正切函数的定义与性质
- 格式:docx
- 大小:36.93 KB
- 文档页数:2
三角函数正弦余弦正切的定义与性质三角函数是数学中的重要概念之一。
其中,正弦函数、余弦函数和正切函数是最为常见和常用的三角函数。
本文将对正弦函数、余弦函数和正切函数的定义与性质进行详细介绍。
一、正弦函数的定义与性质1. 正弦函数的定义正弦函数(Sine Function)是一个周期函数,可以表示为y = sin(x),其中x为自变量,y为函数值。
正弦函数的定义域为全体实数,值域为[-1,1]。
2. 正弦函数的性质正弦函数有以下几个重要的性质:(1)对称性:正弦函数关于原点对称,即sin(-x) = -sin(x)。
(2)周期性:正弦函数的周期为2π,即sin(x+2π) = sin(x)。
(3)奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x)。
(4)单调性:在一个周期内,正弦函数是先递增后递减的,且在[0,π]上为递增函数,在[π,2π]上为递减函数。
二、余弦函数的定义与性质1. 余弦函数的定义余弦函数(Cosine Function)也是一个周期函数,可以表示为y = cos(x),其中x为自变量,y为函数值。
余弦函数的定义域为全体实数,值域为[-1,1]。
2. 余弦函数的性质余弦函数有以下几个重要的性质:(1)对称性:余弦函数关于y轴对称,即cos(-x) = cos(x)。
(2)周期性:余弦函数的周期为2π,即cos(x+2π) = cos(x)。
(3)奇偶性:余弦函数是偶函数,即cos(-x) = cos(x)。
(4)单调性:在一个周期内,余弦函数在[0,π/2]上为递减函数,在[π/2,2π]上为递增函数。
三、正切函数的定义与性质1. 正切函数的定义正切函数(Tangent Function)可以表示为y = tan(x),其中x为自变量,y为函数值。
正切函数的定义域为全体实数,但在其周期的特殊点(如π/2)处无定义。
2. 正切函数的性质正切函数有以下几个重要的性质:(1)周期性:正切函数的周期为π,即tan(x+π) = tan(x)。
知识讲解_正切函数的性质和图象_基础正切函数是三角函数中的一种,常用符号为tan,表示一个角的正切值。
在数学中,正切函数具有许多重要的性质和图像,下面将对其进行详细介绍。
1.定义:正切函数的定义是:对于一个角θ,它的正切值tanθ等于角的对边与邻边的比值,即tanθ=opposite/adjacent。
2.周期性:正切函数具有周期性,即tan(θ+π)=tanθ,其中π是圆周率。
这意味着正切函数的图像在每个周期内重复出现,以直线y=tanθ为对称轴。
3.定义域和值域:正切函数的定义域是所有实数,除了使分母为零的角度。
当角度为90°的倍数时,分母为零,正切函数无定义。
正切函数的值域是所有实数,即从负无穷到正无穷。
4.奇偶性:正切函数是一个奇函数,即tan(-θ)=-tanθ。
这意味着正切函数的图像关于原点对称。
5.渐近线:正切函数有两条渐近线,分别为x=π/2+kπ和x=-π/2+kπ,其中k是整数。
当θ接近这些值时,tanθ的值趋向于正无穷或负无穷。
6.零点:正切函数有无数个零点,即tanθ=0。
这些零点出现在角度为kπ时,其中k是整数。
7.图像变换:对于正切函数的图像,可以通过平移、缩放和反转等变换得到。
例如,将y=tanθ的图像向右平移π/4个单位,得到y=tan(θ-π/4)的图像;将y=tanθ的图像进行垂直缩放,得到y=a*tanθ的图像,其中a 是一个常数。
8.切线斜率:正切函数在每个周期内都有无穷多个切线,切线的斜率是tanθ。
这意味着切线的斜率在整个图像上是连续变化的。
9.函数图像:正切函数的图像是一个周期为π的波浪线。
在每个周期内,图像从负无穷逐渐上升到正无穷,然后再从正无穷逐渐下降到负无穷。
图像在每个周期内有一个零点,并且在每个周期的中点有一个峰值和一个谷值。
总结起来,正切函数是一个周期性的、奇函数,定义域为所有实数,值域为所有实数。
它具有两条渐近线,有无数个零点,图像是一个波浪线,切线的斜率等于函数值。
三角函数正弦余弦正切三角函数是数学中的重要概念,包括正弦、余弦和正切。
它们在数学、物理和工程等领域有广泛的应用。
本文将对三角函数的定义、性质和应用进行详细论述。
一、正弦函数正弦函数是三角函数中的一种,表示为sin(x),其中x为角度。
正弦函数的定义域是实数集,值域为[-1, 1]。
正弦函数具有以下性质:1. 周期性:正弦函数是周期函数,其最小正周期是2π,即sin(x) = sin(x+2πk),其中k为整数。
2. 对称性:正弦函数是奇函数,即sin(-x) = -sin(x),表示在原点处关于y轴对称。
