基于ABAQUS平台的扩展有限元法
- 格式:pdf
- 大小:447.92 KB
- 文档页数:7
ABAQUS平台的扩展有限元方法模拟裂纹实现1.1 扩展有限元方法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。
在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。
针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。
另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。
除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。
ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。
由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度;3.自适应的网格是不被支持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。
ABAQUS中扩展有限元(XFEM)功能简介扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。
ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。
目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。
1. XFEM理论在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。
而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。
然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。
而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。
从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。
但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。
直到Belytschko提出采用水平集函数作为手段,其基本形式为和上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。
与之对应的形函数便是和其中H(x)是阶跃函数。
想要了解更深的内容,大家可以参考《Extended Finite Element Method》和庄老师的《扩展有限单元法》这种扩充形函数能够描述单元内位移场在裂缝两边的跳跃性,同时,由于裂缝存在于单元内部,其扩展独立与其他单元,使得计算变得高效。
《基于ABAQUS的裂纹扩展仿真软件及应用》篇一一、引言随着现代工程领域对材料性能要求的不断提高,裂纹扩展仿真技术成为了研究材料力学行为的重要手段。
ABAQUS是一款功能强大的工程仿真软件,其基于有限元方法,广泛应用于各种复杂的工程问题。
本文将详细介绍基于ABAQUS的裂纹扩展仿真软件及其应用,分析其原理、特点及在实际工程中的应用效果。
二、ABAQUS裂纹扩展仿真软件原理ABAQUS裂纹扩展仿真软件基于有限元方法,通过构建材料的几何模型、设置材料属性、加载边界条件等步骤,实现对裂纹扩展过程的仿真。
软件采用先进的断裂力学理论,可以模拟裂纹的萌生、扩展、合并等过程,为研究材料的力学行为提供有力支持。
三、ABAQUS裂纹扩展仿真软件特点1. 高度灵活性:ABAQUS裂纹扩展仿真软件具有高度的灵活性,可以模拟各种复杂的裂纹扩展过程。
2. 准确性高:软件采用先进的断裂力学理论,能够准确模拟裂纹的萌生、扩展和合并等过程。
3. 易于操作:软件界面友好,操作简便,用户可以轻松构建几何模型、设置材料属性及加载边界条件。
4. 广泛适用性:ABAQUS裂纹扩展仿真软件可应用于各种工程领域,如航空航天、汽车制造、建筑等。
四、ABAQUS裂纹扩展仿真软件应用1. 材料研发:通过模拟裂纹扩展过程,可以帮助研究人员了解材料的力学性能,为材料研发提供有力支持。
2. 产品设计:在产品设计阶段,通过仿真分析可以预测产品在使用过程中可能出现的裂纹扩展问题,从而优化设计,提高产品的可靠性。
3. 结构安全评估:ABAQUS裂纹扩展仿真软件可用于对结构进行安全评估,预测结构在使用过程中可能出现的裂纹扩展问题,为结构的安全使用提供保障。
4. 实际工程应用:ABAQUS裂纹扩展仿真软件已广泛应用于航空航天、汽车制造、建筑等领域。
例如,在航空航天领域,通过仿真分析可以预测飞机、火箭等结构在极端环境下的裂纹扩展情况,确保其安全性能;在汽车制造领域,通过仿真分析可以优化汽车零部件的设计,提高其耐用性和安全性。
