的几何点,而节点之间的关系由插值函数或基函数来描述。
插值函数用于建立节点和单元之间的关系,基函数用于对物理场进行逼近。
选择适当的插值函数和基函数是有限元法分析的关键。
4.定义系统参数和边界条件确定相关物理参数和材料性质,并将其转化为数值形式。
在有限元分析中,还需要定义边界条件,包括约束条件和加载条件。
5.定义数学模型和方程根据问题的物理场或结构和所选择的基函数,建立数学模型和方程。
有限元方法可以用来建立线性方程、非线性方程、静态问题、动态问题等。
具体建立数学模型和方程的过程需要根据问题的特点进行。
6.组装刚度矩阵和力载荷向量根据离散化的节点和单元,组装刚度矩阵和力载荷向量。
刚度矩阵描述节点之间的刚度关系,力载荷向量描述外部加载的作用力。
7.求解代数方程通过求解代数方程,确定节点的位移或物理场的数值解。
通常,使用迭代方法或直接求解线性方程组的方法来求解。
8.后处理和分析得到数值解后,可以进行后处理和分析。
包括计算节点和单元的应变、应力等物理量,进行矫正和验证计算结果的正确性。
还可以通过有限元法的网格适应性来优化问题的计算效率和精度。
以上是一般的有限元法分析过程,具体的步骤和方法可能会因不同的问题而有所不同。
有限元法的基本原理有限元法(Finite Element Method)是一种用于求解工程和物理问题的数值计算方法。
它将复杂的结构或物理系统分割成若干个小的、简单的部分,这些部分被称为有限元。
通过对每个有限元进行数学建模和描述,再根据各个有限元之间的相互关系,最终得到整个系统的数学模型,并通过求解模型得到所需的结果。
有限元法的基本原理可以总结为以下几个步骤:1.离散化:将需要分析的实际物体或系统划分为多个小的部分,每个小部分称为有限元。
每个有限元都有自己的几何形状和物理特性。
2.建立方程:对每个有限元进行数学建模,设定适当的假设和方程,并将其转化为一个或多个待求解的方程。
这些方程描述了物体各点之间的关系和行为。
3.组装和边界条件:将所有有限元的方程组合起来形成整个系统的方程。
在这个过程中,考虑到边界条件,如约束和加载,以使系统模型更接近实际情况。
4.求解方程:通过数值解法或迭代算法,对系统方程进行求解。
常用的方法有直接法、迭代法、矢量或矩阵求逆等。
5.后处理:根据求解结果,得到所需的物理量和信息,并进行数据分析和可视化,以获得更深入的认识。
有限元法的最大优点之一是其适用性广泛。
它可以应用于各种复杂的结构和物理系统,包括静力学、动力学、热传导、电磁学等。
通过适当的选择有限元类型和参数,可以对各种材料和结构进行准确的分析和预测。
此外,有限元法对于学术和工程研究的意义也非常重大。
它提供了一种理论和实践相结合的方法,可以对实际问题进行数值模拟和优化设计。
通过对有限元模型的分析,可以预测物体或系统的行为和响应,从而为实际工程项目的决策提供有力的支持。
然而,有限元法也存在一些局限性和挑战。
首先,有限元法在建立数学模型和求解方程时需要一定的理论基础和数值计算技术。
其次,模型的精确性和结果的准确性依赖于有限元的选择和划分,以及材料参数和边界条件的准确性。
最后,有限元法的计算量通常很大,特别是对于复杂的结构和多物理场问题,需要高性能计算和有效的算法来提高计算效率。
第5章 有限条法5.1引言一、 发展概况有限条法(Finite Strip Method)诞生于二十世纪60年代,一般认为主要创始人有:Y.K.Cheung(张佑启)教授和G.H.Powell(鲍威尔)、 D.W.Ogden(奥格登)两人。
Y.K.Cheung 在1966~1969年间首先用有限条法研究了矩形薄板弯曲问题,后两人开始于板式桥梁的研究工作。
二、有限条法的力学模型有限条法可看作是有限元的一种特殊形式或分支,是一种(有限元)半解析法,适应于一些量大面方的,常用的规则结构形式,采用有限条法可使弹性力学中的二维问题化为一维问题(三维化二维),使总刚方程降阶,从而提高效率。
象有限元一样,有限条法亦需将连续体离散化,所不同的是,不象有限元一样可沿任意方面离散,而只能沿某一方向。
如图示矩形板,用有限元分析(矩形元)的网格划分如右图示,而有限条则是沿x 方向等分成若干条带。
有限条:x 方向采用多项式插值函数 )(x f f = (梁函数)y 方向采用三角级数表示:)(y Y f =然后板的位移函数采用一总和函数表示:å==rm my Yx f w 1)()(5.2 梁函数和基本函数一、梁函数梁函数用以表示条元的横向变化规律。
图示梁有两个结点(i,j), 每个结点两个位移: 线位移(挠度)1d 、3d ; 角位移2d 、4d 任意点的位移函数:231234()f x x x x a a a a =+++代入边界条件可得:[]{}12323232322322323432232()1d d x x x x x x x x f x x L d d bb b b b b b b d ìüïïéùïï=-+-+--+=íýêúëûïïïïîþ51- [L]为在第二章中推导出的平面梁单元的形函数,此处称梁函数。
