高中数学正弦、余弦、正切函数的图象及其主要性质
- 格式:docx
- 大小:308.00 KB
- 文档页数:9
第三节三角函数的图像与性质复习要求:1,理解正弦函数、余弦函数、正切函数的图像和性质2,理解周期函数、最小正周期的概念3,学会用五点法画图知识点:1.正弦函数、余弦函数、正切函数、余切函数的图像和性质3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。
6.对称轴与对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
3.3.1 正弦函数、余弦函数的图象与性质(二)[学习目标] 1.掌握y =sin x 与y =cos x 的定义域,值域,最值、单调性、奇偶性等性质,并能解决相关问题.2.掌握y =sin x ,y =cos x 的单调性,并能利用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.[知识链接]1.观察正弦曲线和余弦曲线的对称性,你有什么发现?答 正弦函数y =sin x 的图象关于原点对称,余弦函数y =cos x 的图象关于y 轴对称. 2.上述对称性反映出正弦、余弦函数分别具有什么性质?如何从理论上加以验证? 答 正弦函数是R 上的奇函数,余弦函数是R 上的偶函数.根据诱导公式得,sin(-x )=-sin x ,cos(-x )=cos x 均对一切x ∈R 恒成立.3.观察正弦曲线和余弦曲线,正弦、余弦函数是否存在最大值和最小值?若存在,其最大值和最小值分别为多少?答 正弦、余弦函数存在最大值和最小值,分别是1和-1. [预习导引]正弦函数、余弦函数的性质(下表中k ∈Z ): 函数 y =sin x y =cos x图象定义域 R R 值域 [-1,1][-1,1]对称轴x =k π+π2x =k π对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 奇偶性 奇函数偶函数单调递增⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π[]-π+2k π,2k π 单调递减⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π []2k π,π+2k π最值在x =π2+2k π时,y max =1;在x =-π2在x =2k π时,y max =1;在x =π+2k π要点一 求正弦、余弦函数的单调区间例1 求函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的单调递增区间. 解 y =2sin ⎝ ⎛⎭⎪⎫π4-x =-2sin ⎝⎛⎭⎪⎫x -π4,令z =x -π4,则y =-2sin z .因为z 是x 的一次函数,所以要求y =-2sin z 的递增区间, 即求sin z 的递减区间,即2k π+π2≤z ≤2k π+3π2(k ∈Z ).∴2k π+π2≤x -π4≤2k π+3π2(k ∈Z ),2k π+3π4≤x ≤2k π+7π4(k ∈Z ),∴函数y =2sin ⎝⎛⎭⎪⎫π4-x 的递增区间为⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+7π4(k ∈Z ).规律方法 用整体替换法求函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.再将最终结果写成区间形式.跟踪演练1 求下列函数的单调递增区间:(1)y =1+2sin ⎝ ⎛⎭⎪⎫π6-x ;(2)y =log 12cos x .解 (1)y =1+2sin ⎝ ⎛⎭⎪⎫π6-x =1-2sin ⎝⎛⎭⎪⎫x -π6.令u =x -π6,则根据复合函数的单调性知,所给函数的单调递增区间就是y =sin u 的单调递减区间,即2k π+π2≤u ≤2k π+32π(k ∈Z ),亦即2k π+π2≤x -π6≤2k π+3π2(k ∈Z ).亦即2k π+23π≤x ≤2k π+53π(k ∈Z ),故函数y =1+2sin ⎝ ⎛⎭⎪⎫π6-x 的单调递增区间是⎣⎢⎡⎦⎥⎤2k π+23π,2k π+53π(k ∈Z ).(2)由cos x >0,得2k π-π2<x <2k π+π2,k ∈Z .∵0<12<1,∴函数y =log 12cos x 的单调递增区间即为u =cos x ,x ∈⎝⎛⎭⎪⎫2k π-π2,2k π+π2(k ∈Z )的递减区间,∴2k π≤x <2k π+π2,k ∈Z .故函数y =log 12cos x 的单调递增区间为⎣⎢⎡⎭⎪⎫2k π,2k π+π2(k ∈Z ). 要点二 正弦、余弦函数的单调性的应用例2 利用三角函数的单调性,比较下列各组数的大小.(1)sin ⎝ ⎛⎭⎪⎫-π18与sin ⎝ ⎛⎭⎪⎫-π10;(2)sin196°与cos156°;(3)cos ⎝ ⎛⎭⎪⎫-235π与cos ⎝ ⎛⎭⎪⎫-174π. 解 (1)∵-π2<-π10<-π18<π2,∴sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.(2)sin196°=sin(180°+16°)=-sin16°, cos156°=cos(180°-24°)=-cos24°=-sin66°, ∵0°<16°<66°<90°,∴sin16°<sin66°; 从而-sin16°>-sin66°,即sin196°>cos156°.(3)cos ⎝ ⎛⎭⎪⎫-235π=cos 235π=cos(4π+35π)=cos 35π, cos ⎝ ⎛⎭⎪⎫-174π=cos 174π=cos ⎝ ⎛⎭⎪⎫4π+π4=cos π4.∵0<π4<35π<π,且y =cos x 在[0,π]上是减函数,∴cos 35π<co s π4,即cos ⎝ ⎛⎭⎪⎫-235π<cos ⎝ ⎛⎭⎪⎫-174π. 规律方法 用正弦函数或余弦函数的单调性比较大小时,应先将异名化同名,把不在同一单调区间内的角用诱导公式转化到同一单调区间,再利用单调性来比较大小. 跟踪演练2 比较下列各组数的大小.(1)sin ⎝ ⎛⎭⎪⎫-376π与sin ⎝ ⎛⎭⎪⎫493π; (2)cos870°与sin980°.解 (1)sin ⎝ ⎛⎭⎪⎫-376π=sin ⎝ ⎛⎭⎪⎫-6π-π6=sin ⎝ ⎛⎭⎪⎫-π6,sin ⎝ ⎛⎭⎪⎫493π=sin ⎝⎛⎭⎪⎫16π+π3=sin π3,∵y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,∴sin ⎝ ⎛⎭⎪⎫-π6<sin π3,即sin ⎝ ⎛⎭⎪⎫-376π<sin 493π. (2)cos870°=cos(720°+150°)=cos150°,sin980°=sin(720°+260°)=sin260°=sin(90°+170°)=cos170°, ∵0°<150°<170°<180°,∴cos150°>cos170°,即cos870°>sin980°. 要点三 求正弦、余弦函数的最值(值域)例3 (1)求函数y =3-2sin x 取得最大值、最小值时的自变量x 的集合,并分别写出最大值、最小值;(2)求函数f (x )=2sin 2x +2sin x -12,x ∈⎣⎢⎡⎦⎥⎤π6,5π6的值域.解 (1)∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π+3π2,k ∈Z 时,y 取得最大值5,相应的自变量x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+3π2,k ∈Z .当sin x =1,即x =2k π+π2,k ∈Z 时,y 取得最小值1,相应的自变量x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+π2,k ∈Z .(2)令t =sin x ,y =f (t ),∵x ∈⎣⎢⎡⎦⎥⎤π6,5π6,∴12≤sin x ≤1,即12≤t ≤1. ∴y =2t 2+2t -12=2⎝ ⎛⎭⎪⎫t +122-1,∴1≤y ≤72,∴函数f (x )的值域为⎣⎢⎡⎦⎥⎤1,72.规律方法 (1)形如y =a sin x +b (或y =a cos x +b )的函数的最值或值域问题,利用正弦、余弦函数的有界性(-1≤sin x ,cos x ≤1)求解.求三角函数取最值时相应自变量x 的集合时,要注意考虑三角函数的周期性.(2)求解形如y =a sin 2x +b sin x +c (或y =a cos 2x +b cos x +c ),x ∈D 的函数的值域或最值时,通过换元,令t =sin x (或cos x ),将原函数转化为关于t 的二次函数,利用配方法求值域或最值即可.求解过程中要注意t =sin x (或cos x )的有界性.跟踪演练3 已知0≤x ≤π2,求函数y =cos 2x -2a cos x 的最大值M (a )与最小值m (a ).解 设cos x =t , ∵0≤x ≤π2,∴0≤t ≤1.∵y =t 2-2at =(t -a )2-a 2,∴当a <0时,M (a )=1-2a ,m (a )=0; 当0≤a ≤12时,M (a )=1-2a ,m (a )=-a 2;当12<a <1时,M (a )=0,m (a )=-a 2; 当a ≥1时,M (a )=0,m (a )=1-2a . 综上,M (a )=⎩⎪⎨⎪⎧1-2a , a ≤12,0,a >12,m (a )=⎩⎪⎨⎪⎧0, a <0,-a 2,0≤a <1,1-2a ,a ≥1.要点四 三角函数的奇偶性 例4 判断下列函数的奇偶性:(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x1+sin x .解 (1)显然x ∈R ,f (x )=cos 12x ,f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ),∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .∴f (x )的定义域关于原点对称. 又∵f (x )=lg(1-sin x )-lg(1+sin x ) ∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ). ∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1, ∴x ∈R 且x ≠2k π-π2,k ∈Z .∵定义域不关于原点对称,∴该函数是非奇非偶函数.规律方法 判断函数奇偶性,要先判断函数的定义域是否关于原点对称,定义域关于原点对称是函数为奇函数或偶函数的前提条件,然后再判断f (-x )与f (x )之间的关系. 跟踪演练4 判断下列函数的奇偶性:(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2·sin x ;(2)f (x )=1-2cos x +2cos x -1. 解 (1)f (x )=sin2x +x 2sin x ,又∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )= -sin2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧1-2cos x ≥0,2cos x -1≥0,得cos x =12.∴f (x )=0,x =2k π±π3,k ∈Z .∴f (x )既是奇函数又是偶函数.1.函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6的一个递减区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2B .[-π,0]C.⎣⎢⎡⎦⎥⎤-23π,23πD.⎣⎢⎡⎦⎥⎤π2,23π答案 D解析 由π2≤x +π6≤32π解得π3≤x ≤43π.故选D.2.下列不等式中成立的是( )A .sin ⎝ ⎛⎭⎪⎫-π8>sin ⎝ ⎛⎭⎪⎫-π10 B .sin3>sin2 C .sin 75π>sin ⎝ ⎛⎭⎪⎫-25π D .sin2>cos1 答案 D解析 ∵sin2=cos ⎝ ⎛⎭⎪⎫π2-2=cos ⎝ ⎛⎭⎪⎫2-π2,且0<2-π2<1<π,∴cos ⎝ ⎛⎭⎪⎫2-π2>cos1,即sin2>cos1.故选D.3.函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是( )A.⎣⎢⎡⎦⎥⎤-32,12B.⎣⎢⎡⎦⎥⎤-12,32 C.⎣⎢⎡⎦⎥⎤32,1 D.⎣⎢⎡⎦⎥⎤12,1答案 B解析 ∵0≤x ≤π2,∴π6≤x +π6≤23π.∴cos 23π≤cos ⎝ ⎛⎭⎪⎫x +π6≤cos π6,∴-12≤y ≤32.故选B. 4.设a =sin33°,b =cos55°,c =tan35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,又0<cos35°<1,∴c >b >a .1.求函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2 (k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+32π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断. 3.