3. 奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x),表示在原点处关于原点对称。
4. 单调性:在定义域内,正弦函数在每个周期内都是单调递增或单调递减的。
5. 正弦函数的图像是一个周期为2π的连续波形,以y轴为中心对称。
正弦函数在几何、物理、电路等领域有广泛的应用,如波动、振动、交流电等的描述和计算中都会用到。
二、余弦函数余弦函数是三角函数中的另一种,表示为cos(x),其中x为角度。
余弦函数的定义域是实数集,值域为[-1, 1]。
余弦函数具有以下性质:1. 周期性:余弦函数是周期函数,其最小正周期是2π,即cos(x) = cos(x+2πk),其中k为整数。
2. 对称性:余弦函数是偶函数,即cos(-x) = cos(x),表示在原点处关于y轴对称。
3. 奇偶性:余弦函数是偶函数,即cos(-x) = cos(x),表示在原点处关于原点对称。
4. 单调性:在定义域内,余弦函数在每个周期内都是单调递减的。
5. 余弦函数的图像是一个周期为2π的连续波形,以y轴为中心对称。
余弦函数在几何、物理、信号处理等领域有广泛的应用,如描述分析力学中的运动规律、计算交流电路中的电流和电压等。
三、正切函数正切函数是三角函数中的另一种,表示为tan(x),其中x为角度。
正切函数的定义域是实数集,值域为整个实数集。
正切函数的性质及其应用正切函数是三角函数中的一种,表示一个角的正切值。
在数学和物理学中,正切函数具有一些重要的性质,并且在各种应用中扮演着关键角色。
本文将探讨正切函数的性质以及一些常见的应用。
一、正切函数的定义和图像特点正切函数的定义公式为:tan(x) = sin(x) / cos(x),其中x为角度或弧度。
根据定义,我们可以得出正切函数的几个图像特点。
1. 定义域和值域:正切函数的定义域是所有实数除去所有使得cos(x) = 0的点,通常写作D: x ≠ (2n + 1) * π / 2,其中n为整数。
值域是整个实数集,记作R。
2. 周期性:正切函数的图像在一个周期内呈周期性变化。
周期为π,即tan(x) = tan(x + kπ),其中k为整数。
3. 奇函数性质:正切函数具有奇函数性质,即满足tan(-x) = -tan(x),这是由于sin(-x) = -sin(x),cos(-x) = cos(x)。
4. 渐近线:正切函数在x = (n + 1/2) * π,其中n为整数时,有垂直渐近线。
在x = n * π,其中n为整数时,有水平渐近线。
基于这些性质,我们可以画出正切函数的图像。
图像在每个周期内呈现周期性的上升与下降,同时存在垂直和水平渐近线。
二、正切函数的应用正切函数在各个领域有着广泛的应用。
以下是一些常见的应用示例:1. 三角测量:正切函数在三角测量中扮演着重要的角色。
例如,在测量一个目标物体的高度时,可以利用正切函数来计算角度并得到正确的高度值。
2. 电工学:在电路分析中,正切函数可以用来计算交流电路中电压和电流的相位差。
相位差是指两个波形之间的时间延迟,正切函数可以帮助我们解决相关的计算问题。
3. 工程学:在工程学中,正切函数经常用于解决角度和距离的计算问题。
例如,在建筑工程中,可以利用正切函数来计算楼梯的坡度和斜面的角度。
4. 自然科学:正切函数在自然科学中也有着广泛的应用。
三角函数正切与余切的定义三角函数是数学中非常重要的一类函数,其中正切函数和余切函数在解决三角形相关问题以及在物理、工程等领域中有广泛的应用。
在这篇文章中,我们将探讨正切和余切函数的定义及其性质。
一、正切函数的定义正切函数是指以单位圆上的一点为端点所得到的射线与x轴的正切值。
设角A为一个锐角,点P(x,y)为单位圆上的一点,其中点P与x轴的夹角为A。
则正切函数tanA定义为tanA=y/x。
在直角三角形中,角A的角度为θ,则tanθ可以表示为对边与邻边的比值,即tanθ=opposite/adjacent。
二、余切函数的定义余切函数是指以单位圆上的一点为端点所得到的射线与x轴的余切值。
同样设角A为一个锐角,点P(x,y)为单位圆上的一点,其中点P与x轴的夹角为A。
则余切函数cotA定义为cotA=x/y。
在直角三角形中,角A的角度为θ,则cotθ可以表示为邻边与对边的比值,即cotθ=adjacent/opposite。
三、正切和余切函数的性质1. 定义域和值域正切函数和余切函数的定义域为所有实数,除了使分母为零的点,因为在这些点上,函数无定义。
正切函数的值域为所有实数,而余切函数的值域也是所有实数。
正切函数和余切函数的值可以是正无穷、负无穷或任意实数。
2. 周期性正切函数和余切函数均具有周期性。
正切函数的周期为π,即tan(θ+π)=tanθ。
余切函数的周期也为π,即cot(θ+π)=cotθ。
