2020届重庆市第一中学高三下学期3月月考数学(理)试题(解析版)
- 格式:doc
- 大小:2.18 MB
- 文档页数:22
专题12 导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用. 导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一 求无参函数的单调区间万能模板 内 容使用场景 知函数()f x 的解析式判断函数的单调性 解题模板第一步 计算函数()f x 的定义域; 第二步 求出函数()f x 的导函数'()f x ;第三步 若'()0f x >,则()f x 为增函数;若'()0f x <,则()f x 为减函数.例1 【河北省衡水市枣强中学2020届高三下学期3月调研】已知函数()ln xx af x e+=. (1)当1a =时,判断()f x 的单调性;【变式演练1】函数,的单调递增区间为__________.【来源】福建省三明第一中学2021届高三5月校模拟考数学试题【变式演练2】已知函数,则不等式的解集为___________.【来源】全国卷地区“超级全能生”2021届高三5月联考数学(文)试题(丙卷)【变式演练3】【黑龙江省哈尔滨六中2020届高三高考数学(文科)二模】已知函数()2sin f x x x =-+,若3(3)a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .a c b <<【变式演练4】【湖南省湘潭市2020届高三下学期第四次模拟考试】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211x f x f x e -+=--,则下列命题中一定成立的是( )A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->类型二 判定含参数的函数的单调性万能模板 内 容使用场景 函数()f x 的解析式中含有参数解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0; 第三步 根据导函数的符号变换判断其单调区间.例2 【黑龙江省大庆市第四中学2020届高三下学期第四次检测】已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【变式演练5】(主导函数是一次型函数)【福建省三明市2020届高三(6月份)高考数学(文科)模拟】已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;()2sin sin 2f x x x =⋅0,2x π⎡⎤∈⎢⎥⎣⎦()()2ln 1x xf x x e e -=+++()()2210f x f x --+≤【变式演练6】(主导函数为类一次型)【山东省威海荣成市2020届高三上学期期中考试】已知函数()x f x e ax -=+.(I )讨论()f x 的单调性;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥. (1)讨论()f x 的单调性;【变式演练8】(主导函数是类二次型)【山西省太原五中2020届高三高考数学(理科)二模】已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【变式演练9】已知函数,若在区间上单调递增,则的取值范围是( )A .B .C .D .【来源】江西省南昌市新建区第一中学2020-2021学年高三上学期期末考试数学(文)试题类型三 由函数单调性求参数取值范围万能模板 内 容使用场景 由函数单调性求参数取值范围解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 根据题意转化为相应的恒成立问题; 第三步 得出结论.例3.【江苏省南通市2019-2020学年高三下学期期末】若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是( ) A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为( )A .4B .16C .20D .18()22ln f x x x =-()f x ()2,1m m +m 1,14⎡⎫⎪⎢⎣⎭1,4⎡⎫+∞⎪⎢⎣⎭1,12⎡⎫⎪⎢⎣⎭[)0,1【变式演练12】(转化为变号零点)【山西省运城市2019-2020学年高三期末】已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是( ) A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【变式演练13】(直接给给定单调区间)【辽宁省六校协作体2019-2020学年高三下学期期中考试】已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为( ) A .-4B .-2C .2D .4【变式演练14】(转化为存在型恒成立)【四川省仁寿第一中学北校区2019-2020学年高三月考】若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是( )A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【高考再现】1.(2021·全国高考真题(理))设2ln1.01a =,ln1.02b =, 1.041c =-.则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<2.(2021·全国高考真题(理))已知且,函数.(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a 的取值范围. 3.已知函数. (1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【来源】2021年全国新高考Ⅰ卷数学试题 4.【2017山东文,10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =5.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,0a >1a ≠()(0)a x x f x x a=>2a =()f x ()y f x =1y =()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<则实数a 的取值范围是 ▲ .6.【2020年高考全国Ⅰ卷文数20】已知函数()()e 2xf x a x =-+.(1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.7.【2020年高考全国Ⅰ卷理数21】已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 8.【2020年高考全国Ⅱ卷文数21】已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.9.(2018年新课标I 卷文)已知函数f (x )=ae x −lnx −1∈ (1)设x =2是f (x )的极值点.求a ,并求f (x )的单调区间; (2)证明:当a ≥1e 时,f (x )≥0∈10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知函数f(x)=1x −x +alnx ∈ (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x 1,x 2,证明:f (x 1)−f (x 2)x 1−x 2<a −2.【反馈练习】1.【2020届广东省梅州市高三总复习质检(5月)】已知0x >,a x =,22xb x =-,()ln 1c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<2.【2020届山东省威海市高三下学期质量检测】若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为( )A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.【河南省十所名校2019—2020学年高三毕业班阶段性测试】若函数()sin24sin f x x x m x =--在[0,2π]上单调递减,则实数m 的取值范围为( ) A .(2,2)-B .[2,2]-C .(1,1)-D .[1,1]-4.【黑龙江哈尔滨市第九中学2019-2020学年高三阶段验收】函数()3f x x ax =+,若对任意两个不等的实数()1212,x x x x >,都有()()121233f x f x x x ->-恒成立,则实数a 的取值范围是( ) A .()2,-+∞B .[)3,+∞C .(],2-∞-D .(),3-∞5.【湖北省武汉市新高考五校联合体2019-2020学年高三期中检测】若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______. 6.【四川省宜宾市2020届高三调研】若对(]0,1t ∀∈,函数2()(4)2ln g x x a x a x =-++在(,2)t 内总不是单调函数,则实数a 的取值范围是______7.【河南省南阳市第一中学校2019-2020学年高三月考】若函数()22ln f x x x =-在定义域内的一个子区间()1,1k k -+上不是单调函数,则实数k 的取值范围______.8.若函数在区间是增函数,则的取值范围是_________.【来源】陕西省宝鸡市眉县2021届高三下学期高考模拟文科数学试题 9.已知函数,若对任意两个不同的,,都有成立,则实数的取值范围是________________【来源】江西省景德镇市2021届高三上学期期末数学(理)试题10.【黑龙江省哈尔滨师范大学附属中学2020-2021学年高三上学期开学考试】(1)求函数()sin cos (02)f x x x x x π=+<<的单调递增区间;()cos 2sin f x x a x =+,62ππ⎛⎫⎪⎝⎭a ()()1ln 1xf x x x+=>1x 2x ()()1212ln ln f x f x k x x -≤-k(2)已知函数2()ln 43f x a x x x =-++在1,22⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的范围.11.【黑龙江省哈尔滨三中2020届高三高考数学(文科)三模】函数()()21ln 1x f x x x -=-+. (1)求证:函数()f x 在()0,∞+上单调递增; (2)若m ,n 为两个不等的正数,求证ln ln 2m n m n m n->-+. 12.【湖北省黄冈中学2020届高三下学期适应性考试】已知函数()()ln 1ln f x ax x a x =-+,()f x 的导数为()f x '.(1)当1a >-时,讨论()f x '的单调性; (2)设0a >,方程()3f x x e =-有两个不同的零点()1212,x x x x <,求证121x e x e+>+. 13.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论()f x 的单调性;(2)当0x ≥时,()1xf x e ≥-,求实数a 的取值范围.14.【2020届山西省高三高考考前适应性测试(二)】已知函数()xf x ae ex =-,()()ln 1xg x x b x e =--,其中,a b ∈R .(1)讨论()f x 在区间()0,∞+上的单调性; (2)当1a =时,()()0f x g x ≤,求b 的值.15.【河南省2020届高三(6月份)高考数学(文科)质检】已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 16.【山东省2020年普通高等学校招生统一考试数学必刷卷】已知实数0a >,函数()22ln f x a x a x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x ,()()22,Q x f x ()12xx <处的切线分别为12,l l ,且12,l l 在y 轴上的截距分别为12,b b .若12//l l ,求12b b -的取值范围.17.【福建省2020届高三(6月份)高考数学(理科)模拟】已知函数()()()2ln 222f x x a x x =++++,0a >.