求三角函数值域或最值的常用求法:将y 表示成以sin x (或cos x )为元的复合函数再利用换元或配方或利用函数的单调性等来确定y 的范围.一、基础达标1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限B .第二象限C .第三象限D .第四象限答案 C2.若α,β都是第一象限的角,且α<β,那么( ) A .sin α>sin β B .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定答案 D3.函数y =2sin 2x +2cos x -3的最大值是( ) A .-1B .1 C .-12D .-5答案 C解析 由题意,得y =2sin 2x +2cos x -3=2(1-cos 2x )+2cos x -3=-2⎝ ⎛⎭⎪⎫cos x -122-12.∵-1≤cos x ≤1,∴当cos x =12时,函数有最大值-12.4.对于下列四个命题:①sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10; ②cos ⎝ ⎛⎭⎪⎫-25π4>cos ⎝ ⎛⎭⎪⎫-17π4; ③sin138°<sin143°;④tan40°>sin40°. 其中正确命题的序号是( ) A .①③B.①④ C .②③D .②④答案 B5.关于x 的函数f (x )=sin(x +φ)有以下命题:①对任意的φ,f (x )都是非奇非偶函数;②不存在φ,使f (x )既是奇函数,又是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中正确命题的序号是________. 答案 ②③解析 易知②③成立,令φ=π2,f (x )=cos x 是偶函数,①④都不成立.6.若|x |≤π4,则函数f (x )=cos 2x +sin x 的最小值是________.答案 12-22解析 由cos 2x =1-sin 2x ,故f (x )=1-sin 2x +sin x ,令sin x =t ,由|x |≤π4,由图象知t ∈[-22,22],故函数化为y =-t 2+t +1=-(t -12)2+54,当t =-22时,y min =12-22. 7.求下列函数的单调增区间. (1)y =1-sin x2;(2)y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z ,得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ). (2)y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2=log 12cos ⎝ ⎛⎭⎪⎫x 2-π3.要求原函数的增区间,即求函数y =cos ⎝ ⎛⎭⎪⎫x 2-π3的减区间,且cos ⎝ ⎛⎭⎪⎫x 2-π3>0.∴2k π≤x 2-π3<2k π+π2(k ∈Z ).整理得4k π+23π≤x <4k π+53π(k ∈Z ).所以函数y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间是⎣⎢⎡⎭⎪⎫4k π+23π,4k π+53π(k ∈Z ).二、能力提升 8.函数y =2sin x的单调增区间是( )A .[2k π-π2,2k π+π2](k ∈Z )B .[2k π+π2,2k π+3π2](k ∈Z ) C .[2k π-π,2k π](k ∈Z )D .[2k π,2k π+π](k ∈Z )答案 A解析 函数y =2x 为增函数,因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间9.M ,N 是曲线y =πsin x 与曲线y =πcos x 的两个不同的交点,则|MN |的最小值为( )A .πB.2πC.3πD .2π 答案 C解析 在同一坐标系中画出函数y =πsin x 与y =πcos x 的图象,如图所示,则|MN |的最小值为|PQ |.又P (π4,2π2),Q (5π4,-2π2), 故|PQ |=π4-5π42+2π2+2π22=3π.10.sin1,sin2,sin3按从小到大排列的顺序为__________________.答案 sin3<sin1<sin2解析 ∵1<π2<2<3<π, sin(π-2)=sin2,sin(π-3)=sin3.y =sin x 在⎝⎛⎭⎪⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin1<sin(π-2),即sin3<sin1<sin2.11.已知ω是正数,函数f (x )=2sin ωx 在区间[-π3,π4]上是增函数,求ω的取值范围.解 由-π2+2k π≤ωx ≤π2+2k π(k ∈Z ), 得-π2ω+2k πω≤x ≤π2ω+2k πω. ∴f (x )的单调递增区间是[-π2ω+2k πω,π2ω+2k πω],k ∈Z . 根据题意,得[-π3,π4]⊆[-π2ω+2k πω,π2ω+2k πω]. 从而有⎩⎪⎨⎪⎧ -2π2ω≤-π3,π2ω≥π4,ω>0,解得0<ω≤32. 故ω的取值范围是(0,32]. 12.判断下列函数的奇偶性:(1)f (x )=2sin ⎝⎛⎭⎪⎫2x +52π;(2)f (x )=2sin x -1;(3)f (x )=lg(sin x +1+sin 2x ). 解 (1)函数定义域为R ,且f (x )=2sin ⎝ ⎛⎭⎪⎫2x +52π=2sin ⎝⎛⎭⎪⎫2x +π2=2cos2x ,显然有f (-x )=f (x )恒成立.∴函数f (x )=2sin ⎝⎛⎭⎪⎫2x +52π为偶函数. (2)由2sin x -1>0,即sin x >12,得函数定义域为⎝⎛⎭⎪⎫2k π+π6,2k π+56π(k ∈Z ),此定义域在x 轴上表示的区间不关于原点对称.∴该函数不具有奇偶性,为非奇非偶函数.(3)函数定义域为R . f (-x )=lg(-sin x +1+sin 2x )=lg 1sin x +1+sin 2x=-lg ()sin x +1+sin 2x =-f (x ),∴函数f (x )=lg(sin x +1+sin 2x )为奇函数.三、探究与创新 13.设函数y =-2cos ⎝ ⎛⎭⎪⎫12x +π3,x ∈⎣⎢⎡⎦⎥⎤28π5,a ,若该函数是单调函数,求实数a 的最大值. 解 由2k π≤12x +π3≤2k π+π(k ∈Z )得4k π-23π≤x ≤4k π+43π(k ∈Z ). ∴函数的单调递增区间是⎣⎢⎡⎦⎥⎤4k π-23π,4k π+43π(k ∈Z ), 同理函数的单调递减区间是⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π(k ∈Z ). 令285π∈⎣⎢⎡⎦⎥⎤4k π-23π,4k π+43π, 即1615≤k ≤4730,又k ∈Z ,∴k 不存在. 令285π∈⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π,得k =1. ∴285π∈⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π, 这表明y =-2cos ⎝ ⎛⎭⎪⎫12x +π3在⎣⎢⎡⎦⎥⎤28π5,22π3上是减函数,∴a 的最大值是22π3.。
1.3.2 余弦函数、正切函数的图象与性质第一课时 余弦函数的图象与性质1.余弦函数的图象(1)把正弦曲线向左平移π2个单位就可以得到余弦函数的图象.余弦函数y =cos x 的图象叫做余弦曲线.(2)余弦曲线.除了上述的平移法得到余弦曲线,还可以用:①描点法:按照列表,描点,连线顺序可作出余弦函数图象的方法.②五点法:观察余弦函数的图象可以看出,(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1)这五点描出后,余弦函数y =cos x ,x ∈[0,2π]的图象的形状就基本上确定了.【自主测试1】画出函数y =-cos x ,x ∈[0,2π]的简图.分析:运用五点作图法,首先要找出起关键作用的五个点,然后描点连线. 解:列表:ω>0)的周期为T =2πω.今后,可以使用这个公式直接求这类函数的周期.【自主测试2-1】函数y =2cos x +1的最大值和最小值分别是( ) A .2,-2 B .3,-1 C .1,-1 D .2,-1 答案:B【自主测试2-2】已知函数f (x )=sin ⎝⎛⎭⎪⎫x -π2(x ∈R ),下列结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=sin ⎝⎛⎭⎪⎫x -π2=-cos x (x ∈R ),f (-x )=f (x ),∴函数f (x )是偶函数. 答案:D正弦函数与余弦函数的图象和性质的区别与联系(4)sin x +cos x =1题型一 用“五点法”作函数y =A cos(ωx +φ)的图象 【例题1】用“五点法”画出函数y =2cos 2x 的简图.分析:先找出此函数图象上的五个关键点,画出其在一个周期上的函数图象,再进行扩展得到在整个定义域内的简图.解:因为y =2cos 2x 的周期T =2π2=π,所以先在区间[0,π]上按五个关键点列表如下.然后把y =2cos 2x 在[0,π]上的图象向左、右平移,每次平移π个单位长度,则得到y =2cos 2x 在R 上的简图如下.反思在用“五点法”画出函数y =A cos(ωx +φ)的图象时,所取的五点应由ωx +φ=0,π2,π,3π2,2π来确定,而不是令x =0,π2,π,3π2,2π.题型二 三角函数的图象变换【例题2】函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象平移得到,若使平移的距离最短,则应( )A .向左平移π8个单位长度B .向右平移7π8个单位长度C .向左平移π4个单位长度D .向右平移π8个单位长度解析:y =cos ⎝ ⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π4 =sin ⎝ ⎛⎭⎪⎫3π4-2x =-sin ⎝⎛⎭⎪⎫2x -3π4 =sin ⎝ ⎛⎭⎪⎫2x -3π4+π=sin ⎝ ⎛⎭⎪⎫2x +π4 =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8,故函数y =sin 2x 的图象可由y =cos ⎝⎛⎭⎪⎫2x -π4的图象向右平移π8个单位长度得到.故选D .答案:D反思一定要注意看清变换的顺序,即看清是以哪个函数图象作为基准. 题型三 函数的定义域问题【例题3】求函数y =36-x 2+lg cos x 的定义域.分析:首先根据函数解析式列出使函数有意义的条件不等式组,然后分别求解,最后求交集即可.解:要使函数有意义,只需⎩⎪⎨⎪⎧36-x 2≥0,cos x >0,即⎩⎪⎨⎪⎧-6≤x ≤6,2k π-π2<x <2k π+π2k ∈Z .利用数轴求解,如图所示:所以函数的定义域为⎣⎢⎡⎭⎪⎫-6,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝ ⎛⎦⎥⎤3π2,6. 反思利用数轴或者单位圆取解集的交集或并集非常简捷、清晰,但要注意区间的开闭情况.题型四 余弦函数的最值或值域【例题4】(1)求函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π3,2π3的值域;(2)求函数y =2+cos x2-cos x的最值;(3)求函数y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3的值域.分析:(1)结合y =cos x 的图象在区间⎣⎢⎡⎦⎥⎤-π3,2π3上先增后减即可求解;(2)利用|cos x |≤1这一性质;(3)利用配方法,结合二次函数的性质求解.解:(1)∵y =cos x 在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增,在区间⎣⎢⎡⎦⎥⎤0,2π3上单调递减,∴y ma x =cos 0=1,y min =cos 2π3=-12,∴y =cos x 的值域为⎣⎢⎡⎦⎥⎤-12,1. (2)由y =2+cos x 2-cos x ,求得cos x =2y -1y +1.∵|cos x |≤1,∴⎪⎪⎪⎪⎪⎪2y -1y +1≤1,∴[2(y -1)]2≤(y +1)2.解得13≤y ≤3,∴y ma x =3,y min =13.(3)y =3cos 2x -4cos x +1=3⎝⎛⎭⎪⎫cos x -232-13,∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3,∴cos x ∈⎣⎢⎡⎦⎥⎤-12,12, 从而当cos x =-12,即x =2π3时,y ma x =154.当cos x =12,即x =π3时,y min =-14.∴函数y =3cos 2x -4cos x +1的值域为⎣⎢⎡⎦⎥⎤-14,154.反思求函数的最值的方法有以下几种:(1)直接法.根据函数值域的定义,由自变量的取值范围求出函数值的取值范围. (2)利用函数的单调性.(3)利用函数的图象,转化为求函数图象上最高点和最低点的纵坐标的问题.(4)利用换元法,转化为一次函数、二次函数、指数函数、对数函数等基本初等函数问题.题型五 余弦函数图象的应用【例题5】求函数y =cos ⎝⎛⎭⎪⎫2x +π4的对称中心、对称轴方程、单调递减区间和最小正周期.