3. 奇偶性正切函数是奇函数,即tan(-θ)=-tanθ,而余切函数是奇函数,即cot(-θ)=-cotθ。
这意味着对于正切函数和余切函数,如果角度取负,函数值的符号会改变。
4. 关系式正切函数和余切函数之间存在着一种关系,即tanθ=1/cotθ,cotθ=1/tanθ。
这可以通过函数定义推导得出。
5. 图像特点当角度增大时,正切函数和余切函数都会体现出图像上升或下降的趋势。
正切函数的图像曲线在每个周期内交替地上升和下降,且在θ=π/2的点上有一个正无穷的间断点。
三角函数的定义和性质三角函数是数学中重要的概念,在解决几何问题、物理问题以及工程问题等领域起着重要的作用。
本文将介绍三角函数的定义以及一些基本性质。
一、正弦函数的定义和性质正弦函数是最基本的三角函数之一,它的定义如下:在单位圆上,从点(1, 0) 开始,逆时针方向旋转一个角度θ 后,点的坐标为 (x, y),则 y 轴上的坐标值 y 称为角度θ 的正弦值,记作sinθ,即sinθ = y。
正弦函数具有以下性质:1. 正弦函数的定义域为实数集,值域为[-1,1]。
2. 正弦函数具有周期性,即sin(θ+2πn) = sinθ,其中 n 为整数。
3. 正弦函数在 0°、90°、180°、270°和 360°处的值分别为 0、1、0、-1 和 0。
二、余弦函数的定义和性质余弦函数是三角函数中另一个重要的函数,它的定义如下:在单位圆上,从点(1, 0) 开始,逆时针方向旋转一个角度θ 后,点的坐标为 (x, y),则 x 轴上的坐标值 x 称为角度θ 的余弦值,记作cosθ,即cosθ = x。
余弦函数具有以下性质:1. 余弦函数的定义域为实数集,值域为[-1,1]。
2. 余弦函数具有周期性,即cos(θ+2πn) = cosθ,其中 n 为整数。
3. 余弦函数在 0°、90°、180°、270°和 360°处的值分别为 1、0、-1、0 和 1。
三、正切函数的定义和性质正切函数是定义在单位圆外的三角函数,它的定义如下:正切函数的值等于正弦函数值除以余弦函数值,即tanθ = sinθ/cosθ。
正切函数具有以下性质:1. 正切函数的定义域为实数集,值域为整个实数集。
2. 正切函数具有周期性,即tan(θ+πn) = tanθ,其中 n 为整数。
3. 正切函数在 0°、180°和 360°处的值为 0,不存在 90°和 270°处的值。
正切函数的性质和计算正切函数(tangent function)是数学中常见的三角函数之一,它的定义域为所有实数,值域为负无穷到正无穷。
在本文中,我们将探讨正切函数的性质以及如何进行计算。
一、正切函数的性质1. 周期性:正切函数的图像以原点为对称中心,每个周期长度为π。
即对于任意实数x,有tan(x + π) = tan(x)。
2. 奇偶性:正切函数是一个奇函数,即tan(-x) = -tan(x)。
这意味着正切函数的图像关于原点对称。
3. 渐近线:正切函数有两条渐近线,即y = π/2 + kπ和y = -π/2 + kπ,其中k为整数。
这两条线是正切函数的图像无法触及的边界。
4. 零点:正切函数的零点是指函数取值为0的点。
正切函数的零点出现在每个周期的中点,即x = kπ,其中k为整数。
5. 增减性:正切函数在每个周期内都是单调递增或单调递减的。
在相邻的两个零点之间,正切函数递增;而在两个零点之外,正切函数递减。
二、正切函数的计算正切函数的计算可以通过计算机或计算器进行,也可以使用数学公式进行近似计算。
以下是两种常用的计算方法:1. 计算器方法:现代科学计算器已经内置了正切函数的计算功能。
我们可以直接输入角度值,然后按下“tan”或“tangent”按钮即可得到正切值。
2. 数学公式方法:如果没有计算器或希望手动进行计算,可以使用正切函数的定义公式进行近似计算。
正切函数的定义为tan(x) =sin(x)/cos(x),其中sin(x)表示正弦函数,cos(x)表示余弦函数。
举例来说,如果要计算tan(45°),可以首先计算sin(45°)和cos(45°),然后将两者相除得到结果。
在这个例子中,sin(45°) = 0.7071,cos(45°) = 0.7071,所以tan(45°) = 0.7071/0.7071 = 1。
需要注意的是,正切函数在某些特殊角度的计算可能会出现无定义或无穷的情况。
