扩展有限元简介
- 格式:doc
- 大小:35.50 KB
- 文档页数:2
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
扩展有限元方法和裂纹扩展1.1 扩展有限元方法(XFEM )基本理论1999年,美国Northwestern University 的Belytschko 和Black 领导的研究小组提出了扩展有限元方法,为解决裂纹这类强不连续问题带来了曙光。
他们正式应用扩展有限元法(XFEM )这一专业术语是在2000年,截止到目前,扩展有限元法(XFEM )成为我们解决强不连续力学问题的最有效的数值计算方法,也成为计算断裂力学的重要分支。
XFEM 在有限元的框架下进行求解,无需对构件内部的物理界面进行网格划分,具有常规有限元方法的所有优点。
它最明显的特点是用已知的特征函数作为形函数来使传统有限元的位移得到逼近,进而克服了在裂纹尖端和变形集中处进行高密度网络划分产生的困难,方便地模拟裂纹的任意路径,而且计算精度和效率得到了显著的提高[6]。
扩展有限元方法是将已知解析解的特征函数作为插值函数增强传统有限元的位移逼近,来使得单元内的真实位移特性得以体现,裂纹尖端和物理或几何界面独立于有限元网格。
XFEM 主要包括以下三部分内容:首先是不考虑构件的任何内部细节,按照构件的几何外形尺寸生成有限元网格;其次,采用水平集方法跟踪裂纹的实际位置;根据已知解,改进影响区域的单元的形函数,来反映裂纹的扩展。
最后通过引入不连续位移模式来表示不连续几何界面的演化。
因为改进的插值函数在单元内部具有单元分解的特性,其刚度矩阵的特点与常规有限元法的刚度矩阵特性保持一致。
单元分解法(Partition Of Unity Method)和水平集法(Level Set Method )、节点扩展函数构成了扩展有限元法的基本理论,其中,单元分解法是通过引入加强函数计算平面裂纹扩展问题,保证了XFEM 的收敛性;水平集法是跟踪裂纹的位置和模拟裂纹扩展的常用数值方法,任何内部几何界面位置都可用它的零水平集函数来表示。
(1)单元分解法的基本思想是任意函数()x φ都可以用子域内一组局部函数()()x x N I ϕ表示,满足如下等式:()()()x x N x II ϕφ∑= (1)其中,它们满足单位分解条件:f I Iåx ()=1 ()x N I 是有限元法中的形函数,根据上述理论,便可以根据需要对有限元的形函数进行改进。
重力坝开裂过程扩展有限元数值模拟靳旭;董羽蕙【摘要】扩展有限元法(XFEM)是一种求解不连续问题的数值方法.它继承了常规有限元法(CFEM)的所有优点,在模拟裂纹扩展、界面、复杂流体等不连续问题时特别有效,近十多年得到了快速发展.介绍了XFEM的基本原理,给出了进行混凝土裂纹扩展分析的方法.利用XFEM模拟混凝土重力坝裂纹扩展,通过对比有、无裂纹情况下的重力坝应力分布,分析裂纹存在对重力坝应力场分布的影响;分析裂纹扩展受网格疏密程度的影响;计算在不同岩基弹性模量下裂纹的扩展方向.%Extended finite element method(XFEM)is a numerical solution for analyzing discontimuity problem . It inherited all the advantages of the conventional finite element method (CFEM) , in the simulation of crack extension , interface, complex fluid and other discontinuities are particularly effective , in the past decade it has been rapid development. The basic theory of XFEM in introduced and the method of analyzing concrete fracture is presented. The XFEM is utilized to simulate the crack propagation in concrete gravity dam. By the contrast of stress distribution under no crack and crack circumstance of gravity dam the discipline of stress field distribution is analyzed; It is also used for influence of mesh density to crack propagation and is calculated the crack propagation direction in batholith elastic modulus.【期刊名称】《科学技术与工程》【年(卷),期】2012(012)033【总页数】6页(P9100-9104,9109)【关键词】重力坝;扩展有限元法;裂纹扩展;网格疏密;弹性模量【作者】靳旭;董羽蕙【作者单位】昆明理工大学建筑工程学院,昆明650500;昆明理工大学建筑工程学院,昆明650500【正文语种】中文【中图分类】TV313;TV642.3实际工程中,无论采用多么严格的裂缝控制措施,混凝土结构仍然会带裂缝工作。
