扩展有限元的基本知识1
- 格式:ppt
- 大小:227.00 KB
- 文档页数:8
扩展有限元有限元是将一个物理实体模型离散成一组有限的相互连接的单元组合体, 该方法在考虑物体内部存在缺陷时间,单元边界与几何界面一致,会造成局部网格加密,其余区域稀疏的非均匀网格分布,在网格单元中最小的尺寸会增加计算成本,再者裂纹的扩展路径必须预先给定只能沿着单元边界发展。
1999年,美国西北大学Beleytachko 提出了扩展有限法,该方法是对传统有限元法进行了重大改进。
扩展有限元法的核心思想是用扩充带有不连续性质的形函数来代表计算区域内的间断,在计算过程中,不连续场的描述完全独立于网格边界,在处理断裂问题有较好的优越性。
利用扩展有限元,可以方便的模拟裂纹的任意路径,还可以模拟带有孔洞和夹杂的非均质材料。
扩展有限元是以标准有限元的理论为框架,保留传统有限元的优点,目前商业软件中如Abaqus 等都加入扩展有限元的分析模块。
扩展有限元以有限元为基本框架,主要针对不连续问题进行研究,相对于传统有限元方法,它克服了裂纹扩展问题的不足。
其采用节点扩展函数,其中包括2个函数:裂纹尖端附近渐进函数表示裂纹尖端附近的应力奇异性;间断函数表示裂纹面处位移跳跃性。
整体划分位移函数表示为αααI =I I I =∑∑++=b x F a x H u x N x u N i )(])()[()('411式中:)(x N I 为常用的节点位移函数;I u 为常规形状函数节点自由度,适用于模型中的所有节点;)(x H 为沿裂纹面间断跳跃函数;I a 为节点扩展自由度向量,这项只对形函数被裂纹切开的单元节点有效;)(x F α为裂纹尖端应力渐进函数;αI b 为节点扩展自由度向量,这项只对形函数被裂纹尖端切开的单元节点有效。
沿裂纹面间断跳跃函数)(x H 表达式为:otherwisen x x if x H 0)(11)(*≥-⎩⎨⎧-= 式中:x 为样本点;*x 距x 最近点;n 为单位外法线向量。
各向同性材料的裂纹尖端渐进函数)(x F α表达式为:⎥⎦⎤⎢⎣⎡=2cos sin ,2sin sin ,2cos ,2sin )(θθθθθθαr r r r x F 裂纹尖端的渐进函数并不局限于各向同性弹性材料的裂纹建模。
ABAQUS中扩展有限元(XFEM)功能简介扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。
ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。
目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。
1. XFEM理论在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。
而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。
然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。
而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。
从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。
但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。
直到Belytschko提出采用水平集函数作为手段,其基本形式为和上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。
与之对应的形函数便是和其中H(x)是阶跃函数。
想要了解更深的内容,大家可以参考《Extended Finite Element Method》和庄老师的《扩展有限单元法》这种扩充形函数能够描述单元内位移场在裂缝两边的跳跃性,同时,由于裂缝存在于单元内部,其扩展独立与其他单元,使得计算变得高效。
有限元知识点汇总有限元知识点汇总第一章1、何为有限元法?其基本思想是什么?》有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法。
》基本思想:化整为零,化零为整2、为什么说有限元法是近似的方法,体现在哪里?》有限元法的基本思想是几何离散和分片插值;》用离散单元的组合来逼近原始结构,体现了几何上的近似;用近似函数逼近未知量在单元内的真实解,体现了数学上的近似;利用与问题的等效的变分原理建立有限元基本方程,又体现了明确的物理背景。
3、单元、节点的概念?》单元:把参数单元划分成网格,这些网格就称为单元。
》节点:网格间相互连接的点称为节点。
