函数的最大小值
- 格式:doc
- 大小:12.13 KB
- 文档页数:1
课题:函数的最大值和最小值教学目的:⒈使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; ⒉使学生掌握用导数求函数的极值及最值的方法和步骤教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系. 教学过程:一、复习引入:1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有 ,就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有 .就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个 即一个函数的极大值未必大于极小值, (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点二、讲解新课: 1.函数的最大值和最小值观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明:⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数x x f 1)(=在),0(+∞内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⒉利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值三、讲解范例:例1、求()342+-=x x x f 在区间[]4,1-上的最大值与最小值。
第08课时-函数的最大值与最小值教学目的:使学生理解函数的最大值和最小值的概念,掌握可导函数f(x)在闭区间[a,b]上所有点(包括端点a,b处的函数中的最大(或最小)值必有的充分条件;使学生掌握用导数求函数的极值及最值的方法和步骤.教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.教学过程:一、复习1.极大(小)值:设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<(>)f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大(小)值=f(x0),x0是极大(小)值点.2.极大值与极小值统称为极值:在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.3.求可导函数f(x)的极值的步骤:二、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.最大值是f(x一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a ,b )内连续的函数f (x )不一定有最大值与最小值.如函数f (x )=x 1在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f (x )在闭区间[a ,b ]上连续,是f (x )在闭区间[a ,b ]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.三、例题选讲: 利用导数求函数的最值例1:求下列函数在相应区间上的最大值与最小值. (1) y =x 4-2x 2+5,x ∈[-2,2];(2)x x x f sin 21)(+=,x ∈]2,0[π(1)解:先求导数,得x x y 443/-=令/y =0即0443=-x x 解得1,0,1321==-=x x x导数/y 的正负以及)2(-f ,)2(f 如下表从上表知,当时,函数有最大值13,当时,函数有最小值4 .小结:利用导数求函数的最值步骤:由上面函数f (x )的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,则求f (x )在[a ,b ]上的最大值与最小值的步骤如下: (1)求f (x )在(a ,b )内的极值;(2)将f (x )的各极值与f (a )、f (b )比较得出函数f (x )在[a ,b ]上的最值.练习:求下列函数的值域:(1)]4,0[,)2()1(22∈--=x x x y ; (2)]4,2[,2122-∈-+=x x xy ;(3))10(3)(3≤≤+-=x ax x x f (a 为常数).例2:已知动点M 在抛物线y 2=2px (p >0)上,问M 在何位置时到定点P (p ,p )的距离最短.练习:动点P(x,y)是抛物线y=x2-2x-1上的点,O为原点,设S=|OP|2,求S的最小值.例3:已知x,y为正实数,且满足关系式x2-2x+4y2=0,求x⋅y 的最大值.