分析:利用整体换元,设t =2x +π4,则问题转化为考查函数y =cos t 的相关性质.解:设t =2x +π4,则函数y =cos t 的图象如图所示.令t =k π(k ∈Z ),则2x +π4=k π(k ∈Z ).故x =k ·π2-π8(k ∈Z )即为所求的对称轴方程.令t =k π+π2(k ∈Z ),则2x +π4=k π+π2(k ∈Z ),则x =k ·π2+π8(k ∈Z ).故⎝ ⎛⎭⎪⎫k ·π2+π8,0(k ∈Z )即为所求的对称中心.当t ∈[2k π,2k π+π](k ∈Z )时,2x +π4∈[2k π,2k π+π](k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). ∵cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x +π4+2π=cos ⎣⎢⎡⎦⎥⎤2x +π+π4, ∴最小正周期T =π.反思整体换元思想是解决较复杂三角函数问题常用的一种方法,它能将问题化归为对基本三角函数的考查.〖互动探究〗若将本例中的函数改为“y =⎪⎪⎪⎪⎪⎪cos ⎝⎛⎭⎪⎫2x +π4”呢? 解:设t =2x +π4,则问题转化为考查函数y =|cos t |,如图所示:解答过程同例题,可得无对称中心.令t =k ·π2(k ∈Z ),则2x +π4=k ·π2(k ∈Z ),∴对称轴为x =k ·π4-π8(k ∈Z );令t ∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ), ∴2x +π4∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8故其单调递减区间为⎣⎢⎡⎦⎥⎤k ·π2-π8,k ·π2+π8(k ∈Z ).最小正周期T =π2.反思(1)若三角函数式子中带绝对值号,则通常通过观察图象得到周期和单调区间. (2)正弦函数y =sin x 和余弦函数y =cos x 取绝对值后,周期缩为原来的一半,即 ①y =|sin x |的周期为π; ②y =|cos x |的周期为π.1.下列说法不正确的是( )A .正弦函数、余弦函数的定义域是R ,值域是[-1,1]B .余弦函数当且仅当x =2k π(k ∈Z )时取得最大值1,当且仅当x =(2k +1)π(k ∈Z )时取得最小值-1C .正弦函数在每个区间⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z )上都是减函数 D .余弦函数在每个区间[2k π-π,2k π](k ∈Z )上都是减函数 答案:D2.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝ ⎛⎭⎪⎫2x +π2 B .y =cos ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin ⎝ ⎛⎭⎪⎫x +π2 D .y =cos ⎝⎛⎭⎪⎫x +π2答案:A3.(2012·重庆期末)把函数y =cos ⎝⎛⎭⎪⎫2x +π3图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到图象的解析式为( )A .y =cos ⎝ ⎛⎭⎪⎫x +π6B .y =cos ⎝ ⎛⎭⎪⎫x +π3C .y =cos ⎝ ⎛⎭⎪⎫4x +2π3D .y =cos ⎝⎛⎭⎪⎫4x +π3 答案:D4.若函数y =a cos x +b 的最小值为-12,最大值为32,则a =__________,b =__________.解析:由于y ma x =32,y min =-12,且-1≤cos x ≤1,则当a >0时,有⎩⎪⎨⎪⎧a +b =32,-a +b =-12,解得⎩⎪⎨⎪⎧a =1,b =12.当a <0时,有⎩⎪⎨⎪⎧-a +b =32,a +b =-12,解得⎩⎪⎨⎪⎧a =-1,b =12.综上,a =±1,b =12.答案:±1 125.函数y =|cos x |的单调增区间为________,单调减区间为________,最小正周期为________.解析:函数y =|cos x |的图象,如图所示.由图可知它的最小正周期为π.又因为在一个周期⎣⎢⎡⎦⎥⎤-π2,π2上,函数的增区间是⎣⎢⎡⎦⎥⎤-π2,0,减区间是⎣⎢⎡⎦⎥⎤0,π2.而函数的周期是k π(k ∈Z ),因此函数y =|cos x |的增区间是⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ),减区间是⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) ⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) π 6.函数f (x )的定义域为[0,1],则f (cos x )的定义域是__________.解析:由已知0≤cos x ≤1,得2k π-π2≤x ≤2k π+π2(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ) 7.已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π4,x ∈R . (1)用“五点法”画出函数f (x )在长度为一个周期的闭区间上的简图; (2)求函数f (x )的最大值,并求出取得最大值时自变量x 的取值集合; (3)求函数f (x )的单调增区间. 解:(1)列表:(2)当2x -π4=2k π(k ∈Z ),即x =k π+π8(k ∈Z )时,y ma x =3,此时x 取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+π8,k ∈Z. (3)当2k π-π≤2x -π4≤2k π(k ∈Z )时,k π-3π8≤x ≤k π+π8,k ∈Z ,故函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ).。
高中数学必修4正弦余弦正切余切函数图像的性质总结三角函数是高中数学教学中一类基本的、重要的函数,下面是小编给大家带来的高中数学必修4正弦余弦正切余切函数图像的性质总结,希望对你有帮助。
高中数学正弦余弦正切余切函数图像的性质高中数学学习方法抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。
弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。
反之,会使解题速度慢,逻辑混乱、叙述不清。
严防题海战术做习题是为了巩固知识、提高应变能力、思维能力、计算能力。
学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。
因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。
也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。
归纳数学大思维数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。
在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。
但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。
高中数学第四章-三角函数1. ①与α0°≤α<360°终边相同的角的集合角α与角β的终边重合:{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π180°≈°=57°18ˊ. 1°=180π≈rad3、弧长公式:r l ⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取异于原点的一点Px,yP 与原点的距离为r,则 ry =αsin ;rx=αcos ;=αtan yx=αcot ;x r=αsec ;. yr =αcsc .5、三角函数在各象限的符号:一全二正弦,三切四余弦正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP; 余弦线:OM; 正切线: AT.SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域(3) 若 o<x<2,则sinx<x<tanx16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”三角函数的公式:一基本关系公式组二 公式组三 x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ二角与角之间的互换公式组一 公式组二βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan 2sin 2ααα+= 2tan 12tan1cos 22ααα+-= 2tan 12tan 2tan 2ααα-= 42675cos 15sin -== , ,3275cot 15tan -== ,. 3215cot 75tan +== 42615cos 75sin +==()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增减,则)(x f y -=在],[b a 上递减增.②x y sin =与x y cos =的周期是π.③)sin(ϕω+=x y 或)cos(ϕω+=x y 0≠ω的周期ωπ2=T .2tan xy =的周期为2ππωπ2=⇒=T T ,如图,翻折无效.④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x Z k ∈,对称中心0,πk ;)cos(ϕω+=x y 的对称轴方程是πk x =Z k ∈,对称中心0,21ππ+k ;)tan(ϕω+=x y 的对称中心0,2πk . x x y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则)cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.× 只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的.⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.奇偶性的两个条件:一是定义域关于原点对称奇偶都要,二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.定义域不关于原点对称奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .x ∉0的定义域,则无此性质⑨x y sin =不是周期函数;x y sin =为周期函数π=T ;x y cos =是周期函数如图;x y cos =为周期函数π=T ;212cos +=x y 的周期为π如图,并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法: 1、几何法:2、描点法及其特例——五点作图法正、余弦曲线,三点二线作图法正、余切曲线. 3、利用图象变换作三角函数图象.y=|cos2x +1/2|图象三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin ωx +φ的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ即当x =0时的相位.当A>0,ω>0 时以上公式可去绝对值符号,由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长当|A|>1或缩短当0<|A|<1到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.用y/A 替换y由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长0<|ω|<1或缩短|ω|>1到原来的1||ω倍,得到y=sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.用ωx 替换x由y =sinx 的图象上所有的点向左当φ>0或向右当φ<0平行移动|φ|个单位,得到y =sinx +φ的图象,叫做相位变换或叫做沿x 轴方向的平移.用x +φ替换x由y =sinx 的图象上所有的点向上当b >0或向下当b <0平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.用y+-b 替换y由y =sinx 的图象利用图象变换作函数y =Asin ωx +φA >0,ω>0x ∈R 的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别; 4、反三角函数: 函数y =sin x ,⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-∈22ππ,x 的反函数叫做反正弦函数,记作y =arcsin x ,它的定义域是-1,1,值域是⎥⎦⎤⎢⎣⎡22ππ,-.函数y =cos x ,x ∈0,π的反应函数叫做反余弦函数,记作y =arccos x ,它的定义域是-1,1,值域是0,π. 