(1)讨论函数()f x 的单调性; (2)求证:函数()f x 有唯一的零点.18.【山东省潍坊市五县2020届高三高考热身训练考前押题】已知函数()f x 满足222(1)()2(0)2x f f x x f x e -'=+-,21()(1)24x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭,x ∈R . (1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)当2a ≥且1≥x 时,求证:1ln ln x e x e a x x--<+-.19.【陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练】已知函数3()ln ()f x x a x a R =-∈.∈1)讨论函数()f x 的单调性∈∈2)若函数()y f x =在区间(1,]e 上存在两个不同零点∈求实数a 的取值范围.20.【2020年普通高等学校招生全国统一考试伯乐马模拟考试】已知函数()()22xxf x ax a e e =-++.(1)讨论函数()f x 的单调性; (2)若函数()()()2212x x g x f x ax x a e e =-++-存在3个零点,求实数a 的取值范围. 21.【金科大联考2020届高三5月质量检测】已知函数()()()()()22224ln 2144f x x ax x a x a a x a =--+++∈R .(∈)讨论函数()f x 的单调性;(∈)若0a ≤,证明:函数()f x 在区间)1,a e -⎡+∞⎣有且仅有一个零点.22.已知函数.(1)若,求函数的单调区间; (2)求证:对任意的,只有一个零点.【来源】全国Ⅱ卷2021届高三高考数学(理)仿真模拟试题 23.已知函数. (1)当时,判断的单调性;(2)若有两个极值点,求实数的取值范围.【来源】安徽省合肥六中2021届高三6月份高考数学(文)模拟试题 24.已知函数. (1)求的单调性;(2)设函数,讨论的零点个数. 【来源】重庆市高考康德卷2021届高三模拟调研卷数学试题(三) 25.已知函数, (1)讨论的单调性;(2)若,,,用表示,的最小值,记函数,,讨论函数的零点个数.【来源】山东省泰安肥城市2021届高三高考适应性训练数学试题(二) 26.已知() (1)讨论的单调性;(2)当时,若在上恒成立,证明:的最小值为. 【来源】贵州省瓮安中学高三2021届6月关门考试数学(理)试题27.已知函数.(1)讨论的单调性;()321()13f x x a x x =--+2a =-()f x a ∈R ()f x ()21ln 2f x x ax x ax =-+1a =()f x ()f x a ()()cos sin ,0,2f x x x x x π=-∈()f x ()()(01)g x f x ax a =-<<()g x ()ln()xf x x a x a=+-+a R ∈()f x 4a =()1cos (2sin )2g x x x mx x =++0m >}{min ,m n m n }{()min ()()h x f x g x =,[],x ππ∈-()h x ()ln f x x ax =+a R ∈()f x 1a =()()1f x k x b ≤++()0,∞+221k b k +--1e -+2()2ln ,()f x x ax x a R =+++∈()f x(2)若恒成立,求的最大值.【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题 28.已知函数. (1)若,证明:在单调递增; (2)若恒成立,求实数的取值范围.【来源】黑龙江省哈尔滨市第三中学2021届高三五模数学(理)试题 29.已知函数. (1)若在上为增函数,求实数a 的取值范围;(2)设,若存在两条相互垂直的切线,求函数在区间上的最小值.【来源】四川省达州市2021 届高三二模数学(文)试题 30.已知函数. (1)如果函数在上单调递减,求的取值范围; (2)当时,讨论函数零点的个数.【来源】内蒙古赤峰市2021届高三模拟考试数学(文)试题 31.已知函数. (1)若在R 上是减函数,求m 的取值范围;(2)如果有一个极小值点和一个极大值点,求证 有三个零点. 【来源】安徽省淮南市2021届高三下学期一模理科数学试题32.已知函数.(1)若函数在上为增函数,求实数的取值范围; (2)当时,证明:函数有且仅有3个零点. 【来源】重庆市第二十九中学校2021届高三下学期开学测试数学试题()xf x e ≤a ()ln x f x xe ax a x =--0a ≤()f x ()0,∞+()0f x ≥a 21()cos 2f x x ax x =++()f x [0,)+∞21()()2g x f x x =-()g x sin ()1()x g x F x x -+=,2ππ⎡⎤⎢⎥⎣⎦1()ln(1)1f x a x x =-+-()()22g x f x x =-+(1,)+∞a 0a >()y f x =21()e 1()2x f x x mx m =+-+∈R ()f x ()f x 1x 2x ()f x ()e sin 1xf x ax x =-+-()f x ()0,∞+a 12a ≤<()()()2g x x f x =-11/ 11。
南阳一中2023年秋期高三年级第三次月考地理试题一、选择题组(每小题1.5分,共40题)城市土地出让是指城市政府土地主管部门依法将城市土地的使用权出让给用地单位,是联系城市产业结构与空间结构的纽带。
土地出让空间区位选择与诸多社会经济因素有关,其中人口规模、经济发展水平对土地出让具有重要影响。
下图示意黄山市城市土地出让区位模式。
据此完成下面小题。
1.V区虽位于城市外围,但商业用地和住宅用地规模大,主要原因是()A.位于城市外围,土地租金廉价B.人口规模较市中心大,商业服务需求高C.中心城区环境差,商业服务外迁D.位于旅游景区,经济发展水平高2.黄山市城市用地的分布特点是()A.分布均衡,集聚程度较低B.住宅用地分布在近郊和旅游区C.集中度高,成多中心状态D.中心城区土地利用率较外围低【答案】1.D 2.C【解析】【1题详解】黄山市为旅游业发达的城市,V区可能为旅游区,虽然与市中心距离较远,但旅游业的发展使其土地租金并不廉价,A错误;V区位于城市外围,人口规模并不如市中心大,B错误;没有信息说明中心城区环境质量差,C错误;旅游业的发展带动了经济发展,该地经济发展水平高,商业和度假旅居型、疗养等服务业的发展,使得V区商业用地和住宅用地规模较大,D正确。
故选D。
【2题详解】据图及上题可知,黄山市三类用地区域位置差异较大,A错误;住宅用地主要集中于中心城区、重要旅游区附近,B错误;商业服务用地分布的热点区域主要集中于城市商业集聚区、大型公共设施和旅游景区周围、重要交通设施附近,因此,黄山市各类用地集中程度高,成多中心状态,C正确;中心城区土地利用率较外围高,D错误。
故选C。
【点睛】影响城市土地租金的因素有距离市中心的远近和交通通达度。
波兰首都华沙的工业园区逐步转型成为次级商务区(SBD),其与西南运输走廊(IBD)和主城区的中央商务区(CBD)共同构成华沙的经济增长极。
下图示意华沙经济增长极的空间分布读图,完成下面小题。
3.2三角函数化简及恒等变换一、选择题:每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.【四川省绵阳市2020届高三上期第一次诊断性考试数学(理)试题】 函数)0)(6sin()(>+=w wx x f π在⎪⎭⎫⎝⎛22-ππ,上单调递增,且图像关于π-=x 对称,则w 的值为( ) A.32 B.35 C.2 D.38【答案】A 【解析】函数)0)(6sin()(>+=w wx x f π的递增区间)(22622-Z k k x k ∈+≤+≤+πππωππ,化简得:).(23232-Z k k x k ∈+≤≤+ωπωπωπωπ已知在⎪⎭⎫ ⎝⎛22-ππ,单增,所以.320.232-32-<<⇒⎪⎩⎪⎨⎧≥≤ωπωππωπ,又因为图像关于π-=x 对称,).(26Z k k x ∈+=+πππω所以)(3Z k k w ∈--=π.因为0>ω此时k=-1,所以32=ω 【方法总结】此题考查三角函数的对称轴和单调区间,涉及在知识的交叉点命题思路,这是高考命题的思路。
题目综合性强,需要逆向思维。
题目属于中等难度。
2. 【湖北省华中师大一附中2017级高三上学期理科数学期中考试试题】已知函数()2sin()(0,||)f x x ωϕωϕπ=+><的部分图像如右图所示,且(,1),(,1)2A B ππ-,则ϕ的值为 ( )A.56πB.6πC. 56π-D. 6π- 【答案】C【解析】由已知得:1,2==ωπT ,图像经过(,1),(,1)2A B ππ-65-πϕ=3. 【2019-2020学年秋季鄂东南省级示范高中教育教学改革联盟学校高三年级上学期期中考试理科数学】已知将函数()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则π3f ⎛⎫= ⎪⎝⎭( )A .BC .12-D .12【答案】A【解析】()()πcos 202f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个单位长度后,得到函数()g x []ϕ32cos +=x ,因为()g x 的图象关于原点对称,所以[]030cos )0(=+=ϕg ,所以6πϕ=,π3f ⎛⎫= ⎪⎝⎭23)362(cos -=+⨯ππ .4.【2019·四川棠湖中学开学考试】在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得到向量OQ →,则点Q的坐标是( )A.(-72,-2)B. (-72, 2)C.(-46,-2)D.(-46,2) 【答案】 A【解析】 因为点O (0,0),P (6,8),所以OP →=(6,8), 设OP →=(10cos θ,10sin θ),则cos θ=35,sin θ=45,因为向量OP →绕点O 按逆时针方向旋转3π4后得到OQ →,设Q (x ,y ),则x =10cos ⎝⎛⎭⎫θ+3π4=10⎝⎛⎭⎫cos θcos 3π4-sin θsin 3π4=-72, y =10sin ⎝⎛⎭⎫θ+3π4=10⎝⎛⎭⎫sin θcos 3π4+cos θsin 3π4=-2, 所以点Q 的坐标为()-72,-2,故选A.5.函数()2π2cos cos 26f x x x ⎛⎫=+- ⎪⎝⎭图象的一条对称轴方程为( )A .π6x =B .π4x =C .π3x =D .π2x = 【答案】A【解析】∵()2ππ2cos cos 21sin 266f x x x x ⎛⎫⎛⎫=+-=-+ ⎪ ⎪⎝⎭⎝⎭,∴ππ2π62x k +=+(k ∈Z ),∴ππ26k x =+(k ∈Z ),当k =0时,π6x =.6. 【2019山东济南月考】M ,则下列结论中正确的是( )A .图象MB .将2sin2y x =MC .图象MD .()f x 【答案】C【解析】将2sin 2y x =的图象向左平移,故B 错;()f x D 错;M A 错误,C 正确,故选C .7.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.7. 【安徽省定远中学2019届高三全国高考猜题预测卷一数学试题】函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( )A .5π3B .2πC .7π6D .π【答案】B【解析】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =. 又[]π,2πx ∈-,所以2x π=-或32x π=或π6x =或5π6x =, 所以函数()[]()cos 2π,2πf x x x =∈-的图象与函数()sin g x x =的图象交点的横坐标的和为π3ππ5π2π2266-+++=. 故选B.【名师点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.求解时,根据两个函数相等,求出所有交点的横坐标,然后求和即可. 8. 【广东省韶关市2019届高考模拟测试(4月)数学文试题】 已知函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2,将函数图象向左平移6π个单位得到函数()g x 的图象,则()g x =( ) A .πsin()3x +B .πsin(2)3x +C .cos2xD .