有限元分析课程论文课程名称:有限元分析论文题目:ujoint有限元分析学生班级;学生姓名:任课教师:学位类别:评分标准及分值选题与参阅资料(分值)论文内容(分值)论文表述(分值)创新性(分值)评分论文评语:总评分评阅教师: 评阅时间年月日注:此表为每个学生的论文封面,请任课教师填写分项分值基于abaqus的ujoint有限元分析摘要:万向传动装置在汽车中起到了传递扭矩的关键作用,在abaqus中导入ujoint实体模型,之后对其进行坐标系建立,wire 建立,以及各部件之间的连接关系的建立,最后对该模型施加边界条件,令其运动。
关键词:abaqus、有限元、ujoint一问题的描述对导入的ujoint在所有步骤完成后,施加力:在stepinitial:均设为0;step SPIN:doundary1:限制除UR2的所有,且把UR2值设为:pi。
在boundary2 中,限制UR1和UR3自由度。
二在abaqus中导入ujoint实体模型启动abaqus CAE,在文件下拉菜单中选择:import ,选择最终文件位置or 输入ws_connector_ujoint.py.inp打开文件ujoint。
(如下图所示)2.1 创建坐标系单机操作界面中的tool,从下拉菜单中选择datum,再出来的窗口中选择coordinate,3points。
首先选择origin,在选择x正方向,Y正方向、z正方向。
创建完成。
2.2创建VERT和CROSS之间的2坐标系。
根据 2.1所述操作步骤创建坐标系V-C 和V-G (VERT和GROUND)。
Notice:1、创建过程中为了清晰分辨,可将IN的suppress,创建完成后再将其resume。
其他同样2、在V-C和I-C中,x轴与cross转动所绕轴平行。
根据2.1所属步骤创建I-C 和I-G. 结果如图;2.3 定义connector geometry1. 2.3.1 创建disjoint型wire在选项中选择interaction,在所出现窗口中点击Create Wire Feature tool.,在所出现的窗口中选择Disjointwires,单机添加要成wire的点。
基于ABAQUS的反力平台工况有限元分析基于ABAQUS的反力平台工况有限元分析反力平台是一个用于测试车辆制动系统性能的设备,它通过施加不同的制动力和速度来测试车辆的刹车表现。
在运行过程中,反力平台必须承受大量的载荷,所以需要进行有限元分析来确保其强度和稳定性。
本文将介绍如何使用ABAQUS进行反力平台的有限元分析。
首先,需要绘制反力平台的三维模型。
模型中应包括支撑结构、刹车片、测试轮胎等关键部件。
在绘制模型时应注意准确反映反力平台的实际情况,包括尺寸、材料、连接方式等。
接下来,应根据实际使用条件设置载荷。
反力平台的主要载荷是来自汽车制动系统的制动力和制动时间,在有限元分析中可以将这些载荷分别设置为分布力和控制荷载。
其中,分布力是沿着支撑结构的方向施加,控制荷载则可以通过ABAQUS的控制台进行调整。
模拟载荷施加后,应对模型进行网格划分。
网格质量的好坏对有限元分析的准确性有着很大的影响。
在划分网格时应注意使网格数量适中,避免出现太稀疏或太密集的情况。
同时,考虑到反力平台的复杂形状,可采用ABAQUS的自适应网格技术,在关键部位设置更加精细的网格。
在网格划分完成后,可以进行反力平台的有限元分析。
通过计算模型在载荷作用下的应力和变形,可以评估其强度和稳定性。
在评估过程中,应注意模型在各种实际使用条件下的表现,比如制动力、速度、温度等因素对模型的影响。
最后,通过有限元分析得出的结果可以用来指导反力平台的优化设计。
比如,如果模型在受到高强度载荷时产生了过大的应力,可以对其结构进行优化改进,提高其承载能力。
此外,可以根据分析结果对反力平台的使用方法和维护要点进行调整,以保证其长期稳定性和安全性。
综上所述,基于ABAQUS的反力平台工况有限元分析可以帮助我们评估反力平台在实际使用情况下的表现,提高其设计和使用的效率和安全性。
同时,该方法也可以应用于其他类似的结构性设备的分析和优化设计。
数据分析是从大量的数据中去提炼有价值的信息和知识的过程。
middle crack while the two sides of the crack repel each other. Under the condition of sequential fracturing with three clusters of fractures, the longest fracture can be obtained compared with synchronous fracturing and two-step fracturing.