函数y =tan x ,⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∈22ππ,x 的反函数叫做反正切函数,记作y =arctan x ,它的定义域是-∞,+∞,值域是⎪⎭⎫ ⎝⎛-22ππ,. 函数y =ctg x ,x ∈0,π的反函数叫做反余切函数,记作y =arcctg x ,它的定义域是-∞,+∞,值域是0,π.II. 竞赛知识要点一、反三角函数.1. 反三角函数:⑴反正弦函数x y arcsin =是奇函数,故x x arcsin )arcsin(-=-,[]1,1-∈x 一定要注明定义域,若()+∞∞-∈,x ,没有x 与y 一一对应,故x y sin =无反函数注:x x =)sin(arcsin ,[]1,1-∈x ,⎥⎦⎤⎢⎣⎡-∈2,2arcsin ππx .⑵反余弦函数x y arccos =非奇非偶,但有ππk x x 2)arccos()arccos(+=+-,[]1,1-∈x . 注:①x x =)cos(arccos ,[]1,1-∈x ,[]π,0arccos ∈x .②x y cos =是偶函数,x y arccos =非奇非偶,而x y sin =和x y arcsin =为奇函数. ⑶反正切函数:x y arctan =,定义域),(+∞-∞,值域2,2ππ-,x y arctan =是奇函数, x x arctan )arctan(-=-,∈x ),(+∞-∞.注:x x =)tan(arctan ,∈x ),(+∞-∞.⑷反余切函数:x arc y cot =,定义域),(+∞-∞,值域2,2ππ-,x arc y cot =是非奇非偶.ππk x arc x arc 2)cot()cot(+=+-,∈x ),(+∞-∞.注:①x x arc =)cot cot(,∈x ),(+∞-∞.②x y arcsin =与)1arcsin(x y -=互为奇函数,x y arctan =同理为奇而x y arccos =与x arc y cot =非奇非偶但满足]1,1[,2)cot(cot ]1,1[,2arccos )arccos(-∈+=-+-∈+=+-x k x arc x arc x k x x ππππ.⑵ 正弦、余弦、正切、余切函数的解集:a 的取值范围 解集 a 的取值范围 解集 ①a x =sin 的解集 ②a x =cos 的解集a>1 ∅ a>1 ∅a=1 {}Z k a k x x ∈+=,arcsin 2|π a=1 {}Z k a k x x ∈+=,arccos 2|πa<1 (){}Z k a k x x k ∈-+=,arcsin 1|πa<1 {}Z k a k x x ∈±=,arccos |π③a x =tan 的解集:{}Z k a k x x ∈+=,arctan |π ③a x =cot 的解集:{}Z k a k x x ∈+=,cot arc |π 二、三角恒等式. 组一 组二∏===nk nn nk12sin2sin 2cos8cos4cos2cos2cos ααααααα∑=++=+++++=+nk dnd x d n nd x d x x kd x 0sin )cos())1sin(()cos()cos(cos )cos(∑=++=+++++=+nk dnd x d n nd x d x x kd x 0sin )sin())1sin(()sin()sin(sin )sin(αγγββαγβαγβαγβαtan tan tan tan tan tan 1tan tan tan tan tan tan )tan(----++=++组三 三角函数不等式x sin <x <)2,0(,tan π∈x x xxx f sin )(=在),0(π上是减函数 若π=++C B A ,则C xy B xz A yz z y x cos 2cos 2cos 2222++≥++ααααααcos 3cos 43cos sin 4sin 33sin 33-=-=()()αββαβαβα2222cos cos sin sin sin sin -=-+=-ααααααsin 22sin 2cos ...4cos 2cos cos 11++=n n n。
(2) /(航+如型三角函数的奇偶性(i ) g (x ) = /沏(颜+如(x€ R)(x)为偶函数匕鼠U 力(而+ 出=j4sin (-<at + 炉)(x W 氏)0 sin 曲匚*0=。
(工 W R )7Tcos 卯=。
=上7T+一1左 e Z )由此得 2 ,同理,式夫4皿皈+双相的 为奇函数 =顺@=0/3=上网海2)(ii )飙# =+劭SwR]妖N = .Aa 式题+钠为偶函数见双t");就= 式以+如为奇函数7T=中=无产+ — (k e Z)3、周期性(1)基本公式(ii) 〃皈+⑺+氏型三角函数的周期竺y =+ G + 5 =加+中出 的周期为何;(一)三角函数的性质1、定义域与值域2、奇偶性(1)基本函数的奇偶性奇函数:y = sinx y= tanx ; 偶函数:y=cosx.(i )基本三角函数的周期的周期为;丁.y=sinx , y=cosx 的周期为 之并 ;y = tanx , y = cotx4-212yy=cotxy=tanx 3-32X 03 27 3,y=cosx-5-4 .7223 2322 5 2“如血的+朗+9=心服如+沟+用的周期为何.(2)认知⑴A =1/W +创型函数的周期y = |月劭(枷+或)| j = A 匚。
5(西+励|(ii )若函数为,(收斗劭 型两位函数之和,则探求周期适于“最小公倍数法”. (iii )探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明.(3)特殊情形研究JT(i ) y = tanx — cotx 的最小正周期为27T(ii ) y=卜由H+|M 幻的最小正周期为,;7T(iii ) y = sin 4x + cos 4x 的最小正周期为,. _由此领悟“最小公倍数法”的适用类型,以防施错对象 .4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期;②写特解:在所选周期内写出函数的增区问(或减区问);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 .揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域(2) y=/(而+初 型三角函数的单调区问的周期为y = (助+切1_r= |达匚祖(姗+阖| 的周期为 7T(ii) > = 1/(耽+如+同3=0)的周期1y 二|金£血(为工卜8]妣+3)+甘¥ = |例如(而+5+上] J = |总二加侬大+的+. 的周期为祠;,7T的周期为:. 均同它们不加绝对值时的周期相同,即对 数的周期不变.注意这一点与(i )的区别.y=八加+◎+上的解析式施加绝对值后,该函此类三角函数单调区间的寻求“三部曲”为 ①换元、分解:令u =z 中,将所给函数分解为内、外两层:y = f (u) , u =®x+卯;②套用公式:根据对复合函数单调性的认知,确定出 f (u)的单调性,而后利用(1)中公 式写出关于u 的不等式;③还原、结论:将u =^+W 代入②中u 的不等式,解出x 的取值范围,并用集合或区间 形成结论.正弦、余弦、正切、余切函数的图象的性质:/y sinx y cosxy tanxy cotxy Asin x(A 、 >0)定义域 R R x | x R 且 x k 1 ,k Zx| x R 且x k ,k ZR值域 [1, 1][1, 1]R RA, A周期性 2 22奇偶性奇函数 偶函数奇函数 奇函数当 0,非奇非偶 当0,奇函数单调性[2 2k , —2k ] 2上为增函 数; [2 2k ,3——2k ] 2上为减函 数(k Z )[2k 1 , 2k ]上为增函 数[2k , 2k 1 ]上为减函数(k Z )一k ,一 k 2 2 上为增函数(k Z )k , k 1上为减函数(k Z )2k2(A),2k -2( A)上为增函数;2k 一------ 2— (A), 2k------ 2——(A)上为减函数(k Z )注意:①y sinx 与y sinx 的单调性正好相反;y cosx 与y cosx 的单调性也同样相反.一般 地,若y f(x)在[a,b ]上递增(减),则y f (x)在[a,b ]上递减(增)y忖n x 与y cosx 的周期是.-(k Z),对称中心(k ,0); y cos( x )的对称轴方); y tan( x )的对称中心(工,0).,02③ y sin( x )或 y cos( x )0)的周期T 2y tan x 的周期为2 2 (T _ T 2,如图,翻折无效)④y sin( x )的对称轴方程是x k 程是x k (k Z ),对称中心(ky cos2x 原点对称 y cos( 2x) cos2x⑤ 当 tan tan 1, k ,(k Z) ; tan tan 1, k ,(k Z).⑥y cosx 与y s in x _ 2k是同一函数,而y ( x )是偶函数,则2 1 、,、y ( x ) sin( x k ) cos( x).2⑦函数y tanx 在R 上为增函数.(耳[只能在某个单调区间单调递增 .若在整个定义域,y tanx 为增函数,同样也是错误的].⑧定义域关于原点对称是f (x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域 关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f( x) f(x),奇函数:f( x) f(x)) 奇偶性的单调性:奇同偶反.例如:y tanx 是奇函数,y tan(x 1)是非奇非偶.(定义域不 3 关于原点对称)奇函数特有性质:若0 x 的定义域,则f(x)一定有f(0) 0. (0 x 的定义域,则无此性质)⑨y sinx 不是周期函数;y sinx 为周期函数(T ); y cosx 是周期函数(如图);y cosx 为周期函数(T );y cos2x1的周期为(如图),并非所有周期函数都有最小正周期,2y f (x) 5 f (x k),k R . ⑩ y a cos bsinVa 2 b 2sin( ) cos b 有 Va 2 b 2 y .、形如y Asin( x )的函数:11、几个物理量:A 一振幅;f 1—频率(周期的倒数);x 一相包; 一初相;2、函数y Asin( x )表达式的确定:A 由最值确定; 由周期确定; 由图象上的特殊点确定,如 f(x) Asin( x )(A 0,0, | 3.函数 y Asin( x ) B (其中 A 0,0)最大值是A B,最小值是B A,周期是T —,最小正周期T 六频率是f「相位是x,初相是;其图象的对称轴是直线x k 7k Z),凡| "^0的图象如图所小,则f (x)(答:f(x)152sin(-2x -));y=| cos2x+1/2|图象是该图象与直线y B 的交点都是该图象的对称中心4、研究函数y Asin( x )性质的方法:类比于研究y sin x 的性质,只需将y Asin( x ) 中的x 看成y sinx 中的x,但在求y Asin( x )的单调区间时,要特别注意 A 和 的 符号,通过诱导公式先将 化正。
高一数学正余弦、正切函数的图像与性质北师大版【本讲教育信息】一. 教学内容:①单位圆中的三角函数线与三角函数作图 ②正弦函数的图像与性质; ③余弦函数的图像与性质; ④正切函数的图像与性质二、学习目标1、能利用单位圆中的三角函数线解决一些简单的问题,如判断三角函数的符号、比较三角函数值的大小等;2、借助单位圆中的三角函数线画出,sin x y =x y cos =,x y tan =的图像,了解三角函数的周期性。
3、借助图像理解正弦函数、余弦函数在[]π2,0上,正切函数在⎪⎭⎫⎝⎛-2,2ππ上的性质(如单调性、最大值和最小值、图像与x 轴交点等)。
三、知识要点 1、三角函数线如图,设角α的终边与单位圆的交点为P ,过P 作x 轴的垂线,垂足为M ;又设单位圆与x 轴正半轴交点为A ,过点A 作x 轴的垂线交角α的终边或其反向延长线于T 。
根据正弦,余弦,正切的定义,则有MP =αsin ,OM =αcos ,AT =αtan这三条与单位圆有关的有向线段AT OM MP ,,分别叫做角α的正弦线,余弦线,正切线.【说明】(1)符号的判断:当MP 、OM 、AT 的方向与相应的坐标轴正方向一致的时候,取正值;相反时取负值;比如,当α为第一象限角时,MP 的方向与y 轴正向一致,故对应的sinα>0;(2)当角α的终边落在x 轴上时,M 与P 重合,A 与T 重合,此时正弦线,正切线分别变成一个点;当角α的终边在y 轴上时,O 与M 重合,余弦线变成一个点,过A 的切线平行于y 轴,不能与角α的终边相交,所以正切线不存在,此时角α的正切值不存在. 2、三角函数线与诱导公式设α、β的终边分别与单位圆交于P 、P',则β=α+π+2kπ 由三角函数的定义可知: s inα=MP,sinβ=M'P'因为MP 与M'P'长度一致而方向相反,故:sinα=-sinβ即:sin(π+2kπ+α)=-sinα【说明】其它各个诱导公式均可根据三角函数线进行推导和理解。
正弦、余弦、正切:三角函数三角函数是数学中常见的函数,主要涉及正弦(sine)、余弦(cosine)和正切(tangent)三个函数。
这些函数在解决几何和物理问题中具有重要的应用。
本文将介绍正弦、余弦和正切函数的定义、性质以及在实际问题中的应用。