πcos(2)3x +【答案】C【解析】函数π()sin()(0)6f x x ωω=+>的相邻对称轴之间的距离为π2, 则π22T =, 解得:πT =, 所以2ππω=,解得2ω=,将函数π()sin(2)6f x x =+的图象向左平移6π个单位,得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象, 故选C .【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.求解时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果. 9. 【山东省栖霞市2019届高三高考模拟卷数学理)试题】将函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是( )A .函数()g x 1B .函数()g x 的最小正周期为πC .函数()g x 的图象关于直线π3x =对称D .函数()g x 在区间π2,6π3⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】将函数()f x 的图象向右平移π6个单位长度得:πππ()2sin 22sin 2666h x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再把图象上所有点的横坐标伸长到原来的2倍得:()π2sin 6g x x ⎛⎫=-⎪⎝⎭, ()g x 的最大值为2,可知A 错误; ()g x 的最小正周期为2π,可知B 错误;π3x =时,ππ66x -=,则π3x =不是()g x 的图象的对称轴,可知C 错误; 当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,ππ0,62x ⎡⎤-∈⎢⎥⎣⎦,此时()g x 单调递增,可知D 正确. 本题正确选项为D.【名师点睛】本题考查三角函数图象平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.求解时,根据平移变换和伸缩变换的原则可求得()g x 的解析式,依次判断()g x 的最值、最小正周期、对称轴和单调性,可求得正确结果.10【湖南省岳阳市第一中学2019届高三第一次模拟(5月)数学试题】设函数π()sin 6f x x ⎛⎫=- ⎪⎝⎭,若对于任意5ππ,62α⎡⎤∈--⎢⎥⎣⎦,在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的最小值为( )A .π6B .π2C .7π6D .π【答案】B【解析】当5ππ,62α⎡⎤∈--⎢⎥⎣⎦时,有π2π,63πα⎡⎤-∈--⎢⎥⎣⎦,所以()[f α∈. 在区间[]0,m 上总存在唯一确定的β,使得()()0f f αβ+=,所以存在唯一确定的β,使得()()[0,]2f f βα=-∈. []πππ0,,[,]666m m ββ∈-∈--,所以ππ2ππ5π[,),[,)63326m m -∈∈. 故选B.【名师点睛】本题主要考查了三角函数的图象和性质,考查了函数与方程的思想,正确理解两变量的关系是解题的关键,属于中档题.求解时,先求()[f α∈,再由存在唯一确定的β,使得()()[0,2f f βα=-∈,得ππ2π[,)633m -∈,从而得解. 10. 【福建省厦门市厦门外国语学校2019届高三最后一模数学试题】已知函数()cos f x x x ωω=+(>0)ω的零点构成一个公差为π2的等差数列,把函数()f x 的图象沿x 轴向左平移π6个单位,得到函数()g x 的图象,关于函数()g x ,下列说法正确的是( ) A .在[,]42ππ上是增函数 B .其图象关于π4x =-对称C .函数()g x 是奇函数D .在区间π2π[,]63上的值域为[−2,1]【答案】D【解析】()cos f x x x ωω=+可变形为π()2sin()6f x x ω=+,因为()y f x =的零点构成一个公差为π2的等差数列,所以()y f x =的周期为π, 故2ππω=,解得2ω=,所以π()2sin(2)6f x x =+,函数()f x 的图象沿x 轴向左平移π6个单位后得到()()22sin[()]sin()cos(22)222x g f x x x x ++===++=πππ666π,选项A :222,k x k k -+≤≤∈πππZ ,解得:k x k k 2-+≤≤∈πππ,Z , 即函数()y g x =的增区间为π[π,π],2k k k -+∈Z ,显然π[,][π,π]422k k ππ⊄-+,故选项A 错误; 选项B :令2π,x k k =∈Z ,解得:k x k 2=∈π,Z ,即函数()y g x =的对称轴为k x k 2=∈π,Z , 不论k 取何值,对称轴都取不到π4x =,所以选项B 错误; 选项C :()y g x =的定义域为R ,因为2cos02(00)g ==≠,所以函数()y g x =不是奇函数,故选项C 错误;选项D :当π2π[,]63x ∈时,故42[,]33x ∈ππ,根据余弦函数图象可得,2cos(2[)2(),1]x g x ∈-=,故选项故本题应选D.【名师点睛】本题考查了三角函数的图象与性质,考查了图象平移的规则,整体法思想是解决本题的思想方法.根据()y f x =的零点构成一个公差为π2的等差数列可得函数()y f x =的周期,从而得出函数()y f x =的解析式,沿x 轴向左平移π6个单位,便可得到函数()g x 的解析式,由()y g x =的解析式逐项判断选项的正确与否即可.11.【2019全国Ⅲ理12】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是( )A . ①④B . ②③C . ①②③D . ①③④ 【答案】D【解析】 当[0,2]x ∈π时,,2555x ωωπππ⎡⎤+∈π+⎢⎥⎣⎦, 因为()f x 在[0,2]π有且仅有5个零点,所以5265ωπππ+<π„, 所以1229510ω<„,故④正确, 因此由选项可知只需判断③是否正确即可得到答案, 下面判断③是否正确, 当(0,)10x π∈时,(2),5510x ωωππ+π⎡⎤+∈⎢⎥⎣⎦,若()f x 在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ω+ππ<,即3ω<,因为1229510ω<„,故③正确.12.【2019天津理7】已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且π4g ⎛⎫=⎪⎝⎭3π8f ⎛⎫= ⎪⎝⎭( ) A.2-B.D.2 【答案】C【解析】 因为()f x 是奇函数,所以0ϕ=,()sin f x A x ω=.将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x ,即()1sin 2g x A x ω⎛⎫= ⎪⎝⎭,因为()g x 的最小正周期为2π,所以2212ωπ=π,得2ω=, 所以()sin g x A x =,()sin 2f x A x =.若4g π⎛⎫=⎪⎝⎭sin 442g A A ππ⎛⎫=== ⎪⎝⎭2A =, 所以()2sin 2f x x =,332sin 22sin 2884f ππ3π⎛⎫⎛⎫=⨯=== ⎪ ⎪⎝⎭⎝⎭故选C .13.将函数()2cos2f x x =的图象向右平移6π个单位后得到函数()g x 的图象,若函数()g x 在区间0,3a ⎡⎤⎢⎥⎣⎦和72,6a π⎡⎤⎢⎥⎣⎦上均单调递增,则实数a 的取值范围是( ) A .,32ππ⎡⎤⎢⎥⎣⎦ B .,62ππ⎡⎤⎢⎥⎣⎦ C.,63ππ⎡⎤⎢⎥⎣⎦ D .3,48ππ⎡⎤⎢⎥⎣⎦【答案】A14.若将函数()sin2cos2f x x x =+的图象向左平移()0ϕϕ>个单位,所得的图象关于y 轴对称,则ϕ的最小值是( ) A.4π B. 8π C. 38π D. 58π 【答案】B【解析】函数()sin2cos22sin 24f x x x x π⎛⎫=+=+ ⎪⎝⎭的图象向左平移()0ϕϕ>个单位,得到2sin 224y x πϕ⎛⎫=++ ⎪⎝⎭ 图象关于y 轴对称,即()242k k Z ππϕπ+=+∈,解得1=28k πϕπ+,又0ϕ>,当0k =时, ϕ的最小值为8π,故选B. 15. 【2019四川遂宁、广安、眉山、内江四高三上学期第一次联考】已知不等式262sin cos 6cos 0444x x x m +--≥对于,33x ππ⎡⎤∈-⎢⎥⎣⎦恒成立,则实数m 的取值范围是( )A .(,2⎤-∞-⎦B .2,2⎛⎤-∞ ⎥ ⎝⎦ C .2,22⎡⎤⎢⎥⎣ D .)2,⎡+∞⎣ 【答案】B【点评】解决恒成立问题的关键是将其进行等价转化,使之转化为函数的最值问题,或者区间上的最值问题,使问题得到解决.具体转化思路为:若不等式()f x A >在区间D 上恒成立,则等价于在区间D 上()f x 的最小值大于A ;若不等式()f x B <在区间D 上恒成立,则等价于在区间D 上()f x 最大值小于B .16.已知实数,x y 满足221x y +=,则()()11xy xy -+有( )A .最小值21和最大值1B .最小值43和最大值1 C .最小值21和最大值43D .最小值1,无最大值【答案】B【解析】由221x y +=,可设cos ,sin x y θθ== ,则()()11xy xy -+=111sin 21sin 222θθ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭2131sin 2,144θ⎡⎤=-∈⎢⎥⎣⎦,故选B 17.【四川省成都市成都第七中学万达学校高2020届高三(上)第一次月考数学(文科)试题】定义在⎪⎭⎫⎝⎛20π,上的函数)(x f y =满足:x x f x f tan )()('>恒成立,则下列不等式中成立的是( )A .)3()6(3ππf f > B .1sin )3(332)1(πf f >C .)4()6(2ππf f >D .)3(2)4(3ππf f > 【答案】A【解析】分析:x x f x f tan )()('>⇒0tan )(-)('>x x f x f ⇒0)(sinx -)(cos '>x f x xf ,故此构造函数)(sin x f x x F =)(,)(x F 在⎪⎭⎫ ⎝⎛20π,上上增函数。
2019年重庆一中高2019级高三下期月考理科学数学一、选择题1.设集合2{log 1}A x x =≤,集合2{|20}B x x x =+-<,则A B U 为( )A. (0,1)B. (2,2]-C. (,2]-∞D. (2,1)- 【答案】B【分析】先通过解不等式得出集合,A B ,然后再求A B U .【详解】由2log 1x ≤得,02x <≤,即(]0,2A =.由220x x +-<得,21x -<<,即()2,1B =-.所以(]2,2A B =-U故选:B【点睛】本题考查解对数不等式和二次不等式以及集合的并集运算,属于基础题.2.已知复数z 满足()2201913z i i +=+,则||z =( )A. B. C. 14 D. 【答案】A【分析】由2019450433i i i i ⨯+==-=先求出复数z ,然后再求||z .【详解】由2019450433i i i i ⨯+==-=.所以由()2201913z i i +=+得:()213z i i -=+即()23z i i -=+,故:33122i i z i +-==-所以||2z == 故选:A【点睛】本题考查复数的运算,复数的模长的计算,属于基础题.3.设函数31log (1),1()1,12x x x f x x -->⎧⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩…,则(1)f =( )A. 0B. 1-C. 1D. 2【答案】C 【分析】根据函数的表达式直接将(1)f 的值代出可求出答案. 【详解】由函数的表达式有111(1)12f -⎛⎫== ⎪⎝⎭故选:C 【点睛】本题考查分段函数求函数值,属于基础题.4.已知第一象限内抛物线24y x =上的一点Q 到y 轴的距离是该点到抛物线焦点距离的12,则点Q 的坐标为( )A. (1,2)-B. (1,2)C.D. 1,14⎛⎫ ⎪⎝⎭ 【答案】B【分析】设()(),0,0Q x y x y >>,根据抛物线的定义以及题目条件可得12x x +=,从而求出Q 点的坐标.【详解】抛物线24y x =的准线方程为:1x =-.设()(),0,0Q x y x y >>,则点Q 到y 轴的距离为x ,点Q 到准线的距离为1x +.根据抛物线的定义有:点Q 到焦点的距离为1x +.又点Q 到y 轴的距离是该点到抛物线焦点距离的12. 所以12x x +=,得1x = ,则2y =即(1,2)Q故选:B【点睛】本题考查抛物线的定义的运用,属于基础题.5.我国古代数学著作《孙子算经》中记有如下问题:“今有五等诸侯,其分橘子六十颗,人別加三颗”,问:“五人各得几何?”其意思为:“现在有5个人分60个橘子,他们分得的橘子个数成公差为3的等差数列,问5人各得多少橘子.”根据这个问题,下列说法错误的是( )A. 得到橘子最多的诸侯比最少的多12个B. 得到橘子的个数排名为正数第3和倒数第3的是同一个人C. 得到橘子第三多的人所得的橘子个数是12D. 所得橘子个数为倒数前3的诸侯所得的橘子总数为24。