ANSYS16.0新增扩展有限元XFEM裂纹扩展仿真简介中国矿业大学, 师访, matmes@1 引言早在两年前,就听安世亚太的人说ANSYS15.0将加入XFEM,但结果令人失望。
左盼右盼,终于在ANSYS16.0中等来了扩展有限元(Extended Finite ElementMethod)XFEM 功能。
首先,对于不知道XFEM为何物的朋友们,建议看下这篇文献:断裂问题的扩展有限元法研究_茹忠亮_岩土力学_2011.pdf(834.69 KB, 下载次数: 0)欢迎联系我讨论关于XFEM断裂模拟的相关问题,QQ:15492217582 ANSYS16.0 XFEM简介ANSYS16.0发布时候关于结构分析的简介中并未提及XFEM,由此可见ANSYS中的XFEM功能也不会太让人满意,看了其帮助文档(ANSYS Mechanical APDL Fracture Analysis Guide.pdf(2.52 MB, 下载次数: 0),3.2节)后发现,事实确实如此。
(1)基于虚拟节点法,与Abaqus一致。
(2)仅支持线弹性材料。
(3)不支持裂尖增强,同样与Abaqus一致,这就导致裂纹尖端不能落在单元内部,只能位于单元边界上。
(4)必须事先给定初始裂纹,即不支持裂纹的自动萌生。
鸡肋的是,初始裂纹的定义居然要通过给定水平集值的方法来实现:XFDATA,LSM,ELEMNUM,NODENUM,PHI(5)支持粘聚裂纹。
(6)支持PLANE182(4节点四边形单元,用于2D平面问题分析)及SOLID185(8节点正方形单元,用于3D问题分析)这两种单元。
(7)仅支持准静态分析,不支持动态断裂。
(8)裂纹每次只能扩展一个单元长度。
(9)仅支持两个裂纹扩展准则:STTMAX,最大周向应力准则(Maximum circumferential stress criterion);PSMAX(Circumferential stress criterion)。
基于扩展有限元(XFEM )裂纹扩展总结通过四个算例总结了用ABAQUS 计算裂纹扩展应用情况。
算例1基于XFEM 使用虚拟裂缝闭合技术结合Cohesive 单元,实现混凝土基体断裂和钢筋混凝土界面脱层的混合失效模式;算例2基于XFEM 以VCCT 准则判断裂缝的开裂扩展,研究了偏荷载作用下不同配筋率对裂缝扩展方向的影响,并对比了考虑钢筋与混凝土粘结滑移与不考虑粘结滑移的裂缝扩展情况;算例3则是以粘聚力模型判断裂缝扩展,研究了裂缝扩展情况;算例4对比了Cohesive 和VCCT 两种开裂准则下钢筋混凝土(纵、箍筋组合)的裂缝扩展情况。
扩展有限元基本原理扩展有限元法(XFEM )是在单位分解法的基础上对常规有限元位移逼近函数进行改进加强,引入附加函数。
以二维裂纹(图1)为例,对于裂纹贯穿单元,采用Heaviside 函数来描述裂纹两侧的不连续性;对于裂尖单元,采用裂尖渐进函数来反映裂纹尖端应力的奇异性。
扩展有限元的位移逼近为:()()()()()()∑∑∑∑∈=∈∈⎥⎦⎤⎢⎣⎡++=K i i i i J i i i I i i xfem b x F x N a x H x N u x N x u 41ααα (1)式中,I 为所有节点集合,()x N i 为节点i 的形函数,i u 为节点i 的标准自由度,J 为裂纹贯穿单元节点集合(图1中圆圈所示节点),K 为裂尖单元节点集合(图1中方形所示节点),()x H 和()x F α分别为Heaviside 形函数和裂尖渐进函数,i a 和αi b 为相应节点自由度。
图1 扩展有限元中的富集节点描述裂纹面不连续性的Heaviside 形函数可表示为 ()⎩⎨⎧−≥•=*otherwise 10n )x -(x if 1x H (2)式中,*x 为点x 到裂纹面最近处的投影,n 为*x 点处的单位外法线向量(如图2所示)。
可以看出,节点位于裂纹面上侧时()1=x H ,节点位于裂纹面下侧时()1−=x H ,Heaviside 形函数能较好的描述裂纹面两侧的不连续性。
扩展有限元方法和裂纹扩展1.1 扩展有限元方法(XFEM )基本理论1999年,美国Northwestern University 的Belytschko 和Black 领导的研究小组提出了扩展有限元方法,为解决裂纹这类强不连续问题带来了曙光。
