π + ,∈Z 求x 的范围,该范围就是不等式的解集.当 ω<0 时,先利
用诱导公式将 x 的系数变为正值,再进行上述步骤.
【变式训练 5】 求函数 y= tan + 1 + lg(1 − tan )的定义域
.
tan + 1 ≥ 0,
解:由题意得
即-1≤tan x<1.
1-tan > 0,
故函数的单调递增区间为
- , +
3 18 3
18
π
π
3x− ≠kπ+ (∈
3
2
即函数的定义域为 ≠
递减区间.
(∈Z),不存在单调
反思求函数y=Atan(ωx+φ),A≠0,ω>0的定义域和单调区间,可以通
过解不等式的方法去解答:把“ωx+φ(ω>0)”看作一个整体,借助正切
函数的定义域和单调区间来解决.若ω<0,则先利用诱导公式将x的
首先观察α,β是否在正切函数的同一个单调区间,若是,则直接运
用正切函数的单调性比较大小;若不是,则先利用诱导公式,将角α,β
π π
转化到正切函数的同一单调区间内,通常是转化到区间 - , 再运
内,
2 2
用正切函数的单调性比较大小.
19π
23π
与 tan
的大小.
7
8
19π
2π
2π
解:tan
= tan 3π= −tan ,
π
π
(2)由 T= , 得6π= , ∴
||
||
1
答案:(1)3π (2)±
6
1
-
3
π
+