2021届重庆市第一中学校高三上学期第三次月考数学试题一、单选题1.复数z 满足21iz i=-,则复数z 的虚部为()A .﹣1B .1C .iD .﹣i【答案】B【分析】利用复数的除法运算化简211ii i=-+-,再利用复数的代数形式求出结果.【详解】解:∵()()()()2121211112i i i i i z i i i i ++====-+--+,则复数z 的虚部为1.故选:B .【点睛】本题考查复数的除法运算.复数的除法运算关键是分母“实数化”,其一般步骤如下:(1)分子、分母同时乘分母的共轭复数;(2)对分子、分母分别进行乘法运算;(3)整理、化简成实部、虚部分开的标准形式.2.已知集合{}22,A xx x Z =<∈∣,则A 的真子集共有()个A .3B .4C .6D .7【答案】D【分析】写出集合{1,0,1}A =-,即可确定真子集的个数.【详解】因为{}22,{1,0,1}A xx x Z =<∈=-∣,所以其真子集个数为3217-=.故选:D.【点睛】本题考查集合的真子集个数问题,属于简单题.3.已知某圆锥的母线长为4,底面圆的半径为2,则圆锥的全面积为()A .10πB .12πC .14πD .16π【答案】B【分析】首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.【详解】底面周长是:2×2π=4π,则侧面积是:14π48π2⨯⨯=,底面积是:π×22=4π,则全面积是:8π+4π=12π.故选B .【点睛】本题考查了圆锥的全面积计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的()倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.22【答案】B【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg0.1E E =,∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈.故选:B .【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.5.向量,a b 满足||1a = ,a 与b 的夹角为3π,则||a b - 的取值范围为()A .[1,)+∞B .[0,)+∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎫+∞⎪⎢⎪⎣⎭【答案】D【分析】把||a b -用数量积表示后结合函数的性质得出结论.【详解】22222||()2121cos 3a b a b a a b b b b π-=-=-⋅+=-⨯⨯+ 21b b -+= 2134423b ⎛⎫=+≥⎪⎝⎭- ,所以3||2a b -≥ .1||2b = 时取得最小值.故选:D .【点睛】本题考查平面向量的模,解题关键是把模用向量的数量积表示,然后结合二次函数性质得出结论.6.已知三棱锥P ABC -,过点P 作PO ⊥面,ABC O 为ABC ∆中的一点,,PA PB PB PC ⊥⊥,PC PA ⊥,则点O 为ABC ∆的()A .内心B .外心C .重心D .垂心【答案】D【分析】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,可得BC ⊥PA ,由PO ⊥平面ABC 于O ,BC ⊂面ABC ,PO ⊥BC ,可得BC ⊥AE ,同理可以证明CO ⊥AB ,又BO ⊥AC .故O 是△ABC 的垂心.【详解】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,∴BC ⊥PA ,∵PO ⊥平面ABC 于O ,BC ⊂面ABC ,∴PO ⊥BC ,∴BC ⊥平面APE ,∵AE ⊂面APE ,∴BC ⊥AE ;同理可以证明CO ⊥AB ,又BO ⊥AC .∴O 是△ABC 的垂心.故选D .【点睛】本题主要考查了直线与平面垂直的性质,解题时要注意数形结合,属于基本知识的考查.7.设sin5a π=,b =,2314c ⎛⎫= ⎪⎝⎭,则()A .a c b <<B .b a c <<C .c a b<<D .c b a<<【答案】C【分析】借助中间量1和12比较大小即可.【详解】解:由对数函数y x =在()0,∞+单调递增的性质得:1b =>=,由指数函数12xy ⎛⎫= ⎪⎝⎭在R 单调递减的性质得:2413311142212c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<=,由三角函数sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增的性质得1sin sin 562a ππ=>=.所以c ab <<.故选:C.【点睛】本题考查利用函数的单调性比较大小,考查运算能力,化归转化思想,是中档题.本题解题的关键在于借助中间量1和12,尤其在比较a 与c 的大小时,将c 变形得24331142c ⎛⎫⎛⎫= ⎪ =⎪⎝⎭⎝⎭,进而与12比较大小是重中之核心步骤.8.已知三棱锥P ABC -的四个顶点均在同一个确定的球面上,且BA BC ==,2ABC π∠=,若三棱锥P ABC -体积的最大值为3,则其外接球的半径为()A .2B .3C .4D .5【答案】A【分析】由题意分析知三棱锥P ABC -体积的最大时,P ,O ,O '共线且O P '⊥面ABC ,P 在大于半球的的球面上,根据棱锥体积公式求得||O P ',进而应用勾股定理求外接球的半径.【详解】由题意知:AC 中点O '为面ABC 外接圆圆心,若外接球球心为O ,半径为R ,三棱锥P ABC -体积的最大时,P ,O ,O '共线且O 在P ,O '之间,∴1||33P ABC ABC V S O P -'=⋅⋅= ,1||||32ABC S BA BC =⋅⋅= ,即||3O P '=,||||32AC O C '==,所以()22222'|||'|33O C OC OO R R =-=--=,解得2R =,故选:A【点睛】关键点点睛:理解三棱锥P ABC -体积的最大时P 的位置及与球心、底面外接圆圆心的关系,结合棱锥体积公式、勾股定理求球体半径.二、多选题9.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中错误..的是()A .若,,//m n m n αβ⊂⊂,则//αβB .若,m n m α⊂⊥,则n α⊥C .若,m n αα^Ì,则m n ⊥D .若//,,m n αβαβ⊂⊂,则//m n【答案】ABD【分析】根据空间线、面关系,结合空间关系相关图例以及线线、线面、面面间的平行、垂直判定与性质,即可知选项的正误.【详解】A :,,//m n m n αβ⊂⊂,α、β不一定平行,错误.B :,m n m α⊂⊥,n 不一定垂直于α,错误.C :由线面垂直的性质:,m n αα^Ì,则必有m n ⊥,正确.D ://,,m n αβαβ⊂⊂,m 、n 不一定平行,错误.故选:ABD10.下列函数中,在(0,1)内是减函数的是()A .||12x y ⎛⎫= ⎪⎝⎭B .212log y x =C .121=+y x D .2log sin y x=【答案】ABC【分析】根据复合函数的单调性判断确定选项中各函数是否为减函数即可.【详解】A :1(2t y =为减函数,||t x =在(0,1)上为增函数,所以||12x y ⎛⎫= ⎪⎝⎭为减函数;B :12log y t =为减函数,2t x =在(0,1)上为增函数,所以212log y x =为减函数;C :1y t =为减函数,21t x =+在(0,1)上为增函数,所以121=+y x 为减函数;D :2log y t =为增函数,sin t x =在(0,1)上为增函数,所以2log sin y x =为增函数;故选:ABC【点睛】结论点睛:对于复合函数的单调性有如下结论1、内外层函数同增或同减为增函数;2、内外层函数一增一减为减函数;11.下列关于函数1()2sin 26f x x π⎛⎫=+⎪⎝⎭的图像或性质的说法中,正确的为()A .函数()f x 的图像关于直线83x π=对称B .将函数()f x 的图像向右平移3π个单位所得图像的函数为12sin 23y x π⎛⎫=+ ⎪⎝⎭C .函数()f x 在区间5,33ππ⎛⎫-⎪⎝⎭上单调递增D .若()f x a =,则1cos 232a x π⎛⎫-=⎪⎝⎭【答案】AD 【分析】令1262x k πππ+=+得到对称轴,即可判断A ;根据平移变换知识可判断B ;求出其单调增区间即可判断C ;利用配角法即可判断D.【详解】对于A ,令1262x k πππ+=+()k ∈Z ,解得22()3x k k Z ππ=+∈,当1k =时,得83x π=,故A 正确;对于B ,将函数()f x 的图像向右平移3π个单位,得112sin[()]2sin 2362y x x ππ=-+=,故B 错误;对于C ,令122()2262k x k k Z πππππ-+<+<+∈4244()33k x k k Z ππππ⇒-+<<+∈,故C 错误;对于D ,若12sin()26x a π+=,则11cos()sin[()]23223x x πππ-=+-=1sin()262ax π+=,故D 正确.故选:AD【点睛】方法点睛:函数()sin (0,0)y A x B A ωϕω=++>>的性质:(1)max min =+y A B y A B =-,.(2)周期2π.T ω=(3)由()ππ2x k k +=+∈Z ωϕ求对称轴(4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.12.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有()A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】由()()f x f x x '<知:()()0xf x f x x'-<,令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >;A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+;B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+;C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <;D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小.故选:ABC【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<,1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=.2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.三、填空题13.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【解析】由题意,根据球的体积公式343V R π=,则343233R ππ=,解得2R =,又根据球的表面积公式24S R π=,所以该球的表面积为24216S ππ=⋅=.14.设向量a ,b 不平行,向量a b λ+ 与2a b + 平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则{12,k k λ==,所以12λ=.【解析】向量共线.15.一般把数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则第21行从左至右的第4个数字应是____________.【答案】228【分析】由题知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,从左到右第4个数字为228.