4、有限元法分析过程可归纳为几个步骤?》3大步骤;——结构离散化;——单元分析;——整体分析。
5、有限元方法分几种?本课程讲授的是哪一种?》有限元方法分3种;——位移法、力法、混合法。
》本课程讲授的:位移法6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点?》弹性力学的基本变量是——{外力、应力、应变、位移}》几何方程——{描述弹性体应变分量与位移分量之间关系的方程} 》物理方程——{描述应力分量与应变分量之间的关系}》虚功方程——{描述内力和外力的关系的方程}》弹性矩阵特点——{ }7、何为平面应力问题和平面应变问题?》平面应力问题——{满足(1)几何条件——所研究的是一根很薄的等厚度薄板,即一个方向上的几何尺寸远远小于其余两个面上的几何尺寸;(2)载荷条件——作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面上无外力作用}》平面应变问题——{满足(1)几何条件——所研究的是长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变;(2)载荷条件——作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力}第二章7、形函数的特点?》1形函数Ni再节点i处等于1,在其他节点上的值等于0,对于Nj、Nm也有同样的性质。
扩展有限元法
#### 1.一维稳定性
有限元法可以用来解决一维稳定性问题,利用一维稳定性的基本原理,通过对实际结构的有限元单元网格进行分形集中或分散处理,以及对单元类型和形式进行选择,有效获取和分析各种参数,如材料参数、载荷参数、面宽参数以及梁中无弯度形状参数,从而得出有限元反应的刚度、弯矩、变形和应力的计算结果,进而估计和预测一维结构的承载能力、抗屈曲、变形或塑性扭曲变形。
#### 2.刚构结构
利用有限元法,可以进行刚构结构的力学分析,可以知晓构件在由外力所作用下,构件各点的位移、变形,以及构件各点的应力、应变,同时由于刚构结构个别构件之间也会存在约束关系,故必需考虑构件之间的相互影响,利用约束条件完成构件的组合,以此来估计稳定的系统的性能。
有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。
在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。
2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处N i=1,其它节点N i=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。
可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。
4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。
即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。
称前者为母单元,后者为子单元。
还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。
如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。
5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。
每个部分称为一个单元,连接点称为结点。
对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。
这种单元称为常应变三角形单元。
常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。
扩展有限元方法和裂纹扩展1.1 扩展有限元方法(XFEM )基本理论1999年,美国Northwestern University 的Belytschko 和Black 领导的研究小组提出了扩展有限元方法,为解决裂纹这类强不连续问题带来了曙光。
他们正式应用扩展有限元法(XFEM )这一专业术语是在2000年,截止到目前,扩展有限元法(XFEM )成为我们解决强不连续力学问题的最有效的数值计算方法,也成为计算断裂力学的重要分支。
XFEM 在有限元的框架下进行求解,无需对构件内部的物理界面进行网格划分,具有常规有限元方法的所有优点。
它最明显的特点是用已知的特征函数作为形函数来使传统有限元的位移得到逼近,进而克服了在裂纹尖端和变形集中处进行高密度网络划分产生的困难,方便地模拟裂纹的任意路径,而且计算精度和效率得到了显著的提高[6]。