第1课时 正切函数的定义 正切函数的图像与性质[核心必知]1.正切函数(1)定义:如果角α满足:α∈R ,α≠π2+k π(k ∈Z ),那么,角α的终边与单位圆交于点P (a ,b ),唯一确定比值b a .根据函数的定义,比值b a是角α的函数,我们把它叫作角α的正切函数,记作y =tan_α,其中α∈R ,α≠π2+k π,k ∈Z .(2)与正弦、余弦函数的关系:sin xcos x=tan_x .(3)三角函数:正弦、余弦、正切都是以角为自变量,以比值为函数值的函数,它们统称为三角函数.(4)正切值在各象限内的符号如图. 2.正切线单位圆与x 轴正半轴交于点A ,过点A 作x 轴的垂线AT ,与角α的终边或其反向延长线交于点T .则称线段AT 为角α的正切线.当角α的终边在y 轴上时,角α的正切线不存在.3续表[问题思考]1.你能描述正切曲线的特征吗?提示:正切曲线是被互相平行的直线x =k π+π2(k ∈Z )所隔开的无穷多支曲线组成的,是间断的,它没有对称轴,只有对称中心.2.正切曲线在整个定义域上都是增加的吗?提示:不是.正切函数定义域是{x |x ≠k π+π2,k ∈Z },正切曲线在每一个开区间(k π-π2,k π+π2)(k ∈Z )上是增加的,它是周期函数,但在整个定义域上不是增加的.3.函数y =|tan x |的周期是π2吗?提示:不是.y =|tan x |的周期仍为π.讲一讲1.已知tan α=2,利用三角函数的定义求sin α和cos α. [尝试解答] 在α的终边上取一点P (a ,2a )且a ≠0, 则有x =a ,y =2a ,r =a 2+4a 2=5|a |. ∵tan α=2>0,∴α在第一象限或第三象限. 当α在第一象限时,a >0,则r =5a . ∴sin α=y r=2a 5a=255,cos α=x r =a 5a =55. 当α在第三象限时,a <0,则r =-5a . ∴sin α=y r =2a -5a =-255,cos α=x r =a -5a =-55.1.若P (x ,y )是角α终边上任一点,则sin α=y r ,cos α=x r ,tan α=y x(x ≠0),其中r =x 2+y 2.2.当角α的终边上的点的坐标以参数形式给出时,要根据问题的实际情况及解题的需要对参数进行分类讨论.练一练1.角α的终边经过点P (-b ,4)且cos α=-35,求tan α的值.解:由已知可知点P 在第二象限,∴b >0. ∵cos α=-35,∴-b b 2+16=-35,解得b =3,tan α=-43.讲一讲2.画出函数y =|tan x |的图像,并根据图像写出使y ≤1的x 的集合. [尝试解答] ∵y =|tan x |=⎩⎪⎨⎪⎧tan x , k π≤x <k π+π2,(k ∈Z ),-tan x , k π-π2<x <k π,(k ∈Z ),画出其图像,如图所示实线部分.由图像可知x 的集合为{x |k π-π4≤x ≤k π+π4,k ∈Z }.1.三点两线画图法“三点”是指⎝ ⎛⎭⎪⎫-π4,-1,(0,0),⎝ ⎛⎭⎪⎫π4,1;“两线”是指x =-π2和x =π2.在三点、两线确定的情况下,类似于五点法作图,可大致画出正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的简图,然后向右、向左扩展即可得到正切曲线.2.如果由y =f (x )的图像得到y =f (|x |)及y =|f (x )|的图像,可利用图像中的对称变换法完成;即只需作出y =f (x )(x ≥0)的图像,令其关于y 轴对称便可以得到y =f (|x |)(x ≤0)的图像;同理只要作出y =f (x )的图像,令图像“上不动下翻上”便可得到y =|f (x )|的图像.3.利用函数的图像可直观地研究函数的性质,如判断奇偶性、周期性、解三角不等式等. 练一练2.[多维思考] 根据讲2中函数y =|tan x |的图像,讨论该函数的性质. 解:(1)定义域:{x |x ∈R ,x ≠π2+k π,k ∈Z }.(2)值域:[0,+∞).(3)周期性:是周期函数,最小正周期为π. (4)奇偶性:图像关于y 轴对称,函数是偶函数. (5)单调性:在每一个区间(-π2+k π,k π](k ∈Z )上是减少的,在每一个区间⎣⎢⎡⎭⎪⎫k π,π2+k π(k ∈Z )上是增加的.(6)对称性:对称轴x =k π2,k ∈Z .讲一讲3.(1)求函数y =tan ⎝ ⎛⎭⎪⎫12x -π4的单调区间.(2)比较tan 21π4与tan 17π5的大小.[尝试解答] (1)∵y =tan x ,在⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z )上是增加的,∴-π2+k π<12x -π4<π2+k π,k ∈Z .∴2k π-π2<x <2k π+3π2,k ∈Z ,即函数y =tan ⎝ ⎛⎭⎪⎫12x -π4的单调递增区间是⎝ ⎛-π2+2k π,⎭⎪⎫3π2+2k π(k ∈Z ). (2)tan 21π4=tan ⎝ ⎛⎭⎪⎫π4+5π=tan π4, tan 17π5=tan ⎝ ⎛⎭⎪⎫3π+2π5=tan 2π5.