2021届重庆市第一中学高三上学期第一次月考数学试题解析
- 格式:doc
- 大小:923.00 KB
- 文档页数:20
【考试时间:11月30日16:15~18:15】数学试题卷注意事项:1.答卷前、考生务必将自已的姓名、准考证号码填写在答题卡上2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题(本大题共8小题、每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数满足,则可以为( )A. B. C. D.2.已知平面向量,则“”是“与的夹角为钝角”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.为等比数列的前项和,若,且,则等于()A.2 B.4050 C. D.4.已知实数满足,则的最小值为( )A.20 B.25 C.30 D.355.若为锐角,已知( )A. B. C. D.6.已知函数的定义域为,若函数与函数的交点为,则( )A.0 B. C.2025 D.40507.已知圆,直线,点为直线上的动点.过点作圆的两条切线,切点分别为.若使得四边形为正方形的点有且只有一个,则实数的值为()A.或B.或5C.3或D.3或58.已知点分别为椭圆的左、右焦点,过点作轴的垂线交椭圆于两点,分别为的内切圆圆心,则的周长是( )z i z z =⋅z 1i -1i +12i +12i -()()1,2,,1a b m ==- 2m <a b n S {}n a n 12a =20222030a a +=2025S 2-4050-x 104x <<1914x x +-αsin cos αα-=cos2α=2525-3535-()f x ()(),22f x f x =--R ()11221x x g x --=-+()f x ()()()112220252025,,,,,,x y x y x y 20251i i x ==∑2025222:(1)4C x y +-=:0l x y m ++=P l P C ,M N PMCN P m 3-5-3-5-12,F F 22:11612x y C +=1F x C ,M N 123,,O O O 12122,,MF F NF F F MN 123O O OC. D.二、多项选择题(本大题共3小题、每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的、全部选对的得6分,部分选对的得部分分,有选借的得0分)9.函数的部分图象如图所示,则下列结论正砳的是( )A.B.C.关于直线对称D.将函数的图象向左平移个单位得到函数的图象10.已知抛物线的焦点为,过点的直线交该抛物线于,两点,点,则下列结论正确的是( )A.B.C.若直线的斜率为1,则D.面积的最小值为11.已知函数,则下列说法正确的是( )A.在上是增函数B.若关于的方程有两个不相等的实根,且,则C.若,不等式恒成立,则的取值范围为2+22+2-()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭2ω=π3ϕ=()f x 11π12x =()f x 5π12()2cos2g x x =24x y =F F ()()1122,,,A y B x y x ()0,1P -1214x x ⋅=-111AF BF+=AB 8AB =ABP ()()e ,ln x f x x g x x x =-=-()ln g x ()1,∞+x ()g x a =12,x x 12x x <1223x x +>0,0a x >∀>()e ln 1xa f f x x x ⎛⎫⋅-+ ⎪⎝⎭…a 2,e ∞⎡⎫+⎪⎢⎣⎭D.若,且,则的最大值为三、填空题(本大题共3小题,每小题5分,共15分)12.若直线与直线平行,则实数__________.13.点为平面直角坐标系的原点,,点满足,点为圆上一动点,则的最小值为__________.14.若数列满足对任意都有,则称数列为上的“凹数列”.已知,若数列为上的“凹数列”,则实数的取值范围是__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)记的内角的对边分别为.已知为边的中点,且.(1)求证:;(2)若,求的面积.16.(本小题满分15分)已知数列的前项和为,且.(1)若,求;(2)若数列是单调递增数列,求首项的取值范围.17.(本小题满分15分)某校高三年级在一次数学测验中,各位同学的成绩,现规定:成绩在的同学为“成绩顶尖”,在的同学为“成绩优秀”,低于90分的同学为“不及格”.(1)已知高三年级共有2000名同学,分别求“成绩优秀”和“不及格”的同学人数(小数按四舍五入取整处理);(2)现在要从“成绩顶尖”的甲乙同学和“成绩优秀”的丙丁戊己共6位同学中随机选4人作为代表交流学习心得,在已知至少有一名“成绩顶尖”同学入选的条件下,求同学丙入选的概率:(3)为了了解班级情况,现从某班随机抽取一名同学询问成绩,得知该同学为142分.