一、正弦函数(Sine Function)正弦函数是一个周期性函数,其定义如下:sin(x) = \frac{opposite}{hypotenuse} = \frac{y}{r}其中,x 是一个角度,y 是该角度对应的直角三角形中的对边,而 r 则是该直角三角形的斜边。
正弦函数的图像是一条连续的波浪线,其振幅为 1,周期为2π。
在数学和物理领域中,正弦函数常用于描述波动、周期性等现象。
二、余弦函数(Cosine Function)余弦函数也是一个周期性函数,其定义如下:cos(x) = \frac{adjacent}{hypotenuse} = \frac{x}{r}与正弦函数相似,x 为一个角度,而 r 是对应直角三角形的斜边,而 x 则是该直角三角形中的邻边。
余弦函数的图像是一条连续的波浪线,其振幅同样为 1,周期也为2π。
在几何和物理学中,余弦函数常用于描述旋转、震动等周期性现象。
三、正切函数(Tangent Function)正切函数是三角函数中的另一种常见形式,其定义如下:tan(x) = \frac{opposite}{adjacent} = \frac{y}{x}在直角三角形中,对于给定的角度 x,正切函数可用来表示直角三角形中对边与邻边的比值。
正切函数的图像是一条连续的波动曲线,没有周期性。
正切函数在几何和物理学中经常应用于描述斜率、角度等性质。
综上所述,正弦、余弦和正切是三角函数的重要组成部分。
它们在数学、几何学和物理学中都具有广泛的应用。
正弦函数描述了波动的特征,余弦函数则描述了旋转和震动的特征,而正切函数则描述了斜率和角度的特征。
第四章三角函数第5讲三角函数的图象与性质课标要求命题点五年考情命题分析预测1.借助单位圆能画出三角函数(正弦、余弦、正切)的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值.2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在(-π2,π2)上的性质.三角函数的定义域本讲每年必考,主要考查三角函数的定义域、值域(最值)、周期性、单调性、对称性和奇偶性,有时与函数零点和极值点综合命题,题型以选择题和填空题为主,难度中等.预计2025年高考命题趋势变化不大,备考时要注意区分正弦函数和余弦函数的图象与性质,不要混淆,另应关注新角度、新综合问题.三角函数的值域(最值)2021全国卷乙T4三角函数的性质及应用2023新高考卷ⅠT15;2023全国卷乙T6;2023天津T5;2022新高考卷ⅠT6;2022全国卷乙T15;2022全国卷甲T11;2022北京T5;2021新高考卷ⅠT4;2020全国卷ⅢT16;2019全国卷ⅠT11;2019全国卷ⅡT9学生用书P0801.用“五点法”作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,起关键作用的五个点是(0,0),(π2,1),①(π,0),(3π2,-1),②(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,起关键作用的五个点是(0,1),(π2,0),③(π,-1),(3π2,0),④(2π,1).五点法作图有三步:列表、描点、连线(注意光滑).2.正弦、余弦、正切函数的图象与性质三角y =sin xy =cos xy =tan x函数图象定义域R R ⑤{x |x ≠k π+2,k ∈Z}值域⑥[-1,1]⑦[-1,1]R周期性周期是2k π(k ∈Z 且k ≠0),最小正周期是⑧2π.周期是2k π(k ∈Z 且k ≠0),最小正周期是⑨2π.周期是k π(k ∈Z 且k ≠0),最小正周期是⑩π.对称性对称轴方程是⑪x =k π+2(k ∈Z ),对称中心是⑫(k π,0)(k ∈Z ).对称轴方程是⑬x =k π(k ∈Z ),对称中心是⑭(k π+2,0)(k ∈Z ).无对称轴,对称中心是⑮(2,0)(k ∈Z ).奇偶性⑯奇函数⑰偶函数⑱奇函数单调性在⑲[-2+2k π,2+2k π](k ∈Z )上单调递增,在⑳[2+2k π,32+2k π](k ∈Z )上单调递减.在㉑[2k π-π,2k π](k ∈Z )上单调递增,在㉒[2k π,2k π+π](k ∈Z )上单调递减.在㉓(-2+k π,2+k π)(k ∈Z )上单调递增.注意y =tan x 在其定义域内不单调.常用结论1.三角函数的对称性与周期T 的关系(1)相邻的两条对称轴(或两个对称中心)之间的距离为2;(2)相邻的对称中心与对称轴之间的距离为4;(3)相邻的两个最低点(或最高点)之间的距离为T .2.与三角函数奇偶性有关的结论(1)若函数y =A sin (ωx +φ)(x ∈R )是奇函数,则φ=k π(k ∈Z );若为偶函数,则φ=k π+π2(k ∈Z ).(2)若函数y =A cos (ωx +φ)(x ∈R )是奇函数,则φ=k π+π2(k ∈Z );若为偶函数,则φ=k π(k ∈Z ).(3)若y=A tan(ωx+φ)为奇函数,则φ=kπ(k∈Z).1.设A是△ABC最小的内角,则sin A+cos A的取值范围是(D)A.(-2,2)B.[-2,2]C.(1,2)D.(1,2]解析∵A是△ABC最小的内角,∴0<A≤π3,∴π4<A+π4≤7π12,sin(A+π4)≤1,则sin A+cos A=2sin(A+π4)∈(1,2],故选D.2.函数f(x)=tan(-4x+π6)的最小正周期为(A)A.π4B.π2C.πD.2π解析函数f(x)=tan(-4x+π6)的最小正周期T=π||=π|-4|=π4.3.[全国卷Ⅱ]若x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=(A)A.2B.32C.1D.12解析依题意得函数f(x)的最小正周期T=2π=2×(3π4-π4)=π,解得ω=2,选A.4.函数f(x)=sin(x-π4)的图象的一条对称轴的方程是(C)A.x=π4B.x=π2C.x=-π4D.x=-π2解析函数y=sin x的图象的对称轴方程为x=kπ+π2(k∈Z),令x-π4=kπ+π2(k∈Z),得x=kπ+3π4(k∈Z),故函数f(x)=sin(x-π4)的图象的对称轴方程为x=kπ+3π4(k∈Z).令k=-1,得x=-π4.故选C.5.[易错题]函数y=2sin(-x+π3)(x∈[-π,0])的单调递增区间是(A)A.[-π,-π6]B.[-5π6,-π6]C.[-π3,0]D.[-π6,0]解析令π2+2kπ≤-x+π3≤3π2+2kπ,k∈Z,则-7π6-2kπ≤x≤-π6-2kπ,k∈Z.又x∈[-π,0],所以所求单调递增区间为[-π,-π6].6.函数f(x)=tan(3x+π6)的图象的对称中心为(χ6-π18,0)(k∈Z).解析令3x +π6=χ2,k ∈Z ,解得x =χ6-π18,k ∈Z ,所以f (x )的图象的对称中心为(χ6-π18,0),k ∈Z.学生用书P082命题点1三角函数的定义域例1函数y =lg (sin x 的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.解析要使函数有意义,则sin >0,Hs -12≥0,解得2χ<<π+2χ(Ap,-π3+2χ≤≤π3+2χ(Ap,所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.方法技巧求三角函数的定义域实质上是解不等式或不等式组,常借助于三角函数的图象解决.训练1函数f (x )=tanbtan2tan2-tan 的定义域为{x |x ≠χ4,k ∈Z}.解析tan 2x ,tan x 有意义,则≠π2+χ,2≠π2+χ,k ∈Z ,又tan 2x -tan x ≠0,即2tan1-tan 2-tan x ≠0,则tan x ≠0,即x ≠k π,k ∈Z ,综上可得,x ≠χ4,k ∈Z ,则函数f (x )的定义域为{x |x ≠χ4,k ∈Z}.命题点2三角函数的值域(最值)例2(1)[2021全国卷乙]函数f (x )=sin3+cos3的最小正周期和最大值分别是(C)A.3π和2B.3π和2C.6π和2D.6π和2解析因为函数f (x )=sin3+cos 3=2(sin 3cos π4+cos3sin π4)=2sin (3+π4),所以函数f (x )的最小正周期T =2π13=6π,最大值为2.故选C.(2)已知函数f (x )=cos (2x +π3)+2的定义域为[α,π],值域为[52,3],则α的取值范围是(C )A.[2π3,π]B.[0,2π3]C.[2π3,5π6]D.[π2,5π6]解析由题意知,2x+π3∈[2α+π3,7π3],且y=cos(2x+π3)在[α,π]上的值域为[12,1],∴2α+π3≥5π3,且2α+π3≤2π,解得2π3≤α≤5π6,∴α的取值范围是[2π3,5π6],故选C.方法技巧三角函数值域的不同求法1.把所给的三角函数式变换成y=A sin(ωx+φ)+b的形式求值域.2.把sin x或cos x看作一个整体,转换成二次函数求值域.3.利用sin x±cos x和sin x cos x的关系转换成二次函数求值域.训练2(1)[2023四川省模拟]已知函数f(x)=cos2x+sin x-14的定义域为[0,m],值域为[34,1],则实数m的最大值为(A)A.πB.7π6C.4π3D.3π2解析由已知,得f(x)=cos2x+sin x-14=1-sin2x+sin x-14=-sin2x+sin x+34,令t=sin x,函数f(x)可转换为y=-t2+t+34=-(t-12)2+1,因为y∈[34,1],所以根据二次函数的图象与性质可得t∈[0,1],即sin x∈[0,1],又x∈[0,m],所以根据三角函数的图象与性质可得m∈[π2,π],所以实数m的最大值为π,故选A.(2)函数y=sin x-cos x+sin x cos x12解析令sin x-cos x=t,则t=2sin(x-π4),t∈[-2,2],t2=sin2x+cos2x-2sin x cos x,故sin x cos x=1-22,所以y=t+1-22=-12(t-1)2+1,所以当t=1时,函数有最大值1;当t=-2时,函数有最小值-2-12,即值域为[-2-12,1].命题点3三角函数的性质及应用角度1三角函数的周期性例3(1)[2023天津高考]已知函数f(x)图象的一条对称轴为直线x=2,f(x)的一个周期为4,则f(x)的解析式可能为(B)A.f(x)=sin(π2x)B.f(x)=cos(π2x)C.f(x)=sin(π4x)D.f(x)=cos(π4x)解析对于A,f(x)=sin(π2x),其最小正周期为2ππ2=4,因为f(2)=sinπ=0,所以函数f(x)=sin(π2x)的图象不关于直线x=2对称,故排除A;对于B,f(x)=cos(π2x),其最小正周期为2ππ2=4,因为f(2)=cosπ=-1,所以函数f(x)=cos(π2x)的图象关于直线x=2对称,故选项B符合题意;对于C,D,函数y=sin(π4x)和y=cos(π4x)的最小正周期均为2ππ4=8,均不符合题意,故排除C,D.综上,选B.(2)[全国卷Ⅲ]函数f(x)=tG1+B2的最小正周期为(C)A.π4B.π2C.πD.2π解析f(x)=tan1+tan2=sin cos1+sin2cos2=sinvoscos2+sin2=sin x cos x=12sin2x,所以f(x)的最小正周期T=2π2=π.故选C.方法技巧1.求三角函数周期的基本方法(1)定义法.(2)公式法:函数y=A sin(ωx+φ)(或y=A cos(ωx+φ))的最小正周期T=2π||,函数y=A tan(ωx+φ)的最小正周期T=π||.(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y=|A sin(ωx+φ)|,y=|A cos(ωx+φ)|,y=|A tan(ωx+φ)|的最小正周期T均为π||.(2)函数y=|A sin(ωx+φ)+b|(b≠0),y=|A cos(ωx+φ)+b|(b≠0)的最小正周期T均为2π||.角度2三角函数的单调性例4(1)[2022北京高考]已知函数f(x)=cos2x-sin2x,则(C)A.f(x)在(-π2,-π6)上单调递减B.f(x)在(-π4,π12)上单调递增C.f(x)在(0,π3)上单调递减D.f(x)在(π4,7π12)上单调递增解析依题意可知f(x)=cos2x-sin2x=cos2x,对于A,因为x∈(-π2,-π6),所以2x∈(-π,-π3),函数f(x)=cos2x在(-π2,-π6)上单调递增,所以A不正确;对于B,因为x∈(-π4,π12),所以2x∈(-π2,π6),函数f(x)=cos2x在(-π4,π12)上不单调,所以B不正确;对于C,因为x∈(0,π3),所以2x∈(0,2π3),函数f(x)=cos2x在(0,π3)上单调递减,所以C正确;对于D,因为x∈(π4,7π12),所以2x∈(π2,7π6),函数f(x)=cos2x在(π4,7π12)上不单调,所以D不正确.故选C.(2)[全国卷Ⅱ]若f(x)=cos x-sin x在[-a,a]上是减函数,则a的最大值是(A)A.π4B.π2C.3π4D.π解析f(x)=cos x-sin x=2cos(x+π4),因为函数y=cos x在区间[0,π]上单调递减,则由0≤x+π4≤π,得-π4≤x≤3π4.因为f(x)在[-a,a]上是减函数,|-π4|<3π4,所以-a≥-π4,解得a≤π4.又区间[-a,a]有意义时,a>0,所以0<a≤π4,所以a的最大值是π4.