【详解】观察数据可知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,所以第21行从左到右第4个数字为228.故答案为:228.【点睛】关键点睛:本题考查合情推理、数列的前n 项和,解题关键要善于观察发现数据特征,考查了学生的逻辑思维能力、数据处理能力、运算求解能力,综合性较强,属于较难题型.四、双空题16.已知等比数列{}n a 的公比为q ,且101a <<,20201a =,则q 的取值范围为______;能使不等式12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立的最大正整数m =______.【答案】(1,)+∞4039【分析】根据已知求得1a 的表达式,由此求得q 的取值范围.根据12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立列不等式,化简求得m 的取值范围,从而求得最大正整数m .【详解】由已知201911201911a qa q =⇒=,结合101a <<知2019101q <<,解得1q >,故q 的取值范围为(1,)+∞.由于{}n a 是等比数列,所以1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列.要使12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立则1212111m ma a a a a a +++≤+++ 即()111111111m m a q a q q q⎛⎫-⎪-⎝⎭≤--,将120191a q=代入整理得:40394039m q q m ≤⇒≤故最大正整数4039m =.故答案为:(1,)+∞;4039【点睛】本小题主要考查等比数列的性质,考查等比数列前n 项和公式,属于中档题.五、解答题17.在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,M 是线段AB 的中点,1160,22,2,DAB AB CD DD C M ∠=︒====(1)求证:1//C M 平面11A ADD ;(2)求异面直线 CM 与1DD 所成角的余弦值.【答案】(1)证明见解析;(2)14.【分析】(1)易得1111//,C D MA C D MA =,则四边形11AMC D 为平行四边形,得到11//C M D A ,再利用线面平行的判定定理证明.(2)由//CM DA ,将异面直线CM 与1DD 成的角,转化为 DA 与1DD 相交所成的角,然后在1ADD ,利用余弦定理求解.【详解】(1)因为四边形ABCD 是等腰梯形,且2AB CD =,所以//AB DC .又由M 是AB 的中点,因此//CD MA 且CD MA =.如图所示:连接1AD ,在四棱柱1111ABCD A B C D -中,因为1111//,CD C D CD C D =,可得1111//,C D MA C D MA =,所以四边形11AMC D 为平行四边形.因此11//C M D A ,又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD ,所以1//C M 平面11A ADD .(2)因为//CM DA ,所以异面直线CM 与1DD 成的角,即为 DA 与1DD 相交所成的直角或锐角,在1ADD中,1C M =,所以111,2AD AD DD ===,由余弦定理可得:22211111cos 24AD DD AD ADD AD DD +-∠==-⋅,所以异面直线CM 和1DD 余弦值为14.【点睛】方法点睛:判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.已知数列{}n a 满足:13a =,且对任意的n *∈N ,都有1,1,n n a a +成等差数列.(1)证明数列{}1n a -等比数列;(2)已知数列{}n b 前n 和为n S ,条件①:()1(21)n n b a n =-+,条件②:11n n n b a +=-,请在条件①②中仅选择一个条件作为已知条件.............来求数列{}n b 前n 和n S .【答案】(1)证明见解析;(2)答案不唯一,具体见解析.【分析】(1)由条件得121n n a a +=-,利用等比数列定义可得证.(2)选条件①得(21)2nn b n =+,选条件②得1(1)()2nn b n =+⋅利用错位相减法可得解.【详解】(1)由条件可知112n n a a ++=,即121n n a a +=-,∴()1121n n a a +-=-,且112a -=∴{}1n a -是以112a -=为首项,2q =为公比的等比数列,∴12nn a -=,∴()21nn a n N*=+∈(2)条件①:()1(21)(21)2nn n b a n n =-+=+,123325272(21)2nn S n =⋅+⋅+⋅+++⋅ 23412325272(21)2n n S n +=⋅+⋅+⋅+++⋅利用错位相减法:123413222222222(21)2nn n S n +-=⋅+⋅+⋅+⋅++⋅+⋅- 118(12)6(21)212n n n S n -+--=++⋅--化简得()12(21)2n n S n n N +*=-+∈条件②:11(1)()12nn n n b n a +==+⋅-231111234(1)2222n nS n =⋅+⋅+⋅+++⋅ 234111111234(1)22222n n S n +=⋅+⋅+⋅+++⋅ 利用错位相减法:23411111111(1)222222n n n S n +=++++-+⋅ 1111[1()]11421(1)12212n n n S n -+-=+-+⋅-化简得()13(3)(2n n s n n N *=-+∈【点睛】错位相减法求和的方法:如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解;在写“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式19.已知椭圆C 的两个焦点分别为12(1,0),(1,0)F F -,短轴的两个端点分别为12,B B .且122B B =.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 与椭圆C 相交于P ,Q 两点,且11F P FQ ⊥ ,求直线l 的方程.【答案】(1)2212x y +=;(2)10x +-=,或10x -=.【分析】(1)由题干条件可得c 和b 的值,进而求出2a 的值,从而求出椭圆方程;(2)首先考虑斜率不存在的情况,不符合题意;当斜率存在时,联立方程,可得()22121222214,2121k k x x x x k k -+=⋅=++,又110F P FQ ⋅= ,向量坐标化可得()()()2221212111110k x x k x x k F P FQ ⋅--==++++uuu r uuu r ,代入1212,x x x x +⋅,化简,即可求出k 的取值,从而求出直线方程.【详解】解(1)由条件可知:1c =,又122B B =,所以1b =,则22a =,所以椭圆C 的方程为2212x y +=(2)当直线l 的斜率不存在时,其方程为1x =,不符合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得()()2222214210k x k x k +-+-=,()2810k ∆=+>,设()()1122,,,P x y Q x y ,则()22121222214,2121k k x x x x k k -+=⋅=++,()()1111221,,1,F P x y F Q x y =+=+ ,∵110F P FQ ⋅= ,即()()()()()22212121212111110x x y y k x x k x x k +++=+--+++=,即()()()222222221411()102121k k kk k k k -+--++=++化简得:2201172k k =+-解得217,77k k ==±.故直线l的方程为10x +-=,或10x --=.【点睛】方法点睛:(1)将向量转化为坐标的关系;(2)联立直线和椭圆,求出两根之和,两根之积;(3)将两根之和和两根之积代入坐标关系中,解出k .20.已知()cossin 222x x x f x ⎛⎫=+ ⎪⎝⎭,记ABC 的内角,,A B C 的对边分别为,,a b c .(1)求()f B 的取值范围;(2)当4a =,433b =,且()f B 取(1)中的最大值时,求ABC 的面积.【答案】(1)30,12⎛+ ⎝⎦;(2)833或433【分析】(1)利用公式对函数化简,根据B 角的范围,求函数值域.(2)由(1)求出B 的大小,利用正弦定理和三角形面积公式即可求出结果.【详解】(1)2()cossin sin cos 222222x x x x x x f x ⎛⎫=+=+ ⎪⎝⎭13(cos 1)3sin sin 2232x x x π+⎛⎫=+=++ ⎪⎝⎭因为B 为三角形的内角,所以(0,)B π∈所以4,333B πππ⎛⎫+∈ ⎪⎝⎭,所以3()0,12f B ⎛∈+ ⎝⎦(2)34()11,,23333f B B B ππππ⎛⎫⎛⎫=++=+∈ ⎪ ⎝⎭⎝⎭,,326B B πππ∴+==,由正弦定理得:4343sin 1sin sin sin 22a b A A B A =⇒=⇒=()0,,3A A ππ∈∴=,或23A π=,若3A π=,则2C π=,183sin 23ABC S ab C ==若23π=A ,则6π=C,1sin 23==ABC S ab C 【点睛】本题考查了三角恒等变换、正弦定理和三角形面积公式等基本数学知识,考查了数学运算能力和逻辑推理能力,属于中档题目.21.在直三棱柱111ABC A B C -中,112,120,,AB AC AA BAC D D ==∠=分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交,AB AC 于点,M N .(1)证明:平面1A MN ⊥平面11ADD A ;(2)求二面角1A A M N --的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)根据线面垂直的判定定理即可证明MN ⊥平面ADD 1A 1;又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)建立空间坐标系,利用向量法求出平面的法向量,利用向量法进行求解即可.【详解】(1)证明:∵AB=AC ,D 是BC 的中点,∴BC ⊥AD ,∵M ,N 分别为AB ,AC 的中点,∴MN ∥BC ,∴MN ⊥AD ,∵AA 1⊥平面ABC,MN ⊂平面ABC ,∴AA 1⊥MN ,∵AD,AA 1⊂平面ADD 1A 1,且AD∩AA 1=A ,∴MN ⊥平面ADD 1A 1∴,又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)设AA 1=1,如图:过A 1作A 1E ∥BC ,建立以A 1为坐标原点,A 1E ,A 1D 1,A 1A 分别为x ,y ,z 轴的空间直角坐标系如图:则A 1(0,0,0),A(0,0,1),∵P 是AD 的中点,∴M ,N 分别为AB ,AC 的中点.则31,,122M ⎛⎫ ⎪ ⎪⎝⎭,31,,122N ⎛⎫- ⎪ ⎪⎝⎭,则131,,122A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,)NM = ,设平面AA 1M 的法向量为(),,m x y z=,则100m AM m A A ⎧⋅=⎪⎨⋅=⎪⎩,得10220x y z z ++=⎨⎪=⎩,令1x =,则y =,则()1,m =,同理设平面A 1MN 的法向量为(),,n x y z=,则100n A M n NM ⎧⋅=⎨⋅=⎩,得310220x y z ++=⎪⎨⎪=⎩,令2y =,则1z =-,则()0,2,1n =-,则()15cos ,5m n m n m n ⋅===-⋅,∵二面角A-A 1M-N 是锐二面角,∴二面角A-A 1M-N 的余弦值是155.【点睛】本题主要考查直线垂直的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.22.已知21()(1)2xf x e ax b x =---.其中常数 2.71828e ≈⋅⋅⋅⋅⋅⋅.(1)当2,4a b ==时,求()f x 在[1,2]上的最大值;(2)若对任意0,()a f x >均有两个极值点()1212,x x x x <,(ⅰ)求实数b 的取值范围;(ⅱ)当a e =时,证明:()()12f x f x e +>.