请问:能否判断该班成绩明显优于或者差于年级整体情况,并说明理由.(参考数据:若,则,()()()12e 1f x g x a a ==>-210x x >>()21ln e ln x ax a a -+-e-21:20l x m y m ++=2:210l x y ++=m =O ()3,0A -P 2PA PO =Q 22:(3)(4)1C x y -+-=PQ PC +{}n a *n ∈N 212n n n a a a +++…{}n a *N 244m n n mn n b +=-{}n b {}*2n n ∈N ∣…m ABC ,,A B C ,,a b c 12cos ,a c B D c a+=+AC sin sin BD ABC a C ∠=BD b =4b =ABC {}n a n n S 1221n n a S n +=+-11a =n S {}n a 1a ()110,100N ξ~[140,150][)130,140()2,X N u σ~()0.6827P u X u σσ-+=……)18.(本小题满分17分)已知双曲线,其左顶点,离心率.(1)求双曲线方程及渐近线方程;(2)过右焦点的直线与双曲线右支交于两点,与渐近线分别交于点,直线分别与直线交于.(i)求的取值范围;(ii )求证:以为直径的圆过定点,并求出该定点.19.(本小题满分17分)已知函数.(1)讨论函数极值点的个数;(2)当时,数列满足:.求证:的前项和满足.()()220.9544,330.9973P u X u P u X u σσσσ-+=-+=…………()2222:10,0x y C a b a b-=>>()2,0A -32e =F ,P Q ,M N ,AP AQ 43x =,R T PQMN RT ()293ln 32f x x ax x =+-+()f x 32a ={}n a ()113,126n n n f a a a a +==+{}n a n 23n n S n <<+。
压轴解答题第二关 以解析几何中与椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.类型一 中点问题典例1已知椭圆()2222:10x y C a b a b+=>>的离心率13e =,焦距为2.(1)求椭圆C 的方程;(2)过点()0,2Q 作斜率为()0k k ≠的直线l 与椭圆C 交于A 、B 两点,若x 轴上的一点E 满足AE BE =,试求出点E 的横坐标的取值范围.【来源】河南省温县第一高级中学2021-2022学年高三上学期1月月考文科数学试题【举一反三】已知椭圆C :()222210y x a b a b+=>>的焦距与椭圆2213x y +=的焦距相等,且C 经过抛物线()212y x =- (1)求C 的方程;(2)若直线y kx m =+与C 相交于A ,B 两点,且A ,B 关于直线l :10x ty ++=对称,O 为C 的对称中心,且AOB 的面积为103,求k 的值. 类型二 垂直问题典例2 已知椭圆1C :22221x y a b +=(0a b >>)的离心率为22,1C 的长轴是圆2C :222x y +=的直径.(1)求椭圆的标准方程;(2)过椭圆1C 的左焦点F 作两条相互垂直的直线1l ,2l ,其中1l 交椭圆1C 于P ,Q 两点,2l 交圆2C 于M ,N 两点,求四边形PMQN 面积的最小值.【来源】广东省肇庆市2021届高三二模数学试题【举一反三】已知椭圆222:1(1)x C y a a+=>,离心率63e =.直线:1l x my =+与x 轴交于点A ,与椭圆C 相交于,E F 两点.自点,E F 分别向直线3x =作垂线,垂足分别为11,E F .(Ⅰ)求椭圆C 的方程及焦点坐标;(Ⅱ)记1AEE ,11AE F ,1AFF 的面积分别为1S ,2S ,3S ,试证明1322S S S 为定值. 类型三 面积问题典例3如图,已知椭圆221:12x y Γ+=和抛物线22:3x y Γ=,斜率为正的直线l 与y 轴及椭圆1Γ依次交于P 、A 、B 三点,且线段AB 的中点C 在抛物线2Γ上.(1)求点P 的纵坐标的取值范围;(2)设D 是抛物线2Γ上一点,且位于椭圆1Γ的左上方,求点D 的横坐标的取值范围,使得PCD 的面积存在最大值.【来源】浙江省2022届高三水球高考命题研究组方向性测试Ⅴ数学试题【举一反三】已知椭圆C :22221(x y a b a b+=>>0)的右焦点F 与右准线l :x =4的距离为2.(1)求椭圆C 的方程;(2)若直线():0m y kx t t =+≠与椭圆C 相交于A ,B 两点,线段AB 的垂直平分线与直线m 及x 轴和y 轴分别相交于点D ,E ,G ,直线GF 与右准线l 相交于点H .记AEGF ,ADGH 的面积分别为S 1,S 2,求12S S 的值.【来源】江苏省苏州中学等四校2021-2022学年高三下学期期初联合检测数学试题类型四 范围与定值问题典例4已知椭圆C :()2222 1x y a b c a b +=>>2()2,1P .