(4) When a hydraulic crack encounters a single natural crack with 90 degrees dip, secondary cracks will occur at both ends of the natural crack, otherwise only one secondary crack will occur at the end of the natural crack with small dip; when two natural cracks with 90 degrees dip are encountered, the second natural crack will severely inhibit the length of secondary cracks produced at the end of the first natural crack.This paper further reveals the law of fracture propagation and shape change in shale horizontal wells. The method of hydraulic fracturing simulation based on extended finite element method can be used to analyze the law of fracture propagation under various factors.Keywords: Shale,Horizontal Well, Hydraulic Fracturing, Fracture Propagation, Extended Finite Element MethodThesis: Fundamental Study(The paper is supported by the China National Science Foundation Research on Brittle Failure Mechanism of Shale Reservoir based on macro-micro mechanics, Grant No:51674197)目录第一章绪论 (1)1.1 选题背景和研究意义 (1)1.2 国内外研究现状 (2)1.2.1 水平井多簇裂缝扩展竞争机制研究 (2)1.2.2 水力裂缝与天然裂缝相互作用关系研究 (4)1.2.3 裂缝扩展模拟方法研究 (6)1.3 研究内容及创新点 (8)1.3.1 研究内容 (8)1.3.2 技术路线 (8)1.3.3 创新点 (9)第二章基于XFEM的水力压裂理论基础 (10)2.1 多孔介质基本理论 (10)2.1.1 基本物性参数概念 (10)2.1.2 有效应力原理 (11)2.2 扩展有限元方法 (11)2.2.1 扩展有限元位移标准格式 (11)2.2.2 模拟裂缝扩展的水平集方法 (14)2.3 ABAQUS软件在水力压裂模拟中的具体实现 (16)2.4 基于XFEM的裂缝起裂和扩展准则 (16)第三章水力压裂数值模型建立及验证 (19)3.1 模型基本假设 (19)3.2 水力压裂数值模拟基本方程 (20)3.2.1 基于有效应力原理的渗流/应力耦合基本方程 (20)3.2.2 裂缝内流体流动方程 (21)3.2.3 边界条件 (22)3.3 基于XFEM的渗流/应力耦合方程离散 (22)3.4 ABAQUS软件模拟水力压裂的基本步骤 (24)3.5 基于扩展有限元的水力压裂模型验证 (28)3.5.1 真三轴水力压裂物模对比验证 (28)3.5.2 水力裂缝内压强及入口缝宽变化规律验证 (29)第四章页岩水平井压裂单缝扩展规律研究 (31)4.1 单裂缝扩展水力压裂模型及求解 (31)4.2 射孔方位角对裂缝扩展规律的影响 (32)4.2.1 裂缝扩展形态规律分析 (32)4.2.2 起裂压力变化规律 (34)4.2.3 单缝半长和入口处宽度变化规律 (34)4.2.4 裂缝稳定扩展压力和初始转向角度变化规律 (35)4.3 水平应力差对裂缝扩展规律的影响 (36)4.3.1 裂缝扩展形态规律分析 (36)4.3.2 起裂压力变化规律 (37)4.3.3 单缝半长和入口处宽度变化规律 (38)4.3.4 裂缝稳定扩展压力和初始转向角度变化规律 (38)4.4 注入排量对裂缝扩展规律的影响 (39)4.4.1 裂缝扩展形态规律分析 (39)4.4.2 起裂压力变化规律 (40)4.4.3 单缝半长和入口处宽度变化规律 (41)4.4.4 裂缝稳定扩展压力和初始转向角度变化规律 (41)4.5 压裂液黏度对裂缝扩展规律的影响 (42)4.5.1 起裂压力变化规律 (43)4.5.2 单缝半长和入口处宽度变化规律 (43)4.5.3 裂缝稳定扩展压力和初始转向角度变化规律 (44)第五章页岩水平井压裂多簇裂缝扩展规律研究 (45)5.1 多簇水力裂缝扩展模型及求解 (45)5.2 压裂两簇裂缝时扩展规律分析 (47)5.2.1 两簇裂缝扩展形态分析 (47)5.2.2 缝间距对裂缝扩展规律的影响 (49)5.2.3 水平应力差对裂缝扩展规律的影响 (51)5.2.4 裂缝长度对裂缝扩展规律的影响 (54)5.2.5 注入排量对裂缝扩展规律的影响 (55)5.3 压裂三簇裂缝时扩展规律分析 (56)5.3.1 三簇裂缝扩展形态分析 (56)5.3.2 压裂次序对裂缝扩展规律的影响 (58)5.4 压裂四簇裂缝时扩展规律分析 (59)5.5 水力裂缝与天然裂缝相交扩展规律研究 (61)5.5.1 水力裂缝与天然裂缝交互数值模型 (61)5.5.2 物理模型建立及求解 (62)5.5.3 裂缝扩展规律分析 (63)第六章结论与建议 (66)6.1 结论 (66)6.2 建议 (66)致谢 (68)参考文献 (69)攻读学位期间参加科研情况及获得的学术成果 (76)第一章绪论1.1 选题背景和研究意义伴随着经济全球化发展趋势愈演愈烈,世界各国经济总量不断迈入新台阶,尤其以中国为首的发展中国家于2010年末一跃成为世界第二大经济体。