又∵函数y =tan x 在(0,π2)内单调递增,而0<π4<2π5<π2,∴tan π4<tan 2π5,即tan 21π4<tan 17π5.1.正切函数在每一个单调区间内都是增加的,在整个定义域内不是增加的,另外正切函数不存在减区间.2.对于函数y =A tan(ωx +φ)(A ,ω,φ是常数)的单调区间问题,可先由诱导公式把x 的系数化为正值,再利用“整体代换”思想,求得x 的范围即可.3.比较两个正切函数值的大小,要先利用正切函数的周期性将正切值化为区间⎝ ⎛⎭⎪⎫-π2,π2内两角的正切值,再利用正切函数的单调性比较大小.练一练3.函数f (x )=tan(2x -π3)的单调递增区间为________.解析:由k π-π2<2x -π3<k π+π2(k ∈Z ),得k ×π2-π12<x <k ×π2+512π(k ∈Z ),所以函数的单调递增区间为(k π2-π12,k π2+5π12)(k ∈Z ). 答案:(k π2-π12,k π2+5π12)(k ∈Z )求函数y =11-tan x 的定义域.[错解] 由1-tan x ≠0得tan x ≠1, 解得x ≠k π+π4,k ∈Z ,∴函数的定义域为{x |x ≠k π+π4,k ∈Z }.[错因] 求函数的定义域不仅考虑使函数式有意义,还得考虑正切函数本身固有的x ≠k π+π2,k ∈Z 这一条 件.上面的解法只考虑了1-tan x ≠0,而没有考虑x ≠k π+π2,k ∈Z ,因而是错误的.[正解] 由⎩⎪⎨⎪⎧1-tan x ≠0,x ≠k π+π2,k ∈Z , 得x ≠k π+π4且x ≠k π+π2,k ∈Z .∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π4且x ≠k π+π2,k ∈Z .1.函数y =tan(x +π)是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数 解析:选A ∵y =tan(x +π)=tan x . ∴此函数是奇函数.2.函数y =tan(x +π4)的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π4B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π-π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π4,k ∈Z解析:选 D 由x +π4≠k π+π2,k ∈Z 得,x ≠k π+π4,k ∈Z ,∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π4,k ∈Z .3.已知角α的终边上一点P (-2,1),则tan α=( ) A.12 B .2 C .-2 D .-12解析:选D tan α=y x =1-2=-12. 4.函数y =tan x ,x ∈⎣⎢⎡⎦⎥⎤0,π4的值域是________.解析:∵函数y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上为增加的, ∴0≤tan x ≤1. 答案:[0,1]5.比较大小:tan 2________tan 9. 解析:∵tan 9=tan(-2π+9), 而π2<2<-2π+9<π,且y =tan x 在(π2,π)内是增加的.∴tan 2<tan(-2π+9), 即tan 2<tan 9. 答案: <6.利用正切函数的图像作出y =tan x +|tan x |的图像,并判断此函数的周期性. 解:∵当x ∈(k π-π2,k π]时,y =tan x ≤0,当x ∈(k π,k π+π2)时,y =tan x >0,∴y =tan x +|tan x |=⎩⎪⎨⎪⎧0,x ∈(k π-π2,k π],k ∈Z ,2tan x ,x ∈(k π,k π+π2),∈Z .图像如图所示.由y =tan x +|tan x |的图像可知,它是周期函数,周期为π.一、选择题1.已知θ是第二象限角,则( ) A .tan θ2>0 B .tan θ2<0C .tan θ2≤0D .tan θ2的符号不确定解析:选A ∵θ是第二象限角, ∴θ2是第一或第三象限角, ∴tan θ2>0.2.函数y =2tan(2x -π4)的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R 且x ≠k π-π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R 且x ≠k π2+3π8,k ∈ZC.