有限元法的工程领域应用
有限元法(Finite Element Method,简称FEM)是一种工程领域常用的数值计算方法,广泛应用于结构力学、固体力学、流体力学等领域。
以下是一些有限元法在工程领域常见的应用:
1. 结构分析:有限元法可用于分析各种结构的受力性能,如建筑物、桥梁、飞机、汽车等。
通过将结构离散成有限数量的单元,可以计算出每个单元的应力、应变以及整个结构的位移、变形等信息。
2. 热传导分析:有限元法可用于模拟材料或结构的热传导过程。
通过对材料的热传导系数、边界条件等进行建模,可以预测温度分布、热流量等相关参数。
3. 流体力学分析:有限元法在流体力学领域的应用非常广泛,例如空气动力学、水动力学等。
通过建立流体的速度场、压力场等参数的数学模型,可以分析流体在不同条件下的运动特性。
4. 电磁场分析:有限元法可以应用于计算电磁场的分布和特性,如电磁感应、电磁波传播等。
通过建立电磁场的数学模型,可以预测电场、磁场强度以及电磁力等。
5. 振动分析:有限元法可用于模拟结构的振动特性,如自由振动、强迫振动等。
通过建立结构的质量、刚度和阻尼等参数的数学模型,可以计算出结构在不同频率下的振动响应。
6. 优化设计:有限元法可以与优化算法结合,应用于工程设计中的结构优化。
通过对结构的材料、几何形状等进行参数化建模,并设置目标函数和约束条件,可以通过有限元分析来寻找最佳设计方案。
以上只是有限元法在工程领域的一些应用,实际上有限元法在各个领域都有广泛的应用,为工程师提供了一种精确、高效的数值计算方法,用于解决各种实际工程问题。
有限元法及应用总结有限元法(Finite Element Method,FEM)是一种数学建模方法,用于求解连续介质的力学问题。
它通过将连续介质分割为有限数量的小单元,通过离散化的方式将连续问题转化为离散问题,然后通过数值计算方法进行求解。
有限元法的基本步骤是:建立初始网格、选择合适的单元类型和数学模型、建立有限元方程、求解有限元方程组、计算和评估结果。
1.建立初始网格:将连续介质分割为离散的小单元。
可以根据问题的特点选择不同形状的单元,如三角形、四边形、六边形等。
初始网格的密度应根据问题的要求进行合理的选择。
2.选择合适的单元类型和数学模型:根据问题的情况,选择合适的数学模型,如线性模型、非线性模型、静力学模型、动力学模型等。
同时,根据问题的要求选择合适的单元类型,如三角形单元、四边形单元等。
3.建立有限元方程:根据选择的数学模型,使用变分原理或其他方法建立有限元方程。
有限元方程通常是一个矩阵方程,包含未知变量和已知条件,通过求解该方程可以得到问题的解。
4.求解有限元方程组:将有限元方程组转换为代数方程组,使用数值计算方法求解。
常用的求解方法有直接解法和迭代解法,如高斯消元法、LU分解法、共轭梯度法等。
根据问题的特点选择合适的求解方法。
5.计算和评估结果:得到问题的解后,可以通过计算和评估结果来验证数值解的准确性和可靠性。
常见的评估方法有误差分析、收敛性分析、模型验证等。
有限元法的应用非常广泛,涉及机械、土木、航空航天、电子、生物医学等多个领域。
通过有限元法可以模拟和分析各类结构的力学行为和变形特性,以及流体、热传导等物理问题。
在机械工程中,有限元法可以用于模拟零件的变形、应力和疲劳行为,优化结构设计,确定最佳工艺参数等。
在土木工程中,可以用于模拟建筑物、桥梁、隧道等结构的稳定性和强度,评估结构的安全性。
在航空航天工程中,可以用于模拟飞机、航天器的疲劳和破坏行为,优化材料和结构设计。
在电子工程中,有限元法可以用于模拟芯片、电路板的热分布和应力分布,优化散热和布线设计。
有限元法基本原理
有限元法是最先应用于航空工程结构的矩阵分析方法,主要用来解决复杂结构中力与位移的关系。
有限元法的基本思想:将具有无限个自由度的连续的求解区域离散为具有有限个自由度、且按一定方式(节点)相互连接在一起的离散体(单元),即将连续体假想划分为数目有限的离散单元,而单元之间只在数目有限的指定点处相互联结,用离散单元的集合体代替原来的连续体。
一般情况下,有限元方程是一组以节点位移为未知量的线性方程组,解次方程组可得到连续体上有限个节点上的位移,进而可求得各单元上的应力分布规律。
有限元方法求解问题主要分为以下几步:(1)结构的离散化
将已连续体线性沦为单元组合体;(2)挑选加速度模式
即假定单元中位移分布是坐标的某种函数,位移模式一般选为多项式的函数;
(3)单元力学特性分析
利用弹性力学的平衡方程、几何方程、物理方程和虚功原理得到单元节点力和节点位移之间的力学关系,即建立单元刚度矩阵;
(4)排序耦合节点力根据机械功成正比原则,用耦合节点Courtomer替代所有促进作用于单元边界或单元内部的载荷;
(5)建立整个结构的所有节点载荷与节点位移之间的关系(整体结构平衡方程),即建立结构的的总体刚度矩阵;
(6)边界条件
排除结构发生整体刚性位移的可能性。
(7)求解线性方程组
方程组存有唯一求解,即为获得结构中各节点的加速度,单元内部加速度通过插值获得。
(8)后处理与计算结果评价。