(1)求C 的方程;(2)若A ,B 是C 上两点,直线AB 与曲线222x y +=相切,求AB 的取值范围. 【来源】重庆市2022届高三下学期开学考试数学试题【举一反三】已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(2,0)F ,过点F 且垂直于x 轴的直线与椭圆相交所得的弦长为2. (1)求椭圆C 的方程;(2)过椭圆内一点P (0,t ),斜率为k 的直线l 交椭圆C 于M ,N 两点,设直线OM ,ON (O 为坐标原点)的斜率分别为k 1,k 2,若对任意k ,存在实数λ,使得12k k k λ+=,求实数λ的取值范围. 【来源】江苏省扬州大学附中2021届高三下学期2月检测数学试题典例5 已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与短轴的两个端点组成的三角形是等腰直角三角形,点(10,1)P 是椭圆C 上一点. (1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t -+-=引两条切线,分别交椭圆C 于点P ,Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k ⋅为定值. 【来源】云南省昭通市2022届高三期末数学(理)试题【举一反三】已知椭圆2222:1(0)x y C a b a b +=>>经过两点33,2M ⎭,242N ⎝⎭. (1)求椭圆C 的方程:(2)A 、B 分别为椭圆C 的左、右顶点,点P 为圆224x y +=上的动点(P 不在坐标轴上),P A 与PB 分别与椭圆C 交E 、F 两点,直线EF 交x 轴于H 点,请问点P 的横坐标与点H 的横坐标之积是否为定值?若是,求出这个定值;若不是,说明理由.【来源】江西省景德镇市2022届高三第二次质检数学(理)试题【精选名校模拟】1.已知椭圆2222C :1(0)x y a b a b+=>>的离心率为12,直线1:22l y x =-+与椭圆C 有且仅有一个公共点A .(Ⅰ)求椭圆C 的方程及A 点坐标;(Ⅱ)设直线l 与x 轴交于点B .过点B 的直线与C 交于E ,F 两点,记点A 在x 轴上的投影为G ,T 为BG 的中点,直线AE ,AF 与x 轴分别交于M ,N 两点.试探究||||TM TN ⋅是否为定值?若为定值,求出此定值;否则,请说明理由.【来源】湖南省长沙市第一中学、广东省深圳实验学校2021届高三下学期联考数学试题2.如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点(0,2)A ,右焦点为(c,0)F ,直线AF 交椭圆于B点,且满足||2||AF FB =, 33||2AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值. 【来源】黑龙江省漠河市高级中学2020-2021学年高三上学期第三次摸底考试文科数学试题3.已知椭圆22221(0)x y a b a b +=>>的左焦点为F ,离心率3e = 4.(Ⅰ)求椭圆的方程;(Ⅱ)过点F 的直线l 与椭圆交于M ,N 两点(非长轴端点),MO 的延长线与椭圆交于P 点,求PMN 面积的最大值,并求此时直线l 的方程.【来源】天津市十二区县重点学校2021届高三下学期毕业班联考(一)数学试题4.已知椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F 3G 是椭圆上一点,12GF F △的周长为643+.(1)求椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 交于A ,B 两点,且四边形OAGB 为平行四边形,求证:OAGB 的面积为定值.【来源】陕西省宝鸡市2021届高三下学期高考模拟检测(二)文科数学试题5.已知椭圆()2222:10x y C a b a b +=>>的离心率22e =,过右焦点(),0F c 的直线y x c =-与椭圆交于A ,B 两点,A 在第一象限,且2AF =.(1)求椭圆C 的方程;(2)在x 轴上是否存在点M ,满足对于过点F 的任一直线l 与椭圆C 的两个交点P ,Q ,都有MP MQ ⋅为定值?若存在,求出点M 的坐标;若不存在,说明理由.【来源】河南省济源(平顶山许昌市)2021届高三第二次质量检测理科数学试题6.已知椭圆2222:1(0,0)x y C a b a b+=>>的离心率为12,并且经过()03P ,点.(1)求椭圆C 的方程;(2)设过点P 的直线与x 轴交于N 点,与椭圆的另一个交点为B ,点B 关于x 轴的对称点为B ',直线PB '交x 轴于点M ,求证:OM ON ⋅为定值. 【来源】北京平谷区2021届高三数学一模试题7.已知经过原点O 的直线与离心率为22的椭圆()2222:10x y C a b a b +=>>交于A ,B 两点,1F 、2F 是椭圆C 的左、右焦点,且12AF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)如图所示,设点P 是椭圆C 上异于左右顶点的任意一点,过点Р的椭圆C 的切线与2x =-交于点M .