例4:已知抛物线y= -x2+2,过其上一点P引抛物线的切线l,使l与两坐标轴在第一象限围成的三角形的面积最小,求l的方程.小结:⑴函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;⑵函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件;⑶闭区间[a,b]上的连续函数一定有最值;开区间(a,b)内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.例5:设a ∈R ,函数f (x )=x 2e 1-x -a (x -1).(1)当a =1时,求f (x )在⎝⎛⎭⎪⎪⎫34,2内的极大值; (2)设函数g (x )=f (x )+a (x -1-e 1-x ),当g (x )有两个极值点x 1,x 2(x 1<x 2)时,总有x 2g (x 1)≤λf '(x 1),求实数λ的值.(其中f '(x )是f (x )的导函数).[解] (1)当a =1时,f (x )=x 2e 1-x -(x -1),则f '(x )=(2x -x 2)e 1-x-1=(2x -x 2)-e x -1e x -1, 令h (x )=(2x -x 2)-e x -1,则h '(x )=2-2x -e x -1,显然h '(x )在⎝⎛⎭⎫34,2内是减函数,又h ′⎝⎛⎭⎫34=12-14e<0,故x ∈⎝⎛⎭⎫34,2时,总有h '(x )<0,所以h (x )在⎝⎛⎭⎫34,2内是减函数.又h (1)=0,所以当x ∈⎝⎛⎭⎫34,1时,h (x )>0,从而f '(x )>0,这时f (x )单调递增,当x ∈(1,2)时,h (x )<0,从而f '(x )<0,这时f (x )单调递减,所以f (x )在⎝⎛⎭⎫34,2内的极大值是f (1)=1.(2)由题可知g (x )=(x 2-a )e 1-x ,则g '(x )=(2x -x 2+a )e 1-x =(-x 2+2x +a )e 1-x .根据题意,方程-x 2+2x +a =0有两个不同的实根x 1,x 2(x 1<x 2), 所以Δ=4+4a >0,即a >-1,且x 1+x 2=2, 因为x 1<x 2,所以x 1<1.由x 2g (x 1)≤λf ′(x 1),其中f ′(x )=(2x -x 2)e 1-x -a ,可得(2-x 1)(x 21-a )e1-x 1≤λ[(2x 1-x 21)e 1-x 1-a ],注意到-x 21+2x 1+a =0,所以上式化为(2-x 1)(2x 1)e 1-x 1≤λ[(2x 1-x 21)e 1-x 1+(2x 1-x 21)],即不等式x 1[2e 1-x 1-λ(e 1-x 1+1)]≤0对任意的x 1∈(-∞,1)恒成立.①当x 1=0时,不等式x 1[2e 1-x 1-λ(e 1-x 1+1)]≤0恒成立,λ∈R ;②当x 1∈(0,1)时,2e 1-x 1-λ(e 1-x 1+1)≤0恒成立,即λ≥2e 1-x 1e 1-x 1+1,令函数k (x )=2e 1-x e 1-x +1=2-2e 1-x +1,显然,k (x )是R 上的减函数,所以当x ∈(0,1)时,k (x )<k (0)=2e e +1,所以λ≥2ee +1;③当x 1∈(-∞,0)时,2e 1-x 1-λ(e 1-x 1+1)≥0恒成立,即λ≤2e 1-x 1e 1-x 1+1,由②,当x ∈(-∞,0)时,k (x )>k (0)=2e e +1,所以λ≤2ee +1.综上所述,λ=2ee +1.作业布置:完成《全品》练习册P15-16完成《全品》单元测评(一)A。
函数最大值和最小值的求法
函数最大值和最小值的求法是数学中一个重要的概念,它可以帮助我们更好地理解函数的特性。
函数最大值和最小值是指函数在某一区间内的最大值或最小值。
一般来说,要求函数的最大值和最小值,可以通过求解函数的极值来实现。
极值是指函数在某一区间上取得极大值或极小值的点,这些点称为极值点。
求解函数的极值需要使用微积分的方法,具体的求解步骤是:
1. 对函数求导,并求出导函数的值;
2. 将导函数的值等于零,求出极值点;
3. 将极值点代入原函数,求出最大值和最小值。
最后,要注意的是,有时候函数可能不存在最大值和最小值,这时候就需要使用其他的方法来求解。
函数最大值和最小值的求法是一个重要的数学概念,可以帮助我们更好地理解函数的特性。
通过求解函数的极值,我们可以找到函数的最大值和最小值,但也要注意函数可能不存在最大值和最小值的情况。
中考知识点函数的最大值与最小值函数的最大值和最小值是中考数学中的一个重要知识点。
在解题过程中,我们需要运用一些方法来求解函数的最大值和最小值。
本文将介绍三种常见的方法:图像法、导数法和附加条件法,以帮助大家更好地理解和应用这一知识点。