【答案】(1)max ()1f x e =-;(2)(ⅰ)1b >;(ⅱ)证明见解析.【分析】(1)由题得2()4(1)x f x e x x =---,()24x f x e x '=--,()2x f x e ''=-,由[1,2]x ∈,可得()0f x ''>,即()'f x 在[1,2]上单增,且2(2)80f e -'=<,即()0f x '<,可知()f x 在[1,2]上单减,求得max ()(1)1f x f e ==-.(2)(ⅰ)利用两次求导可得(,ln )x a ∈-∞时,()'f x 单减;(ln ,)x a ∈+∞时,()'f x 单增,再由()f x 有两个极值点,知(ln )ln 0f a a a a b =--<',即ln b a a a >-恒成立,构造函数()ln g a a a a =-,利用导数求其最大值,可得实数b 的取值范围;(ⅱ)设()()(2),(1)h x f x f x x ''=--<,求导可得()h x 在(,1)-∞单增,得到()(2)f x f x ''<-,可得()()112f x f x ''<-,()()122f x f x ''->,结合()'f x 在(1,)+∞上单增,可得()()122f x f x >-,得到()()()()2222122222222x x f x f x f x f x e e ex ex e -+>-+=+-+-,构造22()22x x M x e e ex ex e -=+-+-,(1)x >,再利用导数证明()2(1)M x M e >=,即可得到()()12f x f x e+>【详解】(1)由2,4a b ==得,2()4(1)x f x e x x =---,求导()24x f x e x '=--,()2x f x e ''=-,[1,2]x ∈ ,2[,]x e e e ∴∈,20x e ∴->,即()0f x ''>()f x '∴在[1,2]上单增,且2(2)80f e -'=<,即[1,2]x ∀∈,()0f x '<,()f x ∴在[1,2]上单减,max ()(1)1f x f e ∴==-.(2)(ⅰ)求导()x f x e ax b '=--,因为对任意0,()a f x >均有两个极值点12,x x ,所以()0f x '=有两个根,求二阶导()x f x e a ''=-,令()0f x ''=,得ln x a=当(,ln )x a ∈-∞时,()0f x ''<,()'f x 单减;当(ln ,)x a ∈+∞时,()0f x ''>,()'f x 单增,由()0f x '=有两个根12,x x ,知(ln )ln 0f a a a a b =--<',即ln b a a a >-对任意0a >都成立,设()ln g a a a a =-,求导()ln g a a '=-,令()0g a '=,得1a =,当(0,1)x ∈时,()0g a '>,()g a 单增;当(1,)x ∈+∞时,()0g a '<,()g a 单减,max (()1)1g g a =∴=,1b ∴>又0,,()ba b f e x f x a -⎛⎫''-=>→+∞→+∞ ⎪⎝⎭Q ,所以实数b 的取值范围是:1b >.(ⅱ)当a e =时,()x f x e ex b '=--,()x f x e e ''=-,令()0f x ''=,得1x =当(,1)x ∈-∞时,()0f x ''<,()'f x 单减;当(1,)x ∈+∞时,()0f x ''>,()'f x 单增,又12,x x 是()0f x '=的两根,且12x x <,121,1x x <∴>,121x ∴->设()()(2),(1)h x f x f x x ''=--<,即22(2)2()2,(1)xxx xe ex b ee x b e e ex e x h x --⎡⎤=-=-------+<⎣⎦,则2()2220x x h x e e e e e -=+->-='()h x ∴在(,1)-∞单增,()(1)0h x h ∴<=,即()(2)f x f x ''<-又11,x <,()()112f x f x ''∴<-,()()122f x f x ''∴->又()f x ' 在(1,)+∞上单增,122x x ∴->,即1222x x x <-<,又()f x 在()12,x x 上单减,()()122f x f x ∴>-()()()()2222122222222x x f x f x f x f x e e ex ex e-∴+>-+=+-+-令22()22x x M x e e ex ex e -=+-+-,(1)x >则2()22x x M x e e ex e -'=--+,2()20x x M x e e e -''=+-≥()M x '∴在(1,)+∞单增,且(1)0M '=,()0M x '∴>,故()M x 在(1,)+∞单增又21x > ,()2(1)M x M e ∴>=,即()()12f x f x e+>【点睛】方法点睛:本题考查利用导数研究函数的单调性,求极值,最值,以及证明不等式,证明不等式的方法:若证明()()f x g x <,(,)x a b ∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知(,)x a b ∈时,有()0F x <,即证明了()()f x g x <,考查学生的函数与方程思想,化归与转化思想,考查逻辑思维能力与推理论证能力,属于难题.。
2020届重庆市一中高三(10月)月考理综生物试题(解析版)1.下列有关实验的说法正确的是A. 可以用哺乳动物成熟红细胞为材料用高倍镜观察细胞膜的亮-暗-亮三层结构B. 可以用菠菜叶的下表皮细胞为材料观察叶绿体C. 可以用黑藻叶为材料观察细胞的吸水和失水D. 可以用紫色洋葱鳞片叶外表皮细胞为材料观察DNA和RNA在细胞中的分布【答案】C【解析】【分析】细胞膜的结构属于亚显微结构,需要借助电子显微镜才能观察;可以选人的口腔上皮细胞为材料观察DNA 和RNA在细胞中的分布,而不宜选植物细胞,植物细胞含叶绿体,容易对颜色造成干扰。
【详解】A.细胞膜的结构属于亚显微结构,需要借助电子显微镜才能观察,A错误;B.观察叶绿体可以用菠菜叶的下表皮并稍带些叶肉,下表皮细胞不含叶绿体,B错误;C.黑藻叶属于成熟的植物细胞,有成熟的大液泡,可以用来观察细胞的吸水和失水,C正确;D.紫色洋葱鳞片叶外表皮细胞有颜色,会对观察DNA和RNA在细胞中的分布产生影响,D错误。
故选C。
2.下列关于元素的说法不正确的是A. 叶绿素由C、H、O、N、Mg等大量元素和微量元素构成B. P元素存在于磷脂分子的亲水性部位C. 核酸中的N元素只存在于碱基中D. 细胞中的元素大多以化合物形式存在【答案】A【解析】【分析】组成生物体的化学元素根据其含量不同分为大量元素和微量元素两大类。
(1)大量元素是指含量占生物总重量万分之一以上的元素,包括C、H、O、N、P、S、K、Ca、Mg;(2)微量元素是指含量占生物总重量万分之一以下的元素,包括Fe、Mn、Zn、Cu、B、Mo等。
糖类的元素组成是C、H、O,蛋白质的元素组成是C、H、O、N等,不同类的脂质的元素组成不同,脂肪和固醇的元素组成是C、H、O,磷脂的元素组成是C、H、O、N、P,核酸的元素组成是C、H、O、N、P。
【详解】A、 C、H、O、N、Mg都属于大量元素,A错误;B.、P元素存在于磷脂分子的亲水性部位,疏水性尾部是由脂肪酸链组成不含磷,B正确;C、核酸中的磷酸和五碳糖都不含N,N元素只存在于碱基中,C正确;D、细胞中的元素大多以化合物形式存在,D正确。
2020届重庆市第一中学高三下学期3月月考试题数学(理)一、单选题1.已知集合()(){}|2340A x Z x x =∈+-<,{|B x y ==,则A B =I ( ) A .(]0,e B .{}0,eC .{}1,2D .()1,2【答案】C【解析】()(){}2340A x Z x x =∈+-<{}3={|4,}1,0,1,2,32x x x -<<∈=-Z ,{B x y =={}{|1ln 0}(0,]1,2x x e A B =-≥=∴⋂= ,选C.2.已知复数z 满足11212ii z+=+(i 为虚数单位),则z 的虚部为( ) A .4 B .4i C .4- D .4i - 【答案】C 【解析】112i 11420i34i 12i 5z ++-===-+ ,所以z 的虚部为4-,选C. 3.下列说法正确的是( ) A .a R ∈,“11a<”是“1a >”的必要不充分条件 B .“p q ∧为真命题”是“p q ∨为真命题”的必要不充分条件C .命题“x R ∃∈,使得2230x x +-<”的否定是:“x R ∀∈,2230x x +->”D .命题:p “x R ∀∈,sin cos x x +≤,则p ⌝是真命题 【答案】A【解析】对每一个选项逐一分析判断得解. 【详解】 A. 由11a <得1a >或0a <,所以a R ∈,“11a<”是“1a >”的必要不充分条件,所以该选项命题正确;B. “p q ∧为真命题”即“p 和q 都是真命题”,“p q ∨为真命题”即“,p q 中至少有一个真命题”, 所以 “p q ∧为真命题”是“p q ∨为真命题”的充分不必要条件,所以该选项命题是假命题;C. 命题“x R ∃∈,使得2230x x +-<”的否定是:“x R ∀∈,2230x x +-≥”,所以该选项命题是假命题;D. sin cos )4x x x π+=+≤, 所以命题:p “x R ∀∈,sin cos x x +≤是真命题,则p ⌝是假命题,所以该选项命题是假命题. 故选:A 【点睛】本题主要考查充要条件的判断和复合命题的真假的判断,考查特称命题的真假的判断,意在考查学生对这些知识的理解掌握水平.4.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤?”( ) A .6斤 B .7斤C .8斤D .9斤【答案】D【解析】将原问题转化为等差数列的问题,然后利用等差数列的性质求解即可. 【详解】原问题等价于等差数列中,已知154,2a a ==,求234a a a ++的值. 由等差数列的性质可知:15241536,32a a a a a a a ++=+===, 则2349a a a ++=,即中间三尺共重9斤. 本题选择D 选项. 【点睛】本题主要考查等差数列的实际应用,等差数列的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.5.设231sin ,54a b c π⎛⎫=== ⎪⎝⎭,则a,b,c 的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .c <b <a【答案】B【解析】由三角函数的单调性可得:112a <<,由对数函数的单调性可得:1b >,由指数函数的单调性可得:102c <<,即可得解. 【详解】 解:因为11sinsin562ππ>>=,即112a <<,1>=,即1b>,2132111442⎛⎫⎛⎫<=⎪ ⎪⎝⎭⎝⎭,即12c<<,即c a b<<,故选B.【点睛】本题考查了利用三角函数,对数函数,指数函数的单调性比较值的大小,属基础题. 6.过抛物线()220y px p=>的焦点F的直线交抛物线于,A B两点,若线段AB中点的横坐标为3,且52AB p=,则p=()A.8B.2C.6D.4【答案】D【解析】设,A B的坐标分别为()11,x y,()22,x y,由题得12=6x x+,化简562AB p p==+即得解.【详解】设,A B的坐标分别为()11,x y,()22,x y,因为线段AB中点的横坐标为3,所以12123,62x xx x+=∴+=,由题得1252AB p x x p==++,由此解得4p=.故选:D.【点睛】本题主要考查抛物线的定义和几何性质,意在考查学生对这些知识的理解掌握水平. 7.一架飞机有若干引擎,在飞行中每个引擎正常运行的概率为p,且相互独立.已知4引擎飞机中至少有3个引擎正常运行,飞机就可安全飞行;2引擎飞机要2个引擎全部正常运行,飞机才可安全飞行.若已知4引擎飞机比2引擎飞机更安全,则p的取值范围是()A.2,13⎛⎫⎪⎝⎭B.1,13⎛⎫⎪⎝⎭C.20,3⎛⎫⎪⎝⎭D.10,3⎛⎫⎪⎝⎭【答案】B【解析】由题得()33442441C p p C p p-+>,解不等式即得解.【详解】设事件A 为“4引擎飞机安全飞行”,则()()3344441P A C P P C P =-+.设事件B 为“2引擎飞机成功飞行”,则()2P B p =,依题意()()P A P B >,即()33442441C p p C p p -+>,所以113p <<, 故选:B . 【点睛】本题主要考查独立重复试验的概率的计算,考查互斥事件的概率的计算,意在考查学生对这些知识的理解掌握水平.8.