方法技巧三角函数单调性问题的常见类型及求解策略常见类型求解策略已知三角函数解析式求单调区间(1)将函数化简为“一角一函数”的形式,如y=A sin(ωx+φ)+b(A>0,ω>0);(2)利用整体思想,视“ωx+φ”为一个整体,根据y=sin x的单调区间列不等式求解.对于y=A cos(ωx+φ),y=A tan(ωx+φ),可以利用类似方法求解.注意求函数y=A sin(ωx+φ)+b的单调区间时要先看A和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.已知三角函数的单调性求参数(1)求出原函数的相应单调区间,由已知区间是求出的单调区间的子集,列不等式(组)求解.(2)由所给区间求出“ωx+φ”的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.角度3三角函数的奇偶性与对称性例5(1)[2022全国卷甲]将函数f(x)=sin(ωx+π3)(ω>0)的图象向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是(C)A.16B.14C.13D.12解析记曲线C的函数解析式为g(x),则g(x)=sin[ω(x+π2)+π3]=sin[ωx+(π2ω+π3)].因为函数g(x)的图象关于y轴对称,所以π2ω+π3=kπ+π2(k∈Z),得ω=2k+13(k∈Z).因为ω>0,所以ωmin=13.故选C.(2)[2022新高考卷Ⅰ]记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T <π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=(A)A.1B.32C.52D.3解析因为2π3<T<π,所以2π3<2π<π,解得2<ω<3.因为y=f(x)的图象关于点(3π2,2)中心对称,所以b=2,且sin(3π2ω+π4)+b=2,即sin(3π2ω+π4)=0,所以3π2ω+π4=kπ(k∈Z),又2<ω<3,所以13π4<3π2ω+π4<19π4,所以3π2ω+π4=4π,解得ω=52,所以f(x)=sin(52x+π4)+2,所以f(π2)=sin(52×π2+π4)+2=sin3π2+2=1.故选A.方法技巧1.三角函数图象的对称轴和对称中心的求解方法:对于函数f(x)=A sin(ωx+φ)(ω≠0),令ωx+φ=kπ+π2,k∈Z,求出对称轴方程;令ωx+φ=kπ,k∈Z,求出对称中心的横坐标(纵坐标为0).对于y=A cos(ωx+φ),y=A tan(ωx+φ),可以利用类似方法求解(注意y=A tan(ωx+φ)的图象无对称轴).说明选择题可以通过验证f(x0)的值进行判断,即f(x0)=±A⇔x=x0是函数f(x)图象的对称轴方程;f(x0)=0⇔点(x0,0)是函数f(x)图象的对称中心.2.三角函数中奇函数一般可化为y=A sinωx或y=A tanωx的形式,而偶函数一般可化为y =A cosωx+b的形式.训练3(1)[2023全国卷乙]已知函数f(x)=sin(ωx+φ)在区间(π6,2π3)单调递增,直线x=π6和x=2π3为函数y=f(x)的图象的两条相邻对称轴,则f(-5π12)=(D)A. B.-12 C.12解析由题意得12×2π||=2π3-π6=π2,解得|ω|=2,易知x=π6是f(x)的最小值点.若ω=2,则π6×2+φ=-π2+2kπ(k∈Z),得φ=-5π6+2kπ(k∈Z),于是f(x)=sin(2x-6π5+2kπ)=sin(2x-5π6),f(-5π12)=sin(-5π12×2-5π6)=sin(-5π3)=sinπ3=ω=-2,则π6×(-2)+φ=-π2+2kπ(k∈Z),得φ=-π6+2kπ(k∈Z),于是f(x)=sin(-2x-π6+2kπ)=sin(-2x-π6)=sin(2x-56π),所以f(-5π12)故选D.(2)在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x+π6),④y=tan(2x-π4)中,最小正周期为π的所有函数为(A)A.①②③B.①③④C.②④D.①③解析对于①,y=cos|2x|=cos2x,其最小正周期为2π2=π;对于②,y=|cos x|的最小正周期为π;对于③,y=cos(2x+π6)的最小正周期为2π2=π;对于④,y=tan(2x-π4)的最小正周期为π2.所以最小正周期为π的所有函数为①②③.(3)函数f(x)=3sin(2x-π3+φ)+1,φ∈(0,π),且f(x)为偶函数,则φ=5π6,f(x)图象的对称中心为(π4+χ2,1),k∈Z.解析∵f(x)=3sin(2x-π3+φ)+1为偶函数,∴-π3+φ=kπ+π2,k∈Z,即φ=5π6+kπ,k∈Z.又φ∈(0,π),∴φ=5π6,∴f(x)=3sin(2x+π2)+1=3cos2x+1.由2x=π2+kπ,k∈Z,得x=π4+χ2,k∈Z,∴f(x)图象的对称中心为(π4+χ2,1),k∈Z.1.[命题点2/2023福建模拟]若对任意x∈R都有f(sin x)=-cos2x+cos2x+2sin x-3,则f(x)的值域为[-4,0].解析易知f(sin x)=2sin2x-1+1-sin2x+2sin x-3=sin2x+2sin x-3,所以f(x)=x2+2x-3(-1≤x≤1),曲线y=x2+2x-3的对称轴为直线x=-1,所以函数f(x)在区间[-1,1]上单调递增,所以f(-1)≤f(x)≤f(1),即-4≤f(x)≤0,所以f(x)的值域为[-4,0].2.[命题点2/2023潍坊市高三统考]已知函数f(x)=3sin x+4cos x,且f(x)≤f(θ)对任意x∈R恒成立,若角θ的终边经过点P(4,m),则m=3.解析因为f(x)=3sin x+4cos x=5sin(x+φ),其中cosφ=35,sinφ=45,则sin(θ+φ)=1,所以θ+φ=π2+2kπ(k∈Z),所以θ=π2-φ+2kπ(k∈Z),所以sinθ=sin(π2-φ)=cosφ=35,同理cosθ=45,所以tanθ=4=sin cos=34,所以m=3.3.[命题点3角度1/多选/2023福建省福州市联考]如图所示,一个质点在半径为2的圆O上以点P为起始点,沿逆时针方向运动,每3s转一圈.该质点到x轴的距离关于时间t的函数记为f(t).下列说法正确的是(AC)A.f(t)=|2sin(2π3t-π4)|B.f(t)=2sin(2π3t-π4)C.f(t)的最小正周期为32D.f(t)的最小正周期为3解析由题可知,质点的角速度为2π3rad/s,因为点P为起始点,沿逆时针方向运动,设经过t s之后所成角为φ,则φ=2π3-π4,根据任意角的三角函数定义有y P=2sin(2π3-π4),所以该质点到x轴的距离为f(t)=|2sin(2π3t-π4)|,故A正确,B错误;因为f(t)=|2sin(2π3t-π4)|,所以f(t)的最小正周期为π2π3=32,故C正确,D错误.故选AC.4.[命题点3/多选/2023河北名校联考]已知函数f(x)=2sin(ωx+π4)+b(ω>0)的最小正周期T满足π2<T<3π2,且P(-π8,1)是f(x)图象的一个对称中心,则(AC)A.ω=2B.f(x)的值域是[-2,2]C.直线x=π8是f(x)图象的一条对称轴D.f(x+π4)是偶函数解析对于A,因为P(-π8,1)是函数f(x)图象的一个对称中心,所以-π8ω+π4=kπ(k∈Z),且b=1,得ω=2-8k(k∈Z).又π2<T<3π2,且ω>0,即π2<2π<3π2,所以43<ω<4,所以ω=2,故A正确.对于B,由对A的分析得f(x)=2sin(2x+π4)+1,因为-1≤sin(2x+π4)≤1,所以f(x)∈[-1,3],故B不正确.对于C,解法一由2x+π4=kπ+π2(k∈Z),得x=χ2+π8(k∈Z),当k=0时,x=π8,所以直线x=π8是函数f(x)图象的一条对称轴,故C正确.解法二将x=π8代入f(x),可得f(π8)=3(f(x)的最大值),所以直线x=π8是f(x)图象的一条对称轴,故C正确.对于D,因为f(x+π4)=2sin[2(x+π4)+π4]+1=2sin(2x+π2+π4)+1=2cos(2x+π4)+1,显然该函数不是偶函数,故D不正确.综上所述,选AC.学生用书·练习帮P2961.函数f(x)=tan(2x+π4)的定义域为(C)A.{x|x≠kπ+π2,k∈Z}B.{x|x≠2kπ+π2,k∈Z}C.{x|x≠χ2+π8,k∈Z}D.{x|x≠kπ+π8,k∈Z}解析由2x+π4≠kπ+π2,k∈Z,得2x≠kπ+π4,k∈Z,∴x≠χ2+π8,k∈Z,∴函数y=tan(2x+π4)的定义域为{x|x≠χ2+π8,k∈Z}.2.[2023天津新华中学统练]下列函数中,最小正周期为π的奇函数是(D)A.y=sin(2x+π2)B.y=tan2xC.y=2sin(π-x)D.y=tan(x+π)解析对于函数y=sin(2x+π2)=cos2x,最小正周期为π,是偶函数,排除A;对于函数y=tan2x,最小正周期为π2,是奇函数,排除B;对于函数y=2sin(π-x)=2sin x,最小正周期为2π,是奇函数,排除C;对于函数y=tan(π+x)=tan x,最小正周期为π,是奇函数,故选D.3.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是(A)A.f(x)=|cos2x|B.f(x)=|sin2x|C.f(x)=cos|x|D.f(x)=sin|x|解析A中,函数f(x)=|cos2x|的最小正周期为π2,当x∈(π4,π2)时,2x∈(π2,π),函数f(x)单调递增,故A正确;B中,函数f(x)=|sin2x|的最小正周期为π2,当x∈(π4,π2)时,2x∈(π2,π),函数f(x)单调递减,故B不正确;C中,函数f(x)=cos|x|=cos x的最小正周期为2π,故C不正确;D中,f(x)=sin|x|=sin,≥0,由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个-sin,<0,定义域上f(x)不是周期函数,故D不正确.故选A.4.已知函数f(x)=sin(ωx+θ)+3cos(ωx+θ)(θ∈[-π2,π2])是偶函数,则θ的值为(B)A.0B.π6C.π4D.π3解析由已知可得f(x)=2sin(ωx+θ+π3),若函数为偶函数,则必有θ+π3=kπ+π2(k∈Z),又由于θ∈[-π2,π2],故有θ+π3=π2,解得θ=π6,经代入检验符合题意.故选B.5.[2023江西月考]已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2)的两个相邻的零点为-13,23,则f(x)的图象的一条对称轴方程是(B)A.x=-16B.x=-56C.x=13D.x=23解析设f(x)的最小正周期为T,则2=23-(-13)=1,得T=2π=2,所以ω=π,又因为-π3+φ=kπ(k∈Z),且0<φ<π2,所以φ=π3,则f(x)=sin(πx+π3),由πx+π3=kπ+π2(k∈Z),解得x=k+16(k∈Z),取k=-1,得一条对称轴方程为x=-56.6.已知函数f(x)=-2tan(2x+φ)(0<φ<π2)的图象的一个对称中心是点(π12,0),则该函数的一个单调递减区间是(D)A.(-5π6,π6)B.(-π6,π3)C.(-π3,π6)D.(-5π12,π12)解析因为函数f(x)=-2tan(2x+φ)的图象的一个对称中心是点(π12,0),所以2×π12+φ=χ2,k∈Z,解得φ=χ2-π6,k∈Z.又0<φ<π2,所以φ=π3,所以f(x)=-2tan(2x+π3).令-π2+kπ<2x+π3<π2+kπ,k∈Z,解得-5π12+χ2<x<π12+χ2,k∈Z,所以函数f(x)的单调递减区间为(-5π12+χ2,π12+χ2),k∈Z.当k=0时,得f(x)的一个单调递减区间为(-5π12,π12).7.[全国卷Ⅰ]设函数f(x)=cos(ωx+π6)在[-π,π]的图象大致如图,则f(x)的最小正周期为(C)A.10π9B.7π6C.4π3D.3π2解析解法一由题图知,f(-4π9)=0,∴-4π9ω+π6=π2+kπ(k∈Z),解得ω=-3+94(k∈Z).设f(x)的最小正周期为T,易知T<2π<2T,∴2π||<2π<4π||,∴1<|ω|<2,当且仅当k=-1时,符合题意,此时ω=32,∴T=2π=4π3.故选C.解法二由题图知,f(-4π9)=0且f(-π)<0,f(0)>0,∴-4π9ω+π6=-π2(ω>0),解得ω=32,经验证符合题意,∴f(x)的最小正周期T=2π=4π3.故选C.8.[2024安徽铜陵模拟]已知函数f(x)=a sin4x+cos4x的图象关于直线x=π12对称,则f(π24)=(A)A.3 C.-12 D.-1解析由题设f(x)=2+1sin(4x+φ)(a≠0)且tanφ=1,又函数图象关于直线x=π12对称,所以π3+φ=π2+kπ,k∈Z⇒φ=π6+kπ,k∈Z,则tanφ=tan(π6+kπ)=tanπ6=1⇒a=3,综上,f(x)=3sin4x+cos4x=2sin(4x+π6),故f(π24)=2sinπ3=3.故选A.9.[多选/2023江苏南京模拟]已知x1,x2是函数f(x)=2sin(ωx-π6)(ω>0)的两个不同零点,且|x1-x2|的最小值是π2,则下列说法正确的是(ABD)A.函数f(x)在[0,π3]上单调递增B.函数f(x)的图象关于直线x=-π6对称C.函数f(x)的图象关于点(π,0)中心对称D.