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R 且x ≠k π+3π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ∈R 且x ≠k π2+π8,k ∈Z 解析:选B 由2x -π4≠k π+π2,k ∈Z ,解得x ≠k π2+3π8,k ∈Z . 3.函数y =tan(sin x )的值域是( ) A.⎣⎢⎡⎦⎥⎤-π4,π4 B.⎣⎢⎡⎦⎥⎤-22,22C .[-tan 1,tan 1]D .[-1,1] 解析:选C ∵-1≤sin x ≤1, ∴-π2<-1≤sin x ≤1<π2.∵y =tan x 在(-π2,π2)上是增加的.∴y ∈[-tan 1,tan 1]. 4.函数f (x )=sin x|cos x |在区间[-π,π]内的大致图像是下列图中的( )解析:选C f (x )=sin x|cos x |=⎩⎪⎨⎪⎧tan x ,cos x >0-tan x ,cos x <0 =⎩⎪⎨⎪⎧tan x ,-π2<x <π2,-tan x ,-π≤x <-π2或π2<x ≤π.二、填空题5.若tan x ≥-3,则x 的取值范围是________. 解析:作出y =tan x ,x ∈⎝ ⎛⎭⎪⎫-π2,π2的图像,如图所示. 令y =-3,得x =-π3,∴在(-π2,π2)中满足不等式tan x ≥-3的x 的取值范围为⎣⎢⎡⎭⎪⎫-π3,π2. 由正切函数周期性,可知:原不等式的解集为⎣⎢⎡⎭⎪⎫k π-π3,k π+π2(k ∈Z ).答案:⎣⎢⎡⎭⎪⎫k π-π3,k π+π2(k ∈Z )6.函数y =lg(tan x )的单调增区间是________. 解析:函数y =lg(tan x )有意义,则tan x >0, ∴函数的增区间为(k π,k π+π2)(k ∈Z ).答案:⎝⎛⎭⎪⎫k π,k π+π2(k ∈Z ) 7.函数y =sin x 与y =tan x 的图像在⎝ ⎛⎭⎪⎫-π2,π2上交点个数是________.解析:在x ∈⎝ ⎛⎭⎪⎫0,π2时,tan x >sin x ,x ∈⎝ ⎛⎭⎪⎫-π2,0时,tan x <sin x ,所以y =sin x 与y=tan x 在⎝ ⎛⎭⎪⎫-π2,π2上只有一个交点(0,0).答案:18.已知函数y =2tan ⎝ ⎛⎭⎪⎫π6-12x ,则函数的对称中心是________. 解析:y =2tan ⎝ ⎛⎭⎪⎫π6-12x =-2tan ⎝ ⎛⎭⎪⎫12x -π6.∵y =tan x 的对称中心为⎝⎛⎭⎪⎫k π2,0, ∴令12x -π6=k π2,得x =k π+π3,k ∈Z .∴y =2tan ⎝ ⎛⎭⎪⎫π6-12x 的对称中心为⎝ ⎛⎭⎪⎫k π+π3,0,k ∈Z .答案:⎝ ⎛⎭⎪⎫k π+π3,0(k ∈Z ) 三、解答题9.已知f (x )=a sin x +b tan x +1,f (-2π5)=7, 求f (2 012π5). 解:设g (x )=a sin x +b tan x ,因为sin x 与tan x 都是奇函数,所以g (-x )=-g (x ),即g (-x )+g (x )=0,故f (-x )+f (x )=g (-x )+1+g (x )+1=2,又易得f ⎝ ⎛⎭⎪⎫2 012π5=f ⎝ ⎛⎭⎪⎫402π+2π5=f ⎝ ⎛⎭⎪⎫2π5,∵f ⎝ ⎛⎭⎪⎫2π5+f ⎝ ⎛⎭⎪⎫-2π5=2,且f ⎝ ⎛⎭⎪⎫-2π5=7, ∴f ⎝ ⎛⎭⎪⎫2 012π5=f ⎝ ⎛⎭⎪⎫2π5=-5. 10.已知函数f (x )=x 2+2x tan θ-1,x ∈[-1, 3 ],其中θ∈⎝ ⎛⎭⎪⎫-π2,π2. (1)当θ=-π6时,求函数f (x )的最大值与最小值; (2)求θ的取值范围,使y =f (x )在区间[-1, 3 ]上是单调函数.解:(1)当θ=-π6时, f (x )=x 2-233x -1=⎝ ⎛⎭⎪⎫x -332-43,x ∈[-1, 3 ]. ∴当x =33时,f (x )的最小值为-43; 当x =-1时,f (x )的最大值为233. (2)函数f (x )=(x +tan θ)2-1-tan 2θ的图像的对称轴为x =-tan θ.∵y =f (x )在区间[-1,3]上是单调函数,∴-tan θ≤-1或-tan θ≥3, 即tan θ≥1或tan θ≤- 3. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2, ∴θ的取值范围是⎝ ⎛⎦⎥⎤-π2,-π3∪⎣⎢⎡⎭⎪⎫π4,π2 .。
正切函数与余切函数的像与性质正切函数和余切函数是在三角函数中常见的两种函数,它们在数学和物理学中有着广泛的应用。
本文将探讨正切函数和余切函数的像与性质,帮助读者更好地理解和应用这两个函数。