他们正式应用扩展有限元法(XFEM )这一专业术语是在2000年,截止到目前,扩展有限元法(XFEM )成为我们解决强不连续力学问题的最有效的数值计算方法,也成为计算断裂力学的重要分支。
XFEM 在有限元的框架下进行求解,无需对构件内部的物理界面进行网格划分,具有常规有限元方法的所有优点。
它最明显的特点是用已知的特征函数作为形函数来使传统有限元的位移得到逼近,进而克服了在裂纹尖端和变形集中处进行高密度网络划分产生的困难,方便地模拟裂纹的任意路径,而且计算精度和效率得到了显著的提高[6]。
扩展有限元方法是将已知解析解的特征函数作为插值函数增强传统有限元的位移逼近,来使得单元内的真实位移特性得以体现,裂纹尖端和物理或几何界面独立于有限元网格。
XFEM 主要包括以下三部分内容:首先是不考虑构件的任何内部细节,按照构件的几何外形尺寸生成有限元网格;其次,采用水平集方法跟踪裂纹的实际位置;根据已知解,改进影响区域的单元的形函数,来反映裂纹的扩展。
最后通过引入不连续位移模式来表示不连续几何界面的演化。
因为改进的插值函数在单元内部具有单元分解的特性,其刚度矩阵的特点与常规有限元法的刚度矩阵特性保持一致。
单元分解法(Partition Of Unity Method)和水平集法(Level Set Method )、节点扩展函数构成了扩展有限元法的基本理论,其中,单元分解法是通过引入加强函数计算平面裂纹扩展问题,保证了XFEM 的收敛性;水平集法是跟踪裂纹的位置和模拟裂纹扩展的常用数值方法,任何内部几何界面位置都可用它的零水平集函数来表示。
(1)单元分解法的基本思想是任意函数()x φ都可以用子域内一组局部函数()()x x N I ϕ表示,满足如下等式:()()()x x N x II ϕφ∑= (1)其中,它们满足单位分解条件:f I Iåx ()=1 ()x N I 是有限元法中的形函数,根据上述理论,便可以根据需要对有限元的形函数进行改进。
扩展有限元
有限元是将一个物理实体模型离散成一组有限的相互连接的单元组合体, 该方法在考虑物体内部存在缺陷时间,单元边界与几何界面一致,会造成局部网格加密,其余区域稀疏的非均匀网格分布,在网格单元中最小的尺寸会增加计算成本,再者裂纹的扩展路径必须预先给定只能沿着单元边界发展。
1999年,美国西北大学Beleytachko 提出了扩展有限法,该方法是对传统有限元法进行了重大改进。
扩展有限元法的核心思想是用扩充带有不连续性质的形函数来代表计算区域内的间断,在计算过程中,不连续场的描述完全独立于网格边界,在处理断裂问题有较好的优越性。
利用扩展有限元,可以方便的模拟裂纹的任意路径,还可以模拟带有孔洞和夹杂的非均质材料。
扩展有限元是以标准有限元的理论为框架,保留传统有限元的优点,目前商业软件中如Abaqus 等都加入扩展有限元的分析模块。
扩展有限元以有限元为基本框架,主要针对不连续问题进行研究,相对于传统有限元方法,它克服了裂纹扩展问题的不足。
其采用节点扩展函数,其中包括2个函数:裂纹尖端附近渐进函数表示裂纹尖端附近的应力奇异性;间断函数表示裂纹面处位移跳跃性。
整体划分位移函数表示为
αααI =I I I =∑∑++=b x F a x H u x N x u N i )(])()[()('41
1
式中:)(x N I 为常用的节点位移函数;I u 为常规形状函数节点自由度,适用于模型中的所有节点;)(x H 为沿裂纹面间断跳跃函数;I a 为节点扩展自由度向量,这项只对形函数被裂纹切开的单元节点有效;)(x F α为裂纹尖端应力渐进函数;αI b 为节点扩展自由度向量,这项只对形函数被裂纹尖端切开的单元节点有效。
沿裂纹面间断跳跃函数)(x H 表达式为:
otherwise
n x x if x H 0)(11)(*≥-⎩⎨⎧-= 式中:x 为样本点;*x 距x 最近点;n 为单位外法线向量。
各向同性材料的裂纹尖端渐进函数)(x F α表达式为:
⎥⎦⎤⎢⎣
⎡=2cos sin ,2sin sin ,2cos ,2sin )(θθθθθθαr r r r x F 裂纹尖端的渐进函数并不局限于各向同性弹性材料的裂纹建模。
可用于弹塑性指数硬化材料,不同的裂纹尖端渐进函数的形式与裂纹位置、非线性材料变形程度有关。
扩展有限元方法(XFEM)可以缓解裂纹面网格划分带来的缺点,其基于整体划分的概念使扩展函数方便地插入到有限元中。
间断性可以通过与额外自由度相关联的扩展函数来确定。
同时扩展有限元方法保留了有限元框架及一些特性,如刚度矩阵的稀疏性及对称性等。
因此以有限元为基本框架,主要针对不连续问题进行研究,相对于传统有限元方法,扩展有限元法提高了描述复杂位移场的能力,增加了对于演化的非连续边界进行跟踪的灵活性,避免了网格重划分,当考虑裂纹扩展时其计算工作量和准确性要明显优于有限元方法。