记直线1PF 的斜率为1k ,直线2MF 的斜率为2k ,证明:12k k ⋅为定值,并求出该定值. 【来源】广西南宁市2021届高三一模数学(文)试题8.设O 是坐标原点,以1F 、2F 为焦点的椭圆()2222:10x y C a b a b+=>>的长轴长为2,以12F F 为直径的圆和C 恰好有两个交点. (1)求C 的方程;(2)P 是C 外的一点,过P 的直线1l 、2l 均与C 相切,且1l 、2l 的斜率之积为112m m ⎛⎫-≤≤-⎪⎝⎭,记u 为PO 的最小值,求u 的取值范围.【来源】广东省深圳市2021届高三一模数学试题9.已知点(1,0)A ,点B 是圆221:(1)16O x y ++=上的动点,线段AB 的垂直平分线与1BO 相交于点C ,点C 的轨迹为曲线E . (1)求E 的方程(2)过点1O 作倾斜角互补的两条直线12,l l ,若直线1l 与曲线E 交于,M N 两点,直线2l 与圆1O 交于,P Q 两点,当,,,M N P Q 四点构成四边形,且四边形 MPNQ 的面积为831l 的方程. 【来源】广东省广州市2021届高三一模数学试题10.已知椭圆2222:1(0)x y C a b a b+=>>的离心率是12,椭圆C 过点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)已知12,F F 是椭圆C 的左、右焦点,过点2F 的直线l (不过坐标原点)与椭圆C 交于,A B 两点,求11F A F B ⋅ 的取值范围.【来源】东北三省三校(哈师大附中 东北师大附中 辽宁省实验中学 )2020-2021学年高三下学期第一次联合模拟考试文科数学试题11.已知椭圆2222:1x y C a b+=7,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为:2x a =-,过点M 作ME 垂直于直线m 交直线m 于点E .(1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标; ②点O 为坐标原点,求OEN 面积的最大值.【来源】广东省广州市执信中学2022届高三下学期二月月考数学试题12.已知()12,0A -,()22,0A 分别为椭圆C :()222210x y a b a b +=>>的左、右顶点,点31,2H ⎛⎫ ⎪⎝⎭在椭圆上.过点1,02D ⎛⎫⎪⎝⎭的直线交椭圆于两点P ,Q (P ,Q 与顶点1A ,2A 不重合),且直线1A P 与2A Q ,1A Q 与2A P 分别交于点M ,N . (1)求椭圆C 的方程(2)设直线1A P 的斜率为1k ,直线1A Q 的斜率为2k . ①证明:12k k ⋅为定值; ②求DMN 面积的最小值.【来源】山东省潍坊市2021-2022学年高三上学期期末数学试题13.已知椭圆()2222:10x y E a b a b+=>>的右焦点为F ,点A ,B 分别为右顶点和上顶点,点O 为坐标原点,11e OF OA FA+=,OAB 2,其中e 为E 的离心率. (1)求椭圆E 的方程;(2)过点O 异于坐标轴的直线与E 交于M ,N 两点,射线AM ,AN 分别与圆22:4C x y +=交于P ,Q 两点,记直线MN 和直线PQ 的斜率分别为1k ,2k ,问12k k 是否为定值?若是,求出该定值;若不是,请说明理由.【来源】四川省绵阳市2021-2022学年高三上学期第二次诊断性考试理科数学试题14.已知点M 是椭圆C :()222210y x a b a b +=>>上一点,1F ,2F 分别为椭圆C 的上、下焦点,124F F =,当1290F MF ∠=︒,12F MF △的面积为5.(1)求椭圆C 的方程:(2)设过点2F 的直线l 和椭圆C 交于两点A ,B ,是否存在直线l ,使得2OAF 与1OBF △(O 是坐标原点)的面积比值为5:7.若存在,求出直线l 的方程:若不存在,说明理由.【来源】江西省赣州市2022届高三上学期期末数学(文)试题15.已知椭圆2222:1(0)x yC a ba b+=>>过点3P⎛⎝⎭3(1)求椭圆C的方程;(2)在y轴上是否存在点M,过点M的直线l交椭圆C于A,B两点,O为坐标原点,使得三角形AOB的面积1tan2=-∠S AOB若存在,求出点M的坐标;若不存在,说明理由.【来源】江西省赣州市2022届高三上学期期末数学(理)试题。
重庆市第一中学2021-2022高二数学上学期10月月考试题注意事项:1. 答卷前,考生务必将自己的姓名、准考证号码填写在答卷上。
2. 作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。
3. 考试结束后,将答题卡交回。