下列关于函数()12sin 26x f x π⎛⎫=+ ⎪⎝⎭的图像或性质的说法中,正确的个数为( ) ①函数()f x 的图像关于直线83x π=对称 ②将函数()f x 的图像向右平移3π个单位所得图像的函数12sin 23y x π⎛⎫=+ ⎪⎝⎭ ③函数()f x 在区间5,33ππ⎛⎫-⎪⎝⎭上单调递增 ④若()f x a =,则1cos 232a x π⎛⎫-= ⎪⎝⎭A .1个B .2个C .3个D .4个【答案】B【解析】利用正弦型函数的图象和性质逐一分析每一个命题得解. 【详解】 令()1262x k k Z πππ+=+∈,解得()223x k k Z ππ=+∈,当1k =时,则83x π=,故①正确;将函数()f x 的图像向右平移3π个单位得112sin 2sin 2362y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,故②错误; 令()1222262k x k k Z πππππ-+<+<+∈,得()424433k x k k Z ππππ-+<<+∈,故③错误; 若()f x a =,12sin 26x a π⎛⎫+=⎪⎝⎭,111cos sin sin 23223262a x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故④正确.故选:B . 【点睛】本题主要考查正弦型函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 9.已知{}1,2,3,...,40S =,A S ⊆且A 中有三个元素,若A 中的元素可构成等差数列,则这样的集合A 共有( )个 A .460 B .760 C .380D .190【答案】C【解析】设A 中构成等差数列的元素为,,a b c ,则有2b a c =+,可得,a c 应该同奇同偶,求出,a c 同为奇数和偶数的可能的情况都为220C ,即得解.【详解】设A 中构成等差数列的元素为,,a b c ,则有2b a c =+, 由此可得,a c 应该同奇同偶,而当,a c 同奇同偶时,则必存在中间项b ,所以问题转变为只需在140-中寻找同奇同偶数的情况.,a c 同为奇数的可能的情况为220C ,同为偶数的可能的情况为220C , 所以一共有2202380C ⋅=种,故选:C . 【点睛】本题主要考查等差数列和排列组合的综合应用,意在考查学生对这些知识的理解掌握水平.10.已知三棱锥—P ABC 的四个顶点均在同一个球面上,底面ABC ∆满足BA BC ==π2ABC ∠=,若该三棱锥体积的最大值为3,则其外接球的体积为( ) A .8π B .16πC .16π3D .32π3【答案】D【解析】因为ABC ∆是等腰直角三角形,所以外接圆的半径是11232r ==接球的半径是R ,球心O 到该底面的距离d ,如图,则163,32ABC S BD ∆=⨯==116336ABC V S h h ∆==⨯=最大体积对应的高为3SD h ==,故223R d =+,即22(3)3R R =-+,解之得2R =,所以外接球的体积是343233R ππ=,应选答案D .11.若曲线()21(11)ln(1)f x e x e a x =-<<-+和()32(0)g x x x x =-+<上分别存在点,A B ,使得AOB ∆是以原点O 为直角顶点的直角三角形,且斜边AB 的中点y 轴上,则实数a 的取值范围是 ( ) A .2(,)e e B .2(,)2e eC .2(1,)eD .[1,e)【答案】B【解析】()2'32(0)g x x x x =-+< ,由()'0g x < 得()g x 在(),0-∞ 上单调递减,所以()()00g x g >= ,设()001,ln 1A x a x ⎛⎫ ⎪ ⎪+⎝⎭,因为斜边AB 的中点在y 轴上,所以()32000,B x x x -+ ,又因为OA OB ⊥ ,所以()32000001•1ln 1x x x ax x +=--+ ,可得()001,ln 1x a x +=+ 设()()21(11),ln 1x h x e x e x +=-<<-+ 则()()()()()()222ln 11'0,112ln 1x e h x h e e h x h e x +-=>-=<<-=⎡⎤+⎣⎦,实数a 的取值范围是2,2e e ⎛⎫⎪⎝⎭,故选B. 【方法点睛】本题主要考查利用导数求切线斜率、利用导数研究函数的单调性,属于难题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x =';(2) 己知斜率k 求切点()()11,,A x f x 即解方程()1f x k '=;(3) 巳知切线过某点()()11,M x f x (不是切点)求切点, 设出切点()()00,,A x f x 利用()()()10010f x f x k f x x x ='-=-求解.12.在平面直角坐标系xOy 中,A 和B 是圆()22:11C x y -+=上的两点,且2AB =,点()2,1P ,则2PA PB -u u u r u u u r的取值范围是( ) A .52,52⎡⎤-+⎣⎦ B .51,51⎡⎤--+⎣⎦ C .625,625⎡⎤-+⎣⎦D .7210,7210⎡⎤-+⎣⎦【答案】A【解析】取AB 中点为M ,延长MA 至Q ,使得323MQ MA ==,求出2PA PB PQ -=u u u r u u u r u u u r,根据已知求出Q 的轨迹是以C 为圆心,5为半径的圆,再利用数形结合求出2PA PB -u u u r u u u r的取值范围.【详解】2AB =AB 中点为M ,22CM =,且CM AB ⊥,延长MA 至Q ,使得32MQ MA ==, 所以23PA PB PA PA PB PM MA BA PM MA PM MQ PQ -=+-=++=+=+=u u u r u u u r u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u u r u u u u r u u u r ,因为QC ==所以Q 的轨迹是以C因为PC ==所以PQ ∈u u u r.故选:A 【点睛】本题主要考查直线和圆的位置关系和轨迹问题,考查向量的线性运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题13.双曲线22163-=x y 的渐近线与圆222(3)(0)x y r r -+=>相切,则r =_____【解析】求出渐近线方程,再求出圆心到渐近线的距离,根据此距离和圆的半径相等,求出r . 【详解】解:双曲线的渐近线方程为y x =,即0x ±=,圆心(3,0)到直线的距离d ==,r ∴=【点睛】本题考查双曲线的性质、直线与圆的位置关系、点到直线的距离公式.解答的关键是利用圆心到切线的距离等于半径来判断直线与圆的位置关系.14.某个四棱柱被一个平面所截,得到的几何的三视图如图所示,则这个几何体的体积为______.【答案】8【解析】先通过三视图找到几何体原图,再求几何体的体积得解.【详解】由三视图可知,几何体原图是ABCD-EFGH.由于长方体被平面所截,可以考虑沿着截面再接上一个一模一样的几何体,从而拼成了一个长方体,∵长方体由两个完全一样的几何体拼成,∴所求体积为长方体体积的一半.从图上可得长方体的底面为正方形,且边长为2,长方体的高为314+=,∴182V V==方体长.故答案为:8【点睛】本题主要三视图还原几何体,考查几何体体积的计算,意在考查学生对这些知识的理解掌握水平.15.61(1)(0)x ax ax⎛⎫++>⎪⎝⎭的展开式中2x的系数为240,则=⎰__________.【答案】π【解析】由条件知()611(0)x ax a x ⎛⎫++> ⎪⎝⎭的展开式中2x 的系数为:246240C a =解得 2.a=0==14.4ππ⨯⨯=故答案为π.16.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.设()()*1121n n b n n N a λ+⎛⎫=-⋅+∈ ⎪⎝⎭,215b λλ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是______. 【答案】312λ-<<【解析】先求出112n na +=,()122n nb n λ+=-⋅,根据21b b >得12λ-<<,根据21n n b b ++>得32λ<,综合即得解. 【详解】∵数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+. ∴1121n n a a +=+,化为11112(1)n na a ++=+, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是等比数列,首项为1112a +=,公比为2,∴112n na +=, ∴()()112122nn n b n n a λλ+⎛⎫=-+=-⋅ ⎪⎝⎭,∵215b λλ=-,且数列{}n b 是单调递增数列,∴21b b >,∴()21225λλλ-⋅>-,解得12λ-<<;再由21n n b b ++>,可得12n λ<+,对于任意的*n N ∈恒成立,∴32λ<.综上得312λ-<<. 故答案为:312λ-<< 【点睛】本题主要考查数列的通项的求法和数列的单调性,意在考查学生对这些知识的理解掌握水平.三、解答题17.如图,在ABC ∆中,点D 在BC 边上,ADC 60∠=o ,27AB =,4BD =.(1)求ABD ∆的面积.(2)若120BAC ∠=o ,求sin C 的值.【答案】(1)23(221【解析】(1)先由余弦定理求得2AD =,再求出ABD ∆的面积;(2)利用正弦定理求出21sin 14B =,再根据()sin sin 60C B =-o求解. 【详解】(1)由题意,120BDA ∠=o ,在ABD ∆中,由余弦定理可得2222cos120AB BD AD BD AD =+-⋅⋅o , 即228164AD AD =++,所以2AD =或6AD =-(舍), ∴ABD ∆的面积113sin 422322S DB DA ADB =⋅⋅⋅∠=⨯⨯=(2)在ABD ∆中,由正弦定理得sin sin AD AB B BDA =∠,代入得21sin B =, 由B 为锐角,故57cos 14B =, 所以()21sin sin 60sin 60cos cos 60sin 7C B B B =-=-=o o o .【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角函数求值,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.18.如图,在斜三棱柱111ABC A B C -中,正三角形ABC 的边长为2,13BB =,110AB =,160CBB ∠=o .(1)求证:面ABC ⊥面11BCC B ; (2)求二面角1C BB A --的余弦值. 【答案】(1)见解析;(2)5【解析】(1)取BC 的中点O ,连接OA 和1OB ,先证明OA ⊥平面11BCC B ,面ABC ⊥面11BCC B 即得证;(2)如图所示,以点O 为坐标原点,OC 为x 轴,OA 为y 轴,OH 为z 轴建立空间直角坐标系,利用向量法求出二面角1C BB A --的余弦值. 【详解】(1)取BC 的中点O ,连接OA 和1OB , ∵底面ABC 是边长为2的正三角形,∴OA BC ⊥,且OA =∵13BB =,160CBB ∠=o ,1OB =,222113213cos 607OB =+-⨯⨯⨯=o,∴1OB,又∵1AB =2221110OA OB AB +==,∴1OA OB ⊥.又∵110,OB BC OB BC =⊂I ,平面11BCC B , ∴OA ⊥平面11BCC B ,又∵OA ⊂平面ABC , ∴平面ABC ⊥平面11BCC B .(2)如图所示,以点O 为坐标原点,OC 为x 轴,OA 为y 轴,OH 为z 轴建立空间直角坐标系,可知2BH =,则()A ,()1,0,0B -,()1,0,0C,(H,112B ⎛⎝⎭,∴11,2AB ⎛= ⎝⎭u u u r,()1,AB =-u u ur,()1,AC =u u u r ,设()1111,,n x y z =u r 为平面1ABB 的法向量,则1110,n AB n AB ⎧⋅=⎪⎨⋅=⎪⎩u v u u u vu v u u u v ,即1111101022x x z ⎧--=⎪⎨+=⎪⎩,令11y =,得()1n =u r ; 设()2222,,n x y z =u u r 为平面1CBB 的法向量,则()20,1,0n =u u r;121212cos ,5n n n n n n ⋅===⋅u r u u ru r u u r u r u u r ,设二面角1C BB A --的平面角为θ,∴cos θ=. 