一、图像法使用图像法求解函数的最大值和最小值,一般需要绘制函数的图像。
在中考中,我们通常采用手绘图像的方式进行计算。
下面以一个例题来说明图像法的具体步骤。
例题:已知函数$f(x)=x^2-6x+5$,求$f(x)$的最大值和最小值。
解题步骤:(1)首先,我们绘制出函数$f(x)=x^2-6x+5$的图像。
为了方便计算,我们可以计算出函数的顶点坐标。
由二次函数的性质可知,函数的顶点坐标为$(p,q)$,其中$p$的值等于二次项系数的相反数的一半,$q$的值等于函数在$p$处的取值。
可以求得顶点坐标为$p=3$,$q=-4$。
将这个顶点坐标标在函数图像上。
(2)根据图像,我们可以看出函数$f(x)$的最大值为$q=-4$,对应的$x$值为$p=3$;最小值为$q=-\infty$(无穷小),对应的$x$值为$x\to \infty$。
因此,函数$f(x)=x^2-6x+5$的最大值为$-4$,最小值为$-\infty$。
二、导数法使用导数法求解函数的最大值和最小值,可以利用函数的导数来判断函数的增减性。
下面以一个例题来说明导数法的具体步骤。
例题:已知函数$g(x)=3x^2+4x+2$,求$g(x)$的最大值和最小值。
解题步骤:(1)首先,我们需要求出函数$g(x)$的导函数$g'(x)$。
对于一次或二次函数,我们可以通过对函数的表达式进行求导来得到导函数。
对函数$g(x)$进行求导,得到$g'(x)=6x+4$。
(2)根据导数的定义,导数表示函数在某一点的变化率。
根据函数的导数可以判断函数的增减性。
当导数大于$0$时,函数递增;当导数小于$0$时,函数递减。
用函数求最大值和最小值在数学中,求函数的最大值和最小值是一个常见且重要的问题。
通过求取函数的极值点,我们可以确定函数的最大值和最小值所对应的自变量值。
本文将介绍如何使用基本的微积分知识和函数分析技巧来求解函数的最大值和最小值。
1. 函数的最大值和最小值的定义对于一个定义在区间[a, b]上的函数f(x),如果存在x0∈(a, b),使得对于任意的x∈(a, b),都有f(x)≤f(x0)(或f(x)≥f(x0)),那么称f(x0)为函数f(x)在区间[a, b]上的最大值(或最小值)。
2. 函数极值点的求解要求一个函数的最大值和最小值,通常需要找到函数的极值点。
函数的极值点即为导数为零或者不存在的点。
我们通过以下步骤来求解一个函数在给定区间上的最大值和最小值:•步骤1:求取函数在区间[a, b]内的导数f’(x)。
•步骤2:找到所有满足f’(x)=0或f’(x)不存在的点,这些点即为函数的可能的极值点。
•步骤3:将这些极值点代入原函数f(x),得到对应的函数值,通过比较这些函数值,即可得到最大值和最小值。
3. 举例说明假设我们要求解函数f(x) = x^2 - 4x + 5在区间[0, 3]上的最大值和最小值。
首先,我们计算函数f’(x)的导数为2x - 4。
接着,令f’(x) = 0,解方程得到x=2。
因此,x=2为函数的可能极值点。
将x=2代入原函数f(x),得到f(2) = 2^2 - 4*2 + 5 = 1。
所以,函数f(x)在区间[0, 3]上的最小值为1,在x=2处取得。
4. 总结通过以上步骤,我们可以很容易地求解一个函数在给定区间上的最大值和最小值。
函数的极值点是求解最大值和最小值的关键,而函数的导数则是寻找极值点的利器。
对于更复杂的函数,我们可以借助数值计算工具来辅助求解最大值和最小值,但使用基本的微积分知识和函数分析技巧仍然是最为基础和重要的方法。
通过本文的介绍,希望读者对如何使用函数求最大值和最小值有了更清晰的认识,为进一步学习和研究数学提供了帮助。
函数最大值最小值函数的最大值和最小值是数学中的重要概念,也是实际问题中常见的优化目标。
在求解函数的最大值和最小值时,我们需要通过数学方法来分析函数的性质,找到函数的极值点以及边界点,并通过比较它们的函数值来确定函数的最大值和最小值。
我们需要了解什么是函数的极值点。
函数的极值点是指函数的导数为0的点,也就是函数的斜率为0的点。
在这些点上,函数的值可能是一个最大值或最小值。
因此,我们需要通过求解函数的导数来找到这些点。
在求导的过程中,我们需要运用一些基本的求导规则,例如常数求导、幂函数求导、指数函数求导、三角函数求导等。
接下来,我们需要找到函数的边界点。
边界点是指函数在定义域的边界处的点。
例如,如果一个函数在定义域的左边界处有定义,那么这个点就是一个边界点。
在求解函数的最大值和最小值时,我们需要将极值点和边界点的函数值进行比较,最终确定函数的最大值和最小值。
在实际问题中,我们经常需要求解函数的最大值和最小值。
例如,在生产过程中,我们需要求解某个产品的成本函数的最小值,以便在保证质量的前提下,减少生产成本。
在经济学中,我们需要求解某个企业的利润函数的最大值,以便在市场竞争中获得更大的利润。
在物理学中,我们需要求解某个物体的能量函数的最小值,以便找到物体的平衡位置。