当x∈[π2,π]时,函数f(x)的值域是[-2,1]解析由题意可知,最小正周期T=2π=π,所以ω=2,f(x)=2sin(2x-π6).对于选项A,当x∈[0,π3]时,2x-π6∈[-π6,π2],所以f(x)在[0,π3]上单调递增,故A正确;对于选项B,f(-π6)=2sin[2×(-π6)-π6]=2sin(-π2)=-2,所以f(x)的图象关于直线x =-π6对称,故B正确;对于选项C,f(π)=2sin(2π-π6)=-1≠0,所以f(x)的图象不关于点(π,0)中心对称,故C错误;对于选项D,当x∈[π2,π]时,2x-π6∈[5π6,11π6],sin(2x-π6)∈[-1,12],f(x)∈[-2,1],故D正确.故选ABD.10.定义运算a*b为:a*b=(≤p,(>p,例如,1*2=1,则函数f(x)=sin x*cos x的值域为[-1,22].解析f(x)=sin x*cos x,当x∈[π+2kπ,5π4+2kπ],k∈Z,这时sin x≥cos x,所以f(x)=cos x,这时函数的值域为[-1;当x∈[-3π4+2kπ,π4+2kπ],k∈Z,这时sin x≤cos x,所以f(x)=sin x,这时函数的值域为[-1综上,函数的值域为[-1 11.[2023上海松江二中模拟]若函数y=sin(πx-π6)在[0,m]上单调递增,则m的最大值为23.解析由x∈[0,m],知πx-π6∈[-π6,mπ-π6],因为函数在[0,m]上单调递增,所以-π6<mπ-π6≤π2,即0<m≤23,所以m的最大值为23.12.[2024安徽合肥一中模拟]已知函数f(x)=sin x cos x-3cos2x(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-π6,π4]上的值域.解析(1)因为f(x)=sin x cos x-3cos2x=12sin2x=12sin2x-2x=sin(2x-π3),所以函数f(x)的最小正周期为T=2π2=π.由2kπ+π2≤2x-π3≤2kπ+3π2(k∈Z)可得kπ+5π12≤x≤kπ+11π12(k∈Z),所以函数f(x)的单调递减区间为[kπ+5π12,kπ+11π12](k∈Z).(2)当-π6≤x≤π4时,-2π3≤2x-π3≤π6,则-1≤sin(2x-π3)≤12,因此,函数f(x)在区间[-π6,π4]上的值域为[-1,12].13.设函数f(x)=2cos(12x-π3),若对于任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为(C)A.π2B.πC.2πD.4π解析函数f(x)=2cos(12x-π3),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2),则f(x1)是函数的最小值,f(x2)是函数的最大值,|x1-x2|的最小值就是函数的半个周期,故2=12×2π12=2π,故选C.14.[2023湘潭模拟]若函数f(x)=cos2x+sin(2x+π6)在(0,α)上恰有2个零点,则α的取值范围为(B)A.[5π6,4π3)B.(5π6,4π3]C.[5π3,8π3)D.(5π3,8π3]解析由题意得,函数f(x)=cos2x+sin(2x+π6)=3sin(2x+π3),因为0<x<α,所以π3<2x+π3<2α+π3,又由f(x)在(0,α)上恰有2个零点,可得2π<2α+π3≤3π,解得5π6<α≤4π3,所以α的取值范围为(5π6,4π3].15.[2023福建龙岩模拟]已知函数f(x)=2|sin x|+cos x,则f(x)的最小值为(C)A.-5B.-2C.-1D.0解析解法一f(x)=2|sin x|+cos x,分别作出y=2|sin x|(图1)与y=cos x (图2)的部分图象,如图所示.图1图2从图中可以看出,当x=π时,两个函数同时取得最小值,此时f(π)=2|sinπ|+cosπ=-1最小.解法二因为f(-x)=2|sin(-x)|+cos(-x)=2|sin x|+cos x=f(x),所以f(x)=2|sin x|+cos x为偶函数,又f(x+2π)=2|sin(x+2π)|+cos(x+2π)=2|sin x|+cos x=f(x),所以f(x)的一个周期为2π.当x∈[0,π]时,f(x)=2sin x+cos x,f'(x)=2cos x-sin x,令f'(x)=0,则tan x=2,故存在x0∈(0,π2),使得f'(x0)=0,当x∈[0,x0)时,f'(x)>0,f(x)单调递增;当x∈(x0,π]时,f'(x)<0,f(x)单调递减,又f(0)=1,f(π)=-1,结合f(x)为偶函数,周期为2π,作出f(x)=2|sin x|+cos x的图象如图,由图可知,函数的最小值为-1.故选C.16.[多选/2022新高考卷Ⅱ]已知函数f(x)=sin(2x+φ)(0<φ<π)的图象关于点(2π3,0)中心对称,则(AD)A.f(x)在区间(0,5π12)单调递减B.f(x)在区间(-π12,11π12)有两个极值点C.直线x=7π是曲线y=f(x)的对称轴D.直线y x是曲线y=f(x)的切线解析因为函数f(x)的图象关于点(2π3,0)中心对称,所以sin(2×2π3+φ)=0,可得4π3+φ=kπ(k∈Z),结合0<φ<π,得φ=2π3,所以f(x)=sin(2x+2π3).对于A,解法一由2kπ+π2≤2x+2π3≤2kπ+3π2(k∈Z),得kπ-π12≤x≤kπ+5π12(k∈Z);当k =0时,-π12≤x≤5π12.因为(0,5π12)⊆(-π12,5π12),所以函数f(x)在区间(0,5π12)单调递减,故A正确.解法二当x∈(0,5π12)时,2x+2π3∈(2π3,3π2),所以函数f(x)在区间(0,5π12)单调递减,故A正确.对于B,解法一由2x+2π3=kπ+π2(k∈Z),得x=χ2-π12(k∈Z),当k=0时,x=-π12;当k=1时,x=5π12;当k=2时,x=11π12.所以函数f(x)在区间(-π12,11π12)只有一个极值点,故B不正确.解法二当x∈(-π12,11π12)时,2x+2π3∈(π2,5π2),所以函数f(x)在区间(-π12,11π12)只有一个极值点,故B不正确.对于C,解法一由选项B解法一的分析知,函数f(x)图象的对称轴方程为x=χ2-π12(k∈Z),而方程χ2-π12=7π6(k∈Z)无解,故C不正确.解法二因为f(7π6)=sin(2×7π6+2π3)=sin3π=0,所以x=7π6不是曲线y=f(x)的对称轴,故C不正确.对于D,因为f'(x)=2cos(2x+2π3),若直线y x为曲线y=f(x)的切线,则由2cos(2x+2π3)=-1,得2x+2π3=2kπ+2π3或2x+2π3=2kπ+4π(k∈Z),所以x=kπ或x=kπ+π3(k∈Z).当x=kπ(k∈Z)时,f(x)kπ(k∈Z),解得k=0;当x=kπ+π3(k∈Z)时,f(x)kπ-π3(k∈Z)无解.综上所述,直线y x为曲线y=f(x)的切线,故D正确.综上所述,选AD.17.[条件创新]已知函数f(x)=2sinωx(ω>0)在区间[-3π4,π4]上单调递增,且直线y=-2与函数f(x)的图象在[-2π,0]上有且仅有一个交点,则实数ω的取值范围是[14,23].解析易知f(x)的图象关于点(0,0)对称,则由函数f(x)在[-3π4,π4]上单调递增可得4≥3π4(T为f(x)的最小正周期),即2π4≥3π4,结合ω>0,解得0<ω≤23.因为直线y=-2与函数f(x)的图象在[-2π,0]×2π≤2π,×2π>2π,解得14≤ω<54.综上,ω∈[14,23].18.[2023湖北省部分重点中学联考]已知函数f(x)=4sin2(π4+2)sin x+(cos x+sin x)·(cos x-sin x)-1.(1)求f(x)的解析式及其图象的对称中心;(2)若函数g(x)=12[f(2x)+af(x)-af(π2-x)-a]-1在区间[-π4,π2]上的最大值为2,求实数a的值.解析(1)f(x)=2[1-cos(π2+x)]·sin x+cos2x-sin2x-1=sin x·(2+2sin x)+1-2sin2x-1=2sin x.对称中心为(kπ,0),k∈Z.(2)g(x)=sin2x+a sin x-a cos x-2-1,令sin x-cos x=t,则sin2x=1-t2,(小技巧:函数式中既含正余弦的和或差(sin x-cos x或sin x+cos x),又含二者的乘积(即sin x·cos x),可令sin x-cos x=t或sin x+cos x=t,然后转化为关于t的二次函数求最值)∴y=1-t2+at-2-1=-(t-2)2+2 4-2.∵t=sin x-cos x=2sin(x-π4),x∈[-π4,π2],∴x-π4∈[-π2,π4],∴-2≤t≤1.①当2<-2,即a <-22时,y max =-(-2-2)2+24-2=-2a -2-2.令-2a -2-2=2,解得a .②当-2≤2≤1,即-22≤a ≤2时,y max =24-2,令24-2=2,解得a =-2或a =4(舍去).③当2>1,即a >2时,y max =-(1-2)2+24-2=2-1,由2-1=2,得a =6.综上,a =-2或6.19.[条件创新/多选]已知函数f (x )=cos (2x +φ)(|φ|<π2),F (x )=f (x )+'(x )为奇函数,则下述四个结论正确的是(BC )A.tan φ=3B.若f (x )在[-a ,a ]上存在零点,则a 的最小值为π6C.F (x )在(π4,3π4)上单调递增D.f (x )在(0,π2)上有且仅有一个极大值点解析由f (x )=cos (2x +φ),得f '(x )=-2sin (2x +φ),则F (x )=f (x )+'(x )=cos (2x +φ)-3sin (2x +φ)=-2sin (2x +φ-π6).因为F (x )为奇函数,所以φ-π6=k π(k ∈Z ),所以φ=k π+π6(k ∈Z ).因为|φ|<π2,所以φ=π6.对于A ,由以上可得tan φA 错误;对于B ,令f (x )=cos (2x +π6)=0,得2x +π6=k π+π2(k ∈Z ),则x =χ2+π6(k ∈Z ),即函数f (x )的零点为x =χ2+π6(k ∈Z ),且该函数零点的绝对值的最小值为π6,所以a 的最小值为π6,故B 正确;对于C ,F (x )=-2sin 2x ,当x ∈(π4,3π4)时,2x ∈(π2,3π2),此时函数F (x )单调递增,故C 正确;对于D ,函数f (x )=cos (2x +π6),令2x +π6=2k π(k ∈Z ),得x =k π-π12(k ∈Z ),所以函数f (x )在(0,π2)上无极大值点,故D 错误.。
高三一轮(理) 3.3 三角函数的图象和性质【教学目标】1.能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。
【重点难点】1。
教学重点:函数y=sin x,y=cos x,y=tan x的图象和性质; 2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】了解理解掌握函数y=sin x,y=cos x,y=tan x的图象和性质√[考纲传真] 1。
能画出y=sin x,y=cos x,y=tan x的图象,了解函数的周期性 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间错误!内的单调性。
真题再现学生通过对高考真题的解决,发现自己对知识的掌握情况。
通过对考纲的解读和分析.让学生明确考试要求,做到有的放矢2.【2014上海】 函数 的最小正周期是________ 【解析】由题意13.(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎢⎡⎦⎥⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎪⎫π2=f ⎝⎛⎭⎪⎪⎫2π3=-f ⎝ ⎛⎭⎪⎪⎫π6,则f (x )的最小正周期为________.典例 (1)(2015·四川)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A.y =cos ⎝⎛⎭⎪⎪⎫2x +π2B.y =sin ⎝⎛⎭⎪⎪⎫2x +π2C.y =sin 2x +cos 2xD.y =sin x +cos x学生通过对高考真题的解决,感受高考题的考察视角。
(2)(2015·课标全国Ⅰ)函数f (x )=cos(ωx +φ)的部分图象 如图所示,则f (x )的单调递减区间为()A.⎝⎛⎭⎪⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎪⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎪⎪⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎪⎫2k -14,2k +34,k ∈Z .故选D.∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,解析 (1)选项A中,y =cos ⎝⎛⎭⎪⎪⎫2x +π2=-sin 2x ,符合题意.6.(2016高考新课标1)已知函数为的零点,为 图像的对称轴, 且在单调,则的最大值为( )数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.知识点3 三角函数的图象和性质y=sin x y=cos x y=tan xR R x≠kπ+错误!,k [-1,1][-1,1]R增区间:错误!,减区间:错误!增区间:[2kπ-π,2kπ],减区间:[2kπ,2kπ+π],递增区间kπ-错误!,kπ+∈Z奇函数偶函数奇函数(kπ,0),k ∈Z 错误!,k∈Zkπ2,0,k∈Z在解题中注意引导学生自主分析和解决问题,教师及时和解题效率.学必求其心得,业必贵于专精。