一、正切函数的像与性质正切函数是指在数学中用tan表示的函数,其定义域为全体实数除去所有使得tanθ不存在的θ(例如,θ=π/2+kπ,其中k为整数)。
考虑正切函数的特性,它的值域为全体实数。
在平面直角坐标系中,正切函数可以用直线y=tanθ表示,其中θ为直线与x轴的夹角。
从几何的角度来看,当θ接近零时,tanθ接近零;当θ接近π/2时,tanθ趋近于正无穷;当θ接近π时,tanθ趋近于零;当θ接近3π/2时,tanθ趋近于负无穷。
这表明正切函数具有周期性和渐进性的特点。
除此之外,正切函数还满足一些重要的性质,如对称性、奇偶性和有界性。
具体地说,正切函数是奇函数,即tan(-θ)=-tanθ;在定义域内范围为(-π/2,π/2)的区间上,它关于y轴对称。
此外,对于正切函数的有界性,我们可以发现当θ接近π/2或-π/2时,tanθ的绝对值会趋近于无穷大。
因此,正切函数在这两个端点是不连续的,这是我们需要注意的重要性质。
二、余切函数的像与性质余切函数是指在数学中用cot表示的函数,其定义域为全体实数除去所有使得cotθ不存在的θ(例如,θ=kπ,其中k为整数)。
与正切函数类似,余切函数的值域也为全体实数。
在几何上,余切函数可以用直线y=cotθ表示,其中θ为直线与x轴的夹角。
从几何的角度看,当θ接近零时,cotθ趋近于正无穷;当θ接近π/2或-π/2时,cotθ接近零;当θ接近π时,cotθ趋近于负无穷;当θ接近3π/2时,cotθ趋近于零。
与正切函数相似,余切函数也具有周期性和渐进性的特点。
与正切函数类似,余切函数也具有对称性和奇偶性。
具体地说,余切函数是奇函数,即cot(-θ)=-cotθ;在定义域内范围为(0,π)的区间上,它关于x轴对称。
数学中的三角函数正弦余弦与正切的应用在数学中,三角函数是一种基础的数学工具,常用于解决与角度和三角形相关的问题。
其中,正弦、余弦和正切是三角函数中最常见且广泛应用的三种。
它们在几何、物理、工程等领域中起到了重要的作用。
本文将介绍三角函数正弦、余弦和正切的定义、性质以及其在各个领域中的具体应用。
一、正弦函数的定义与性质在三角函数中,正弦函数(sin)是最基本且常见的函数之一。
它的定义如下:定义1:对于任意实数x,正弦函数sin(x)的值等于以x为角度的弧所对应的直角三角形中,斜边的长度与斜边所在直角的邻边的比值。
正弦函数的性质如下:性质1:正弦函数的周期为2π(或360°)。
即sin(x+2π) = sin(x),对于任意实数x。
性质2:正弦函数的取值范围为[-1,1]。
即-1≤ sin(x) ≤1,对于任意实数x。
正弦函数在几何、物理等领域中有许多应用。
1. 几何中的应用正弦函数在解决几何问题中起到了重要的作用,尤其是在三角形中。
其中,正弦定理是一项基于正弦函数的重要几何定理。
它可以用于计算三角形的边长或角度。
利用正弦函数,可以得到正弦定理的数学表达式如下:对于任意三角形ABC,边长分别为a, b, c,对应的角度分别为A, B, C,那么有:sin(A)/a = sin(B)/b = sin(C)/c根据这个定理,我们可以根据已知的两个边与它们夹角的关系,求解未知边长或角度。
2. 物理中的应用正弦函数在物理学中的应用非常广泛。
例如,振动和波动等现象均可以通过正弦函数进行描述和分析。
在简谐振动中,物体以正弦函数的形式来回振动。
振动的幅度、频率以及相位差等都可以通过正弦函数来表示。
在波动中,正弦函数也被广泛应用。
例如,声波、光波等均可以表示为正弦函数的形式。
通过正弦函数可以描述波的振幅、频率、波长等特征。
3. 工程中的应用正弦函数在工程领域中也有很多应用。
例如,在电工学中,交流电信号可以表示为正弦函数。
正切函数的定义和性质正切函数是我们在学习三角函数的时候比较重要的一种函数。
正切函数的定义为$f(x)=\tan x=\frac{\sin x}{\cos x}$。
在此,我们来探讨一下正切函数的一些重要性质。
一、定义域和值域正切函数的定义域为$\{x\in R|x\neq k\pi+\frac{\pi}{2}(k\in Z)\}$,即$x$不等于$\frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{2}$等数。
因为在这些点上,$\cos x$为$0$,而$\tan x$无意义。
正切函数的值域为$R$。
因为当$x$接近$\frac{\pi}{2}$或$-\frac{\pi}{2}$时,$\tan x$的值会趋近于$+\infty$或$-\infty$,而在其他的点上,$\tan x$可以取到任意实数。
二、奇偶性正切函数是一个奇函数,即满足$f(-x)=-f(x)$。
我们可以通过$f(x)=\frac{\sin x}{\cos x}$来证明这个性质。