为了求解函数的最大值和最小值,我们需要掌握一些基本的求解方法。
例如,我们可以通过画出函数的图像来找到极值点和边界点,或者通过使用微积分的方法来求解函数的导数和极值点。
在实际问题中,我们还需要运用一些特定的数学工具,例如拉格朗日乘数法、约束优化法、线性规划法等。
函数的最大值和最小值是数学中的重要概念,也是实际问题中常见的优化目标。
在求解函数的最大值和最小值时,我们需要通过数学方法来分析函数的性质,找到函数的极值点以及边界点,并通过比较它们的函数值来确定函数的最大值和最小值。
在实际问题中,我们还需要运用特定的数学工具来求解函数的最大值和最小值,以便解决实际问题。
函数的最大(小)值基本初等函数的最值1.正比例函数:y=kx(k≠0)在定义域R 上不存在最值.在闭区间[a,b ]上存在最值,当k>0时,函数y=kx 的最大值为f(b)=kb ,最小值为f(a)=ka ;当k<0时,函数y=kx 的最大值为f(a)=ka ,最小值为f(b)=kb.2.反比例函数:y=xk(k≠0)在定义域(-∞,0)∪(0,+∞)上不存在最值.在闭区间[a,b ](ab>0)上存在最值,当k>0时,函数y=x k 的最大值为f(a)=a k ,最小值为f(b)=bk;当k<0时,函数y=x k 的最大值为f(b)=b k ,最小值为f(a)=ak .3.一次函数:y=kx+b(k≠0)在定义域R 上不存在最值.在闭区间[m,n ]上存在最值,当k>0时,函数y=kx+b 的最大值为f(n)=kn+b ,最小值为f(m)=km+b ;当k<0时,函数y=kx+b 的最大值为f(m)=km+b ,最小值为f(n)=kn+b.4.二次函数:y=ax 2+bx+c(a≠0):当a>0时,函数y=ax 2+bx+c 在定义域R 上有最小值f(ab2-)=a ac b 442+-,无最大值;当a<0时,函数y=ax 2+bx+c 在定义域R 上有最大值f(ab2-)=a ac b 442+-,无最小值.二次函数在闭区间上的最值问题是高考考查的重点和热点内容之一.二次函数f(x)=ax 2+bx+c(a >0)在闭区间[p ,q ]上的最值可能出现以下三种情况:(1)若a b2-<p ,则f(x)在区间[p ,q ]上是增函数,则f(x)min =f(p),f(x)max =f(q). (2)若p≤a b 2-≤q ,则f(x)min =f(a b2-),此时f(x)的最大值视对称轴与区间端点的远近而定:①当p≤a b 2-<2qp +时,则f(x)max =f(q);②当2q p +=a b 2-时,则f(x)max =f(p)=f(q);③当2q p +<a b 2-<q 时,则f(x)max =f(p).(3)若ab2-≥q ,则f(x)在区间[p ,q ]上是减函数,则f(x)min =f(q),f(x)max =f(p).由此可见,当ab2-∈[p,q ]时,二次函数f(x)=ax 2+bx+c(a >0)在闭区间[p ,q ]上的最大值是f(p)和f(q)中的最大值,最小值是f(a b 2-);当ab2-∉[p,q ]时,二次函数f(x)=ax 2+bx+c(a>0)在闭区间[p ,q ]上的最大值是f(p)和f(q)中的最大值,最小值是f(p)和f(q)中的最小值.单调法求函数最值:先判断函数的单调性,再利用其单调性求最值;常用到下面的结论:①如果函数y=f(x)在区间(a,b ]上单调递增,在区间[b,c)上单调递减,则函数y=f(x)在x=b 处有最大值f(b);②如果函数y=f(x)在区间(a,b ]上单调递减,在区间[b,c)上单调递增,则函数y=f(x)在x=b 处有最小值f(b).2.利用函数单调性的判断函数的最大(小)值的方法○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);例1、 下图为函数]7,4[),(-∈=x x f y 的图象,指出它的最大值、最小值及单调区间。
函数的最大小值
函数的最大值和最小值是指函数在特定区间内取得的最大和最
小的函数值。
这些值对于许多学科领域都具有重要的意义,例如数学、物理学、工程学、经济学等等。
在数学中,求解函数的最大值和最小值是一个基本问题。
通常情况下,我们需要知道函数在一个区间内的最大值和最小值,也就是说,我们需要找出这个函数在这个区间内的最大值和最小值所对应的自
变量的值。
对于一元函数来说,我们可以通过求导数来求解函数的最大值和最小值。
当导数为零时,函数取得极值,这个点就是函数的最大值或最小值。
我们还可以通过二阶导数的符号来判断这个极值是最大值还是最小值。
对于多元函数,我们需要使用偏导数来求解它的最大值和最小值,这就是多元函数的极值问题。
在求解多元函数的极值时,我们需要先求出偏导数,然后令偏导数为零,求解这些方程得到极值所对应的自变量的值。
总之,求解函数的最大值和最小值是数学中一个非常重要的问题,对于我们的学习和工作都具有重要的意义。
- 1 -。