扩展有限元方法是将已知解析解的特征函数作为插值函数增强传统有限元的位移逼近,来使得单元内的真实位移特性得以体现,裂纹尖端和物理或几何界面独立于有限元网格。
XFEM 主要包括以下三部分内容:首先是不考虑构件的任何内部细节,按照构件的几何外形尺寸生成有限元网格;其次,采用水平集方法跟踪裂纹的实际位置;根据已知解,改进影响区域的单元的形函数,来反映裂纹的扩展。
最后通过引入不连续位移模式来表示不连续几何界面的演化。
因为改进的插值函数在单元内部具有单元分解的特性,其刚度矩阵的特点与常规有限元法的刚度矩阵特性保持一致。
单元分解法(Partition Of Unity Method)和水平集法(Level Set Method )、节点扩展函数构成了扩展有限元法的基本理论,其中,单元分解法是通过引入加强函数计算平面裂纹扩展问题,保证了XFEM 的收敛性;水平集法是跟踪裂纹的位置和模拟裂纹扩展的常用数值方法,任何内部几何界面位置都可用它的零水平集函数来表示。
(1)单元分解法的基本思想是任意函数()x φ都可以用子域内一组局部函数()()x x N I ϕ表示,满足如下等式:()()()x x N x II ϕφ∑= (1)其中,它们满足单位分解条件:f I Iåx ()=1 ()x N I 是有限元法中的形函数,根据上述理论,便可以根据需要对有限元的形函数进行改进。
扩展有限元方法和裂纹扩展1.1 扩展有限元方法(XFEM )基本理论1999年,美国Northwestern University 的Belytschko 和Black 领导的研究小组提出了扩展有限元方法,为解决裂纹这类强不连续问题带来了曙光。
他们正式应用扩展有限元法(XFEM )这一专业术语是在2000年,截止到目前,扩展有限元法(XFEM )成为我们解决强不连续力学问题的最有效的数值计算方法,也成为计算断裂力学的重要分支。
XFEM 在有限元的框架下进行求解,无需对构件内部的物理界面进行网格划分,具有常规有限元方法的所有优点。
它最明显的特点是用已知的特征函数作为形函数来使传统有限元的位移得到逼近,进而克服了在裂纹尖端和变形集中处进行高密度网络划分产生的困难,方便地模拟裂纹的任意路径,而且计算精度和效率得到了显著的提高[6]。
扩展有限元方法是将已知解析解的特征函数作为插值函数增强传统有限元的位移逼近,来使得单元内的真实位移特性得以体现,裂纹尖端和物理或几何界面独立于有限元网格。
XFEM 主要包括以下三部分内容:首先是不考虑构件的任何内部细节,按照构件的几何外形尺寸生成有限元网格;其次,采用水平集方法跟踪裂纹的实际位置;根据已知解,改进影响区域的单元的形函数,来反映裂纹的扩展。
最后通过引入不连续位移模式来表示不连续几何界面的演化。
因为改进的插值函数在单元内部具有单元分解的特性,其刚度矩阵的特点与常规有限元法的刚度矩阵特性保持一致。
单元分解法(Partition Of Unity Method)和水平集法(Level Set Method )、节点扩展函数构成了扩展有限元法的基本理论,其中,单元分解法是通过引入加强函数计算平面裂纹扩展问题,保证了XFEM 的收敛性;水平集法是跟踪裂纹的位置和模拟裂纹扩展的常用数值方法,任何内部几何界面位置都可用它的零水平集函数来表示。
(1)单元分解法的基本思想是任意函数()x φ都可以用子域内一组局部函数()()x x N I ϕ表示,满足如下等式:()()()x x N x II ϕφ∑= (1)其中,它们满足单位分解条件:f I Iåx ()=1 ()x N I 是有限元法中的形函数,根据上述理论,便可以根据需要对有限元的形函数进行改进。
有限元分析及其应用-2010;思考题:1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什么?是如何将无限自由度问题转化为有限自由度问题的?答:基本思想:几何离散和分片插值。
基本步骤:结构离散、单元分析和整体分析。
离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。
当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。
2、有限元法与经典的差分法、里兹法有何区别?区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低;里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解;有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。