当$x$变为$-x$时,$\sin x$和$\cos x$的符号都会改变,因此$\frac{\sin (-x)}{\cos (-x)}=-\frac{\sin x}{\cos x}$,即$f(-x)=-f(x)$。
三、周期性正切函数具有周期性,即$f(x+\pi)=f(x)$。
我们同样可以通过$f(x)=\frac{\sin x}{\cos x}$来证明这个性质。
当$x$增加$\pi$时,$\sin x$和$\cos x$的符号都会变化,因此$\frac{\sin(x+\pi)}{\cos(x+\pi)}=-\frac{\sin x}{\cos x}$。
但是由于$\frac{\sin x}{\cos x}=\tan x$,$\frac{\sin(x+\pi)}{\cos(x+\pi)}=\tan (x+\pi)$,因此$f(x+\pi)=f(x)$。
一、教学目标:1. 让学生理解正切函数的定义,掌握正切函数的性质和图象。
2. 培养学生运用正切函数解决实际问题的能力。
3. 引导学生通过观察、分析、归纳等方法,探索正切函数的性质和图象。
二、教学内容:1. 正切函数的定义:正切函数是直角三角形中,对边与邻边的比值,用符号tan 表示。
2. 正切函数的性质:(1)正切函数是周期函数,周期为π。
(2)正切函数是奇函数,即f(-x)=-f(x)。
(3)正切函数在区间(-π/2, π/2)上单调递增。
(4)正切函数的图象是一条连续的曲线。
3. 正切函数的图象:正切函数的图象是一条从第二象限到第四象限的曲线,经过点(π/4, 1)和(-π/4, -1)。
三、教学重点与难点:1. 教学重点:正切函数的定义、性质和图象。
2. 教学难点:正切函数的性质和图象的深入理解与应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过观察、分析、归纳等方法,探索正切函数的性质和图象。
2. 利用多媒体课件,展示正切函数的图象,帮助学生直观地理解正切函数的性质。
3. 结合具体的例子,引导学生运用正切函数解决实际问题。
五、教学步骤:1. 引入:通过讲解正切函数的定义,引导学生理解正切函数的概念。
2. 探索正切函数的性质:让学生观察正切函数的图象,引导学生发现正切函数的周期性、奇偶性和单调性。
4. 应用正切函数解决实际问题:给出具体的例子,引导学生运用正切函数解决实际问题。
六、教学评估:1. 课堂练习:设计一些有关正切函数性质和图象的练习题,让学生在课堂上完成,以检验他们对知识的掌握程度。
2. 课后作业:布置一些有关正切函数的应用题,让学生课后思考和解答,以巩固所学知识。
3. 小组讨论:组织学生进行小组讨论,让他们分享自己在学习正切函数性质和图象过程中的心得体会,以培养他们的合作能力和交流能力。
七、教学反思:在课后,对本次教学进行反思,分析学生在学习正切函数性质和图象过程中遇到的问题,以及自己的教学方法和策略是否得当。
正切函数的定义与性质
正切函数是数学中常见的一种三角函数,它是用来描述一个角对应的直角三角形中的斜边与底边的比值,通常用tan表示。
在数学中,正切函数有着许多独特的性质与定义。
一、正切函数的定义
正切函数可以由单位圆上的点来定义。
设点P(x,y)为单位圆上的一点,P对应的角度为θ。
则正切函数定义为tanθ=y/x,其中x和y分别代表点P在x轴和y轴上的坐标。
二、正切函数的性质
1. 周期性:正切函数是周期函数,其周期为π,即tan(θ+π)=tanθ。
2. 定义域:正切函数的定义域为所有使得分母x≠0的实数。
3. 值域:正切函数的值域是整个实数集,即tanθ∈(-∞, +∞)。
4. 对称性:正切函数是奇函数,即tan(-θ)=-tanθ。
5. 可导性:正切函数在其定义域的内部都是可导函数。
6. 零点:正切函数的零点是π的整数倍,即tan(πn)=0,其中n为整数。
7. 极限:当θ趋近于π/2或-π/2时,正切函数的值趋近于正无穷或负无穷。
三、正切函数的图像
正切函数的图像具有明显的周期性和对称性。
在定义域内,正切函数图像在x轴的点是无穷多个,称为渐近线。
正切函数图像的振荡幅度趋近于无穷大。
四、正切函数的应用
1. 在三角学中,正切函数可以用来计算角度之间的关系,如求解三角方程、求解三角函数值等。
2. 在物理学中,正切函数可以用来计算斜张除以底边的比率,如物体在斜面上的运动问题,力的分解等。
3. 在计算机图形学中,正切函数可以用来绘制圆形曲线、形变动画等。
综上所述,正切函数是一种重要的三角函数,它定义清晰,具有周期性、对称性和可导性等特点。
正切函数在数学和其他学科中有着广泛的应用,是人们研究和解决问题的有力工具。
对于学习数学的同学来说,理解正切函数的定义和性质是非常重要的一部分。