摘要复合材料结构的连接形式主要分为胶接和机械连接,随着复合材料在航空航天领域的广泛应用,胶接因其在复合材料结构连接中的优良特性日益受到结构设计人员的青睐,具有连接效率高、结构轻、抗疲劳、密封性好等优点。
然而胶接设计也具有很大的挑战性,在结构强度计算中,胶接连接接头部位一般为危险部位,需要重点校核。
所以,对复合材料胶接接头的设计分析是十分必要的。
本选题利用成熟的有限元商用软件ABAQUS,使用XFEM(扩展有限元法)对胶层和复合材料层的应力场等进行分析。
通过分析计算这些应力,同时应用相应的失效准则,进而可预测初始裂纹的扩展与否及扩展的长度,为胶接接头设计的选择提供必要的依据。
在文章中,讨论了胶接长度、胶层厚度和初始裂纹的位置对裂纹扩展的影响。
通过对仿真结果的分析,提出了减小胶接长度和胶层厚度的观点,指出裂纹易于产生及扩展的区域,对胶接接头的设计进行了优化。
胶接接头的优化设计对拓宽复合材料在飞机结构上的应用范围,进一步减轻结构重量、提高疲劳性能和降低制造成本具有重要的工程使用价值。
关键词:复合材料板胶接接头扩展有限元裂纹扩展AbstractThe joint methods of composite structure contain cementing and mechanical connection.. With the use of composite in the field of aviation increased a lot in recent years for its high strength and lightness, the cementing is increasingly favored by the structure design staff for its excellent characteristics in the connection field of composite structure. The characteristics are high ligation efficiency, light structure, antifatigue and good sealing. However, glued design also has a great challenge. In the structural strength calculations, glued joints are generally connected to dangerous parts and need to focus on checking. Therefore, the design and analysis of composite bonded joint is very necessary.The topic use the sophisticated and commercial software -ABAQUS, in the field of finite element, and use XFEM ( extended finite element method ) as the foundation to analysis the stress field of bonding layers and composite layers. By analyzing and calculating these stresses, while applying the appropriate failure criterion, we can predict the initial crack extension and the length of the expansion. In this way, it can provide the necessary basis for the design of bonding joints. In the article, we discussed the impact of the bonding length, layer thickness and initial crack location on crack propagation. Through the analysis of simulation results, we presented two standpoints of reducing the length of bonding joint and the thickness of adhesive. Besides, we pointed the areas where cracks are easy to generate and expand. Optimal design of adhesive joints in composite materials has important engineering value to broaden the scope of application of the aircraft structure and further