高中三角函数公式高中三角函数公式三角函数是数学中非常重要的一类函数,它们常常被应用于各类科学计算和工程技术中。
高中数学中的三角函数主要包括正弦函数、余弦函数和正切函数。
下面我们将介绍这些函数的基本定义、性质和主要公式。
1. 正弦函数正弦函数是一种以周期为2π 的正弦曲线为图像的函数。
它的定义如下:y = sin x其中,x 为自变量,y 为因变量。
正弦函数的定义域为实数集 R,值域为 [-1,1]。
正弦函数的主要性质如下:(1)奇偶性:sin(-x) = -sinx,sin(x+π) = -sinx,sin(x+2π) = sinx。
所以,正弦函数是奇函数。
(2)周期性:sin(x+mπ) = sinx,其中 m 是整数。
所以,正弦函数是周期函数。
(3)对称性:sin(π/2-x) = cosx,sin(π/2+x) = cosx。
(4)求导公式:sin'x = cosx。
(5)积分公式:∫sinxdx = -cosx + C2. 余弦函数余弦函数是一种以周期为2π 的余弦曲线为图像的函数。
它的定义如下:y = cos x余弦函数的定义域为实数集 R,值域为 [-1,1]。
余弦函数的主要性质如下:(1)奇偶性:cos(-x) = cosx,cos(x+π) = -cosx,cos(x+2π) = cosx。
所以,余弦函数是偶函数。
(2)周期性:cos(x+mπ) = cosx,其中 m 是整数。
所以,余弦函数是周期函数。
(3)对称性:cos(π/2-x) = sinx,cos(π/2+x) = -sinx。
(4)求导公式:cos'x = -sinx。
(5)积分公式:∫cosxdx = sinx + C3. 正切函数正切函数是一种以周期为π 的正切曲线为图像的函数。
它的定义如下:y = tan x正切函数的定义域为一切使得 tanx 有意义的实数,即x ≠ (k+1/2)π,其中 k 是整数。
数学中的三角函数正弦余弦与正切的应用在数学中,三角函数是一种基础的数学工具,常用于解决与角度和三角形相关的问题。
其中,正弦、余弦和正切是三角函数中最常见且广泛应用的三种。
它们在几何、物理、工程等领域中起到了重要的作用。
本文将介绍三角函数正弦、余弦和正切的定义、性质以及其在各个领域中的具体应用。
一、正弦函数的定义与性质在三角函数中,正弦函数(sin)是最基本且常见的函数之一。
它的定义如下:定义1:对于任意实数x,正弦函数sin(x)的值等于以x为角度的弧所对应的直角三角形中,斜边的长度与斜边所在直角的邻边的比值。
正弦函数的性质如下:性质1:正弦函数的周期为2π(或360°)。
即sin(x+2π) = sin(x),对于任意实数x。
性质2:正弦函数的取值范围为[-1,1]。
即-1≤ sin(x) ≤1,对于任意实数x。
正弦函数在几何、物理等领域中有许多应用。
1. 几何中的应用正弦函数在解决几何问题中起到了重要的作用,尤其是在三角形中。
其中,正弦定理是一项基于正弦函数的重要几何定理。
它可以用于计算三角形的边长或角度。
利用正弦函数,可以得到正弦定理的数学表达式如下:对于任意三角形ABC,边长分别为a, b, c,对应的角度分别为A, B, C,那么有:sin(A)/a = sin(B)/b = sin(C)/c根据这个定理,我们可以根据已知的两个边与它们夹角的关系,求解未知边长或角度。
2. 物理中的应用正弦函数在物理学中的应用非常广泛。
例如,振动和波动等现象均可以通过正弦函数进行描述和分析。
在简谐振动中,物体以正弦函数的形式来回振动。
振动的幅度、频率以及相位差等都可以通过正弦函数来表示。
在波动中,正弦函数也被广泛应用。
例如,声波、光波等均可以表示为正弦函数的形式。
通过正弦函数可以描述波的振幅、频率、波长等特征。
3. 工程中的应用正弦函数在工程领域中也有很多应用。
例如,在电工学中,交流电信号可以表示为正弦函数。
)ππk kpppxsin sin xp))x注意:正切函数在开区间(),22k k k Z p p p p æö-++Îç÷èø内都是增函数。
但要注意在整个定义域上不具有单调性。
(三)解题方法指导 函数函数 正弦函数正弦函数余弦函数余弦函数正切函数正切函数图象图象 定义域定义域 值域值域 周期周期 奇偶性奇偶性单调性单调性 增区间增区间减区间减区间 增区间增区间减区间减区间 增区间增区间减区间减区间 对称性对称性对称轴对称轴对称中心对称中心 对称轴对称轴对称中心对称中心 对称轴对称轴对称中心对称中心例1.用五点法画出函数)3πsin(+=x y 草图,并求出函数的周期,单调区间,对称轴,对称中心.草图,并求出函数的周期,单调区间,对称轴,对称中心.例2.求函数)6π2sin(2+=xy 在区间[0,2p ]上的值域.上的值域.例3.求下列函数的值域.求下列函数的值域. (1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ).例4.求函数xxy cos 3sin 1--=的值域.的值域.三角函数图象几何性质xOyx =x1x =x 2x 4邻中心|x 3-x 4|= T /2邻渐近线|x 1-x 2|=T 无穷对称中心:由y =0或y 无意义确定x 3无对称轴任意一条y 轴的垂线与正切函数图象都相交,且相邻两交点的距离为一个周期!tan()y A x w j =+三角函数图象几何性质xOy x =x1x =x 2x 4邻中心|x 3-x 4|=T /2邻轴|x 1-x 2|=T /2无穷对称中心:由y =0确定无穷对称轴:由y =A 或-A 确定x 34T 邻中心轴相距sin()y A x w j =+3π+x0 2ππ2π3 2πx 3π- 6π 3π2 6π7 3π5 y0 1 0 -1 0 ,),6ππZ Î+k ),π7)sin()].2)]2,2].2].这是数形结合解题的一个典型问题. 这是数形结合解题的一个典型问题.。
高中数学正弦、余弦、正切函数的图象及其主要性质
一、正弦函数的图象与性质
1、正弦函数图象的作法:
(1)描点法:关键是选定一个周期,把这个周期分成四等份,根据三个分点及两个端点所对应的函数值确定出的点,确定函数图象的大致形状;
(2)几何法:一般是用三角函数线来作出图象。
注意:①的图象叫正弦曲线;②作图象时自变量要用弧度制;③在对精确度要求不太高时,作的图象一般使用“五点法”。
2、正弦函数的性质
(1)定义域为,值域为;
(2)周期性:正弦函数具有周期性,这可由诱导公式来推导,其最小正周期是。
函数
的最小正周期是;
(3)奇偶性:奇函数;
(4)单调性:在每一个闭区间,上为增函数,在每一个闭区间,上为减函数。
3、周期函数
函数周期性的定义:对于函数y=,如果存在一个非零常数,使得当取定义域内的每一个值时,都有,那么函数y=就叫做周期函数,非零常数叫做这个函数的周期。
如果在周期函数的所有周期中存在一个最小的正数,那么这个最小的正数就叫做函数y=的最小正周期。
4、关于函数的图象和性质
(1)函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为其函数的半个周期;
(2)函数图象与x轴的交点是其对称中心,相邻的两个对称中心间的距离也是函数的半个周期;
(3)函数取最值的点与其相邻的与x轴的交点间的距离为函数的个周期。
5、正弦型图象的变换方法
(1)先平移后伸缩
的图象
的图象
的图象
的图象
的图象。
(2)先伸缩后平移
的图象
的图象
的图象
的图象
的图象。
二、余弦函数、正切函数的图象与性质
1、余弦函数的图象和性质
(1)由函数可知,用平移变换法可以得到余弦函数的图象,也可以使用“五点法”得到,同时还要学会用这两种方法画出函数的图象。
(2)余弦函数的性质可类比正弦函数的性质得到。
2、正切函数与正、余弦函数的比较
(1)正切函数的定义域不是全体实数,这与正、余弦函数的定义域为全体实数有着较大的差别;
(2)正、余弦函数是有界函数,而正切函数是无界函数;
(3)正、余弦函数是连续函数,反映在图象上是连续无间断的点;而正切函数在定义域上不连续,它有无数条渐近线(垂直于x轴的直
线),其图象被这些渐近线分割开来;
(4)正、余弦函数的图象既是中心对称图形(对称中心分别为
),又是轴对称图形(对称轴分别为
);而正切函数的图象只是中心对称图形,其对称中心为;
(5)正、余弦函数既有单调递增区间,又有单调递减区间;而正
切函数只有单调递增区间,即正切函数,在每一个区间上都是单调递增函数。
三、已知三角函数值求角
已知角的一个三角函数值求角,所得的角不一定只有一个,角的个数要根据角的取值范围来确定。
例1:已知sin(q+p)>0,cos(q-p)>0,则下列不等关系中必定成立的是______。
A. tan<>
B. tan>cot
C. sin<>
D. sin>cos
分析:由正弦、余弦函数图象可以确定出的取值范围,进而可
求。
求出的范围后,也可以根据正弦、余弦、正切、余切函数图象的特点比较大小。
解答:由已知得 -sin q>0且 -cos q>0,即sin q<>和cos q<>同时成立,
则2k p+p q<>k p+,kÎZ,于是k p+k p+,kÎZ,此时必有tan<>,
-1<><>,即tan<>,所以答案为A。
例2:求下列函数的最小正周期。
(1);
(2);
(3)。
分析:利用函数周期性的定义和最小正周期的概念来解题。
,的最小正周期是;的最小正周期是。
解答:(1)
,最小正周期。
(2)
,最小正周期。
(3)
,最小正周期。
例3:求函数
的值域。
分析:解此题的关键是统一函数的名,然后利用换元法将其视为
二次函数求解。
在做题时,有时会出现形如y=a sin2x+b cos x+c型的函数,其实质同本例的情况一样,特点是式中同时含有sin x与cos x,且其中一个是二次,另一个是一次,处理方法是先应用sin2x+cos2x=1对原式进行变形,使函数式只含有一种三角函数,再应用换元法,将其转化成二次函数来求解。
即设,先化为二次函数,再求其在闭区间上的最值。
解答:原式化为。
令,则
,由二次函数图象可知,当时,;当时,。
故所求函数的值域为。
例4:试判断下列各函数的奇偶性。
(1)(2)
分析:函数具有奇偶性,则其定义域在数轴上关于原点对称,所以判定函数的奇偶性时,应首先判断函数的定义域是否关于原点对称。
在解答这道题时,也可以先化简再判断奇偶性,但在化简的过程中需要注意等价性,否则就可能会出错。
解答:⑴定义域为,k∈Z,
且有
,
所以函数为偶函数。
⑵定义域为R,且有
,所以函数是奇函数。
例5:已知函数=A sin(w x+j)+k (其中A>0,w>0,0j<>p)一个周期的图象上有最高点(,3)和最低点(,-5),则=。
分析:根据已知所给的点的信息可列出两个方程,再由正弦型函数的图象特点,结合图象变换的规律可求解出各个变量的值。
题目中给出的最高点与最低点确定了振幅A与竖直方向的平移量k,这是本题的突破口。
求的一般方法是找到一个已知点,然后将其坐标代入即可。
但当已知点不是最高点或最低点时,要特别注意应由该点所在区间的单调性来确定的取值。
解答:由已知可得k=-1,A=4,函数的最小正周期T有=,则T=p,
=p,w=2,并有2´+j=,解得j =,所以
=4sin(2x+)-1。
例6:如何变换的图象可得到函数的图象?
分析:应先通过诱导公式将其转化为同名三角函数。
无论哪种变
换都是针对字母而言的。
例如将的图象向左平移个单位长度得到的函数图象的解析式是,而不是,把
的图象的横坐标缩小为原来的,得到的函数图象的解析式是而不是。
解答:
,
在中以代替,有。
根据题意,有,得。
所以将的图象向左平移个单位长度可得到函数
的图象。
例7:(1)直线(a为常数)与正切曲线
相交的相邻两点间的距离是。
(2)设函数,若对任意,都有
成立,则的最小值是。
(3)为了使函数在区间上至少出现50次最大值,则的最小值是。
分析:对于一些没有直接指出三角函数最小正周期的问题,解题的关键是正确理解题意,通过运用数形结合的方法,准确找出隐含的最小正周期的个数,将问题化归为我们熟悉的正弦函数、余弦函数及正切函数的最小正周期问题加以解决。
因此,正确理解题意,进行等价转化是解题的关键。
函数
、
的最小正周期公式是,函数
的最小正周期公式。
结合图形进行分析,对正确理解题意有着至关重要的作用。
解答:(1)由正切曲线的图象可知,直线(a为常数)与正切曲线
相交的相邻两点间的距离恰好就是函数的最小正周期,为。
(2)由正弦曲线的图象可知,、分别是函数的最小值、最大值,的最小值就是相邻两点间
最小值、最大值横坐标之间的距离,等于函数的个周期,故
的最小值。
(3)∵函数在区间上至少出现50次最大值,∴在区间上至少含有个周期。
∴,得,故的最小值是。
例8:求函数
的值域并指出它的单调递增区间。
分析:根据三角函数的周期性可知只需对自变量区间[0,2p]上的函数性质加以研究即可,再由反三角函数的性质可知应按自变量Î[0,],[,p],[p,],[,2p]四种不同的情形来求解。
本题综合考查了三角函数与反三角函数的定义域、值域、单调性问题。
值得注意的是虽然,,但两个式子中自变量的取值范围却不同。
解答:
,所以,是以2p为周期的周期函数。
若,则,
若,则,
;
若,则,,
;
若,则,。
函数
的图象如图所示,所以函数的值域是,它在上严格单调递增,在
上严格单调递减。