有非零解的充要条件是 | A | 0
定义 奇次方程组(1)的一组解1,2,L ,t 称为(1)的一个基
础解系,如果
1.(1)的任一个解都能表示成 1,2,L ,t 的线性组合; 2. 1,2,L ,t 线性无关。
定理 在奇次方程组有非零解的情况下,方程组的基础解系所含解的
个数等于 nr。
r:
是系数矩阵的秩。
系统做第i阶固有振动时具有的振动形态,称为第i阶固有振型。虽 然各个坐标上振幅的精确值并没有确定,但是所表现的系统的振动 形态已经确定。
【问题】在已知固有频率求固有振型时,所得到的N个线性方程中有几个是独
立的? 结论:
(Kr2M)r 0
当<<振 动r 力不学是特>>征刘延方柱程第的7重4根页时).,上述方程只有N-1个方程是独立的(见
② 以广义坐标及广义速度来表示系统的动能,势能和耗散函数; ③ 对于非保守主动力,将其虚功写成如下形式
n
W Qi qi i 1
从而确定对应于各个广义坐标的非保守广义力;
⑤ 将以上各量代入Lagrange方程,即得到系统的运动方程.
上次课内容回顾
3. 用Lagrange方程建立系统运动微分方程的优点
理解固有振型
如何理解固有振型 从数学上看:固有振型是广义特征值问题的特征向量;
从物理上看:第i阶固有振型向量 i 中的一列元素,就是系统做 第i阶固有振动时各个坐标上位移(或振幅)的相对比值, i 描述了
系统做第i阶固有振动时具有的振动形态,称为第i阶固有振型。虽
然各个坐标上振幅的精确值并没有确定,但是所表现的系统的振动
(K2M)0
有非零
1
1 1
2
1
1