【点睛】本题主要考查空间直线平面位置关系的证明,考查空间二面角的计算,意在考查学生对这些知识的理解掌握水平和计算能力.19.某学校研究性学习小组对该校高三学生的视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如下直方图:年级名次/是否近视1-50 951-1000近视41 32不近视9 18(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如上述表格中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系;(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.附:0.10 0.05 0.025 0.010 0.005k 2.706 3.841 5.024 6.635 7.879【答案】(Ⅰ);(Ⅱ);(Ⅲ)分布列见解析,.【解析】试题分析:(Ⅰ)先利用可得第一、二组的频率,由已知条件可得第三、六组的频率,进而可得视力在5.0以下的频率,再利用可得全年级视力在5.0以下的人数;(Ⅱ)先算出的值,再与表中的数据比较即可得在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系;(Ⅲ)先分析确定随机变量的所有可能取值,再计算各个取值的概率即可得的分布列,进而利用数学期望公式即可得数学期望.试题解析:(Ⅰ)设各组的频率为,依题意,前三组的频率成等比数列,后四组的频率成等差数列,故,,1分所以由得, 2分所以视力在5.0以下的频率为1-0.17=0.83, 3分故全年级视力在5.0以下的人数约为4分(Ⅱ)6分因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系. 7分(Ⅲ)依题意9人中年级名次在1~50名和951~1000名分别有3人和6人, 8分可取0,1,2,3,,,X的分布列为X 0 1 2 3PX的数学期望12分【考点】1、频率分布直方图;2、独立性检验;3、离散型随机变量的分布列与数学期望.20.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为4,直线1:bl y x c=与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 恰好在椭圆上.(1)求椭圆的标准方程;(2)与直线1l 垂直的直线2l 与线段AB (不包括端点)相交,且也椭圆相交C 、D 两点,求四边形ABCD 面积的取值范围.【答案】(1)22184x y +=;(2)3232,93⎛⎤ ⎥⎝⎦ 【解析】(1)由椭圆的对称性可知,当b c =时,点2F 关于直线1:l y x =的对称点E 坐标为(0,2),恰在椭圆上,所以2b c ==,再结合222a b c =+,即可求出椭圆的标准方程;(2)由直线1l 与椭圆方程联立可得点A ,B 的坐标,进而得到||AB ,设直线2l 的方程为:y x m =-+,由直线2l 与椭圆方程联立结合弦长公式可得||CD ,利用AB CD ⊥可表示四边形面积,利用直线2l 与线段AB 相交可得m 的范围,代入所得面积即可求解. 【详解】 (1)Q 焦距为4,2c ∴=,2(2,0)F ∴, Q 点2F 关于直线1:bl y x c=的对称点E 恰好在椭圆上, ∴由椭圆的对称性可知,当b c =时,点2(2,0)F 关于直线1:l y x =的对称点E 坐标为(0,2),恰在椭圆上,2b c ∴==,2228a b c =+=,∴椭圆的标准方程为:22184x y +=;(2)由题意可知,直线2l 的斜率为1-,设直线2l 的方程为:y x m =-+,1(C x ,1)y ,2(D x ,2)y ,联立方程22184y x mx y =-+⎧⎪⎨+=⎪⎩,消去y 得:2234280x mx m -+-=,∴△221612(28)0m m =-->,即212m <,∴2323m -<且1243m x x +=,212283m x x -=,由(1)可知,直线1l 的方程为:y x =,代入椭圆方程可得26(A ,26,26(B ,26, 83||AB ∴, 当直线2l 过点B 时,2626m =,46m ∴=, 同理可得,当直线2l 过点A 时,46m =Q 直线2l 与线段AB 交于点P ,(m ∴∈,满足△0>,||CD ∴==AB CD ⊥Q ,12ABCD S AB CD ∴=⨯⨯=四边形(m ∈Q ,∴32(9,32]3,∴四边形ACBD 面积的取值范围为:3232(,]93. 【点睛】本题主要考查了椭圆方程以及直线与椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.21.已知函数()()sin ln f x x a x b =-+,()g x 是()f x 的导函数. (1)若0a >,当1b =时,函数()g x 在0,2π⎛⎫⎪⎝⎭内有唯一的极大值,求a 的取值范围;(2)若1a =,1,2b e π⎛⎫∈-⎪⎝⎭,试研究()f x 的零点个数. 【答案】(1)20,12π⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭;(2)()f x 有3个零点 【解析】(1)先求导得()()2sin 1ag x x x '=-++,再分212a π⎛⎫≥+ ⎪⎝⎭和212a π⎛⎫<+ ⎪⎝⎭两种情况讨论求得a 的取值范围;(2)分析可知,只需研究(),b π-时零点的个数情况,再分(,),(,)22x b x πππ∈-∈两种情形讨论即可.【详解】(1)当1b =时,()()sin ln 1f x x a x =--,()()cos 1ag x f x x x '==-+,()0a > ()()2sin 1ag x x x '=-++在0,2π⎛⎫ ⎪⎝⎭是减函数,且()00g a '=>,21212a g ππ⎛⎫'=-+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭,①,当02g π⎛⎫'≥ ⎪⎝⎭,212a π⎛⎫≥+ ⎪⎝⎭时,()0g x '≥恒成立,()g x 在0,2π⎛⎫ ⎪⎝⎭是增函数,无极值;②,当02g π⎛⎫'< ⎪⎝⎭,212a π⎛⎫<+ ⎪⎝⎭时,00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=,()00,x x ∈,()0g x '>,()g x 单调递增;0,2x x π⎛⎫∈ ⎪⎝⎭,()0g x '<,()g x 单调递减,0x 为()g x 唯一的极大值点,所以20,12a π⎛⎫⎛⎫∈+ ⎪ ⎪ ⎪⎝⎭⎝⎭(2)1a =,()()sin ln f x x x b =-+,(),x b ∈-+∞,1,2b e π⎛⎫∈-⎪⎝⎭,可知, (i )(),x π∈+∞时,()0f x <,无零点;所以只需研究(),b π-,()1cos f x x x b'=-+, (ii ),2x ππ⎛⎫∈⎪⎝⎭时,()1cos 0f x x x b '=-<+,可知()f x 单调递减, 1ln 1ln 02222f b e ππππ⎛⎫⎛⎫⎛⎫=-+>-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()0f π<,∃唯一的,2s ππ⎛⎫∈ ⎪⎝⎭,()0f s =;(iii )当,2x b π⎛⎫∈- ⎪⎝⎭,()()21sin f x x x b ''=-++是减函数,且()21000f b ''=+>,211022f b ππ⎛⎫''=-+< ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 则10,2x π⎛⎫∃∈ ⎪⎝⎭,()10f x ''=,()f x '在()1,b x -是增函数,1,2x π⎛⎫⎪⎝⎭是减函数,并且()lim 0x b f x +→-'<,()1010f b'=->,1022f b ππ⎛⎫'=-< ⎪⎝⎭+, 所以()2,0x b ∃∈-,()20f x '=;30,2x π⎛⎫∃∈ ⎪⎝⎭,()30f x '=,且知()f x 在()2,b x -单调递减,在()23,x x 单调递增,在3,2x π⎛⎫⎪⎝⎭单调递减.又因为()lim 0x bf x +→->,()00ln 0f b =-<,02f π⎛⎫> ⎪⎝⎭,所以(),0m b ∃∈-,()0f m =,0,2n π⎛⎫∃∈ ⎪⎝⎭,()0f n =,综上所述,由(i )(ii )(iii )可知,()f x 有3个零点.【点睛】本题主要考查利用导数研究函数的极值和零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.22.在直角坐标系xOy 中,曲线C 的参数方程为2cos (22sin x y θθθ=⎧⎨=+⎩为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系.()1写出曲线C 的极坐标方程; ()2设点M 的极坐标为4π⎫⎪⎭,过点M 的直线l 与曲线C 相交于A ,B 两点,若2MA MB =,求AB 的弦长.【答案】(1)4sin ρθ=;(2)3【解析】()1将参数方程转化为直角坐标方程,然后转化为极坐标方程可得曲线C 的极坐标方程为4sin ρθ=.()2设直线l 的参数方程是11x t cos y t sin θθ=+⋅⎧⎨=+⋅⎩(θ为参数),与圆的方程联立可得()2220t cos sin t θθ+--=,结合题意和直线参数的几何意义可得弦长123AB t t =-=.【详解】()1Q 曲线C 的参数方程为222x cos y sin θθ=⎧⎨=+⎩(θ为参数).∴曲线C 的直角坐标方程为2240x y y +-=,∴曲线C 的极坐标方程为240sin ρρθ-=,即曲线C 的极坐标方程为4sin ρθ=.()2设直线l 的参数方程是11x t cos y t sin θθ=+⋅⎧⎨=+⋅⎩(θ为参数)①, 曲线C 的直角坐标方程是2240x y y +-=,②,①②联立,得()2220t cos sin t θθ+--=,122t t ∴=-,且2MA NB =,122t t ∴=-,则12t =,21t =-或12t =-,21t =,AB ∴的弦长123AB t t =-=.【点睛】本题主要考查参数方程与极坐标方程的转化方法,直线参数方程的几何意义及其应用等知识,意在考查学生的转化能力和计算求解能力.23.已知1a >-,函数()221f x x a x =-++,()243g x x ax =+- (1)当1,22a x ⎡⎤∈-⎢⎥⎣⎦时,()()f x g x ≥恒成立,求实数a 的取值范围. (2)在(1)中a 的最大值为m ,若bc ca ab m a b c++=,证明:a b c m ++≤ 【答案】(1)(]1,2-;(2)见解析 【解析】(1)()()f x g x ≥可化为()1a g x +≥,即11212a g a a g ⎧⎛⎫+≥- ⎪⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩,解不等式组即得解;(2)分析得2222222b c a c b a abc ++=,再利用重要不等式分析得证.【详解】(1)当1,22a x ⎡⎤∈-⎢⎥⎣⎦时,()()()2211f x a x x a =-++=+, 所以()()f x g x ≥可化为()1a g x +≥,又()243g x x ax =+-的最大值必为12g ⎛⎫- ⎪⎝⎭、2a g ⎛⎫ ⎪⎝⎭之一, ∴11212a g a a g ⎧⎛⎫+≥- ⎪⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩即2423a a ≥-⎧⎪⎨-≤≤⎪⎩即423a -≤≤. 又1a >-,所以12a -<≤.所以a 取值范围为(]1,2-.(2)由(1)可知2m =,所以2bc ca ab a b c++=,得2222222b c a c b a abc ++=, ∴0abc >,∵222222b c a c abc +≥,222222a c a b a bc +≥,222222b c a b acb +≥,∴()222222b c a c b a abc a b c ++≥++, 即()2abc abc a b c ≥++,即2a b c ++≤.即得证.【点睛】本题主要考查不等式的恒成立问题,考查不等式的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.。