3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试1)建立其受拉伸的微分方程及边界条件;2)构造其泛函形式;3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。
4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩阵)。
5、什么是节点力和节点载荷?两者有何区别?答:节点力:单元与单元之间通过节点相互作用节点载荷:作用于节点上的外载6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自由度和节点解释)?答:单元刚度矩阵:对称性、奇异性、主对角线恒为正整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。
Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。
7、单元的形函数具有什么特点?有哪些性质?答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。
形函数Ni在i节点的值为1,而在其他节点上的值为0;单元内任一点的形函数之和恒等于1;形函数的值在0~1间变化。
有限元总结第一篇:有限元总结1、有限元法是近似求解连续场问题的数值方法。
2、有限元法将连续的求解域(离散),得到有限个单元,单元与单元之间用(结点相连。
3、从选择未知量的角度看,有限元法可分为三类(位移法力法混合法)。
4、以(结点位移)为基本未知量的求解方法称为位移量。
5、以(结点力)为基本未知量的求解方法称为力法。
7、直梁在外力作用下,横截面上的内力有(剪力)和(弯矩)两个。
8、平面刚架结构在外力作用下,横截面上的内力有(剪力)、(弯矩)、(轴力)。
9、进行直梁有限元分析,结点位移有(转角)、(挠度)。
12、弹性力学问题的方程个数有(15)个,未知量个数有(15)个。
13、弹性力学平面问题方程个数有(8),未知数(8)个。
15、几何方程是研究(应变)和(位移)关系的方程。
16、物理方程描述(应力)和(应变)关系的方程。
17、平衡方程反映(应力)和(位移)关系的方程。
18、把进过物体内任意一点各个(截面)上的应力状况叫做(该点)的应力状态。
19、形函数在单元结点上的值,具有本点为(1),他点为零的性质,并在三角形单元的后一结点上,三个形函数之和为(1)。
20、形函数是(三角形)单元内部坐标的(线性位移)函数,它反映了单元的(位移)状态。
21、结点编号时,同一单元相邻结点的(编号)尽量小。
25、单元刚度矩阵描述了(结点力)和(结点位移)之间的关系。
矩形单元边界上位移是(线性)变化的。
1、从选择未知量的角度来看,有限元法可分为三类,下面那种方法不属于其中(C)。
A、力法B、位移法C、应变法D、混合法2、下面对有限元法特点的叙述中,哪种说法是错误的(D)。
A、可以模拟各种几何形状负责的结构,得出其近似值。
B、解题步骤可以系统化,标准化。
C、容易处理非均匀连续介质,可以求解非线性问题。
D、需要适用于整个结构的插值函数。
3、几何方程研究的是(A)之间关系的方程式。
A、应变和位移B、应力和体力C、应力和位移D、应力和应变 4.物理方研究的是(D)之间关系的方程式。
扩展有限元最大主应力准则
有限元分析是一种广泛应用于工程领域的数值分析方法,它可以用来模拟各种结构的力学行为。
在有限元分析中,最大主应力准则是一种常用的判断材料破坏的方法。
然而,这种准则在某些情况下可能会出现误判的情况,因此需要进行扩展。
最大主应力准则是指当材料中最大主应力达到其破坏强度时,材料就会发生破坏。
这种准则在许多情况下都是有效的,但是在某些情况下,它可能会出现误判的情况。
例如,在一些复杂的结构中,由于应力分布的不均匀性,最大主应力可能并不是最能引起破坏的应力。
此外,材料的破坏也可能是由于多种应力的共同作用而引起的,而不是单一的最大主应力。
为了解决这些问题,研究人员提出了一种扩展最大主应力准则的方法,即将最大主应力与其他应力指标结合起来进行判断。
例如,可以将最大主应力与平均应力、剪应力等指标进行比较,从而得出更加准确的破坏判断结果。
此外,还可以采用多种准则进行综合判断,以提高破坏判断的准确性。
扩展最大主应力准则的方法在实际工程中得到了广泛应用。
例如,在航空航天领域中,飞机的结构复杂,应力分布不均匀,因此需要采用扩展最大主应力准则来进行破坏分析。
在汽车工程中,车身结构也存在类似的问题,因此也需要采用扩展最大主应力准则来进行破坏分析。
扩展最大主应力准则是一种有效的材料破坏判断方法,可以提高破坏分析的准确性和可靠性。
在实际工程中,需要根据具体情况选择合适的应力指标进行综合判断,以得出更加准确的破坏分析结果。