reduce the structural weight, improve the performance of fatigue and reduce manufacturing costs.Keywords:Composite plates, Adhesive joints, XFEM, Crack extension目录摘要 (I)Abstract ....................................................... I I 目录.......................................................... I II 第一章引言.. (1)1.1导言 (1)1.2胶接连接 (2)1.2.1 简介 (2)1.2.2胶接连接应当注意的问题 (3)1.2.3胶接连接研究现状 (3)1.3 胶接接头 (4)1.3.1胶接接头简介 (4)1.3.2胶接接头的基本形式 (5)1.3.3胶接接头的破坏模式 (6)1.3.4胶接接头处可能出现的裂纹及其影响 (7)第二章复合材料损伤和胶接连接的力学模型 (8)2.1导言 (8)2.2复合材料层板强度预测 (8)2.3复合材料和胶层断裂准则 (10)第三章利用ABAQUS建立复合材料胶接接的有限元模型 (13)3.1扩展有限元方法和工程软件ABAQUS简介 (13)3.1.1传统有限元方法 (13)3.1.2扩展有限元方法及基本原理 (14)3.1.3ABAQUS简介 (15)3.2利用ABAQUS建立复合材料板胶接模型的过程 (16)3.2.1几何模型的建立和约束条件 (16)3.2.2材料属性 (17)3.2.3定义接触 (19)3.2.4 对于XFEM定义 (19)第四章基于裂纹扩展分析的单面搭接接头设计 (21)4.1复合材料胶接接头在纵向载荷下的受力分析 (21)4.2不同搭接长度下胶接接头的裂纹扩展情况 (23)4.2.1搭接长度为15mm的情况 (23)4.2.2搭接长度为10mm的情况 (25)4.2.3搭接长度为20mm的情况 (26)4.2.4不同搭接长度下裂纹情况的对比及结论 (28)4.3不同胶层厚度下胶接接头的裂纹扩展情况 (29)4.3.1胶层厚度为0.1mm的情况 (29)4.3.2胶层厚度为0.2mm的情况 (31)4.3.3胶层厚度为0.3mm的情况 (33)4.3.4不同胶层厚度下裂纹情况的对比及结论 (34)带五章基于裂纹扩展的斜面搭接接头设计 (37)5.1斜面搭接接头在纵向载荷下的受力分析 (37)5.2不同裂纹位置下胶接接头的裂纹扩展情况 (38)5.2.1选取的三种不同裂纹位置 (39)5.2.2裂纹的扩展情况 (40)5.2.3三种情况对比及结论 (42)5.3单面搭接和斜面搭接情况的对比 (43)第六章全文总结及展望 (46)6.1全文总结 (46)6.2展望 (47)致谢辞 (49)参考文献 (50)第一章引言1.1导言复合材料作为一种新材料,在最近的半个多世纪中飞速发展,由于复合材料采用纤维加强结构,使得复合材料具有比重小、比强度和比模量大的特点,并且由于采用的是铺层结构,制造过程简单,容易成型。
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
基于ABAQUS平台的扩展有限元方法断裂是一种失效模式。
在工程领域中,经常发生起源于断裂或终结于裂纹扩展的灾难性破坏事故,如压力管道的裂纹失稳扩展,机械构件的断裂,地震引起的地面开裂和房屋倒塌等,这些事故对我们的生命和生活造成了很大的影响。
由于产生裂纹的原因难以量化,因此裂纹出现后是否会继续扩展或发生止裂的断裂力学具有很重要的意义。
传统的断裂力学在剖分单元网格的时候必须考虑物体内部的缺陷,如裂纹,界面等,使单元边界与几何界面一致,这也就会形成局部网格加密,而其余区域稀疏的非均匀网格分布。
ABAQUS中单元的最小尺寸决定了显示计算时间增量的临界步长,过小的最小尺寸无疑会增加计算的成本;再有就是需要预先给定裂纹的扩展路径,裂纹只能沿单元边界扩展,难以形成任意裂纹路径。
扩展有限元方法(XFEM,extended finite element method,以下简称XFEM)的核心思想是用扩充的带有不连续性质的形函数基来代表计算域内的间断,因此在计算过程中,不连续场的描述完全独立于网格边界,这使其在处理断裂问题上具有很大的优势。
XFEM可以充分利用已知解析解答构造形函数基,在较粗网格上即能得到较精确的解答。
利用XFEM,还可以方便地模拟裂纹沿任意路径扩展。
ABAQUS中的XFEM可以用来研究裂纹的产生及模拟沿任意路径的裂纹扩展,而无需对模型进行网格重构。
XFEM可以用于三维实体模型、二维平面模型,不能用于三维的壳模型。
ABAQUS在Interaction模中定义XFEM裂纹,可以指定裂纹的初始位置,也可以不指定,让ABAQUS在分析过程中根据计算断裂区域的最大初始应力或应变确定裂纹的位置。
在ABAQUS中执行XFEM断裂分析,必须指定:断裂区域,裂纹生长(可选),裂纹初始位置(可选),富集半径,接触交互属性,损伤起始准则和分析类型,如静态分析,或隐式动态分析。
下面以一个例子演示ABAQUS中使用XFEM方法对平板中的边缘裂纹进行动态裂纹扩展预测。