一、选择题:本题共12小题,每题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1. 若直线的倾斜角为 60,则直线的斜率为 ( ) A .3 B .3- C .3 D .3- 2. 在等差数列}{n a 中,3642=+a a ,则数列}{n a 的前5项之和5S 的值为( ) A .108 B .90 C .72 D .243. 经过点(2,5)A ,(3,6)B -的直线在x 轴上的截距为( ) A .2B .3-C .27-D .274. 在ABC △中,3A π∠=,3BC =,6AB =,则C ∠的大小为( )A .6πB .4π C .2π D .23π 5.方程2222210x y ax ay a a +++++-=表示圆,则a 的范围是( ) A .2a <-或23a >B .223a -<<C .20a -<<D .223a -<<6. 正方体1AC 中,,E F 分别是1,DD BD 的中点,则直线1AD 与EF 所成角的余弦值是( )A .12B .3 C .6 D .6 7. 已知数列}{n a 为等比数列,20,2272474=+=+a a a a ,则101a a 的值为( ) A .16 B .8 C .8- D .16-8. 设21,F F 分别为椭圆1422=+y x 的左、右焦点,点P 在椭圆上,且,则=∠21PF F ( ) A .6π B .4π C .3π D .2π 9. 与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是( )A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=10. 已知点)3,7(P ,圆22:210250M x y x y +--+=,点Q 为在圆M 上一点,点S 在x 轴上,则SP SQ +的最小值为( )A .7B .8C .9D .1011. 如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( ) A .3π B .3π C .4πD .34π 12. 在平面直角坐标系xOy 中,点P 为椭圆C :22221(0)y x a b a b+=>>的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若]3,4[ππα∈,则椭圆C 的离心率的取值范围为( )A .60,⎛⎤⎥ ⎝⎦B .30,⎛⎤⎥ ⎝⎦C .63,⎡⎤⎢⎥⎣⎦D .622,⎡⎤⎢⎥⎣⎦二、填空题:本题共4小题,每题5分,共20分。
函数的单调性+奇偶性(含解析)一、单选题1.函数1()lg(21)f x x =-的定义域为( ) A .1|2x x ⎧⎫>⎨⎬⎩⎭ B .12x x ⎧≥⎨⎩且}1x ≠ C .12x x ⎧⎨⎩且}1x ≠ D .1|2x x ⎧⎫≥⎨⎬⎩⎭2.函数()f x = ) A .1,3⎛⎫-+∞ ⎪⎝⎭ B .1,13⎛⎫- ⎪⎝⎭ C .1,13⎡⎫-⎪⎢⎣⎭ D .1,3⎛⎫-∞- ⎪⎝⎭3.已知函数,若方程有两个实数根,则实数k 的取值范围是( ) A .(−1,−12] B .[−12,0) C .[−1,+∞) D .[−12,+∞) 4.设函数()1,02,0x x x f x b x +≥⎧=⎨+<⎩是R 上的单调增函数,则实数b 的取值范围为( ) A .(),1-∞ B .[)0,+∞ C .(],0-∞ D .(]1,1- 5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A .12x y ⎛⎫= ⎪⎝⎭B .23y x -=C .1y x x =-D .()2ln 1y x =+ 6.设 ()212,11,1x x f x x x ⎧--≤⎪=⎨+>⎪⎩,则()()2f f =( ) A .-2B .2C .5D .267.集合{|,P x y =={|,Q y y ==U =R ,则()U P Q ⋂是( ) A .[)1,+∞B .∅C .[)0,1D .[)1,1- 8.函数x x x f 431)(3-=的单调递减区间是( )A .)2,(--∞B .)2,2(-C .),2(∞+D .),2()2,(+∞⋃--∞9.已知集合214A x x ⎧⎫=⎨⎬⎩⎭∣,集合{B y y ==∣,则A B =( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[1,1]- C .[0,1] D .1[0,]210.若函数()f x 满足()2f x x =+,则()32f x +的解析式是( )A .()3298f x x +=+B .()3232f x x +=+C .()3234f x x +=--D .()3234f x x +=+11.函数f (x )是定义域为R 的奇函数,当x>0时,f (x )=x+1,则当x<0时,f (x )的 表达式为( )A .1)(+-=x x fB .1)(--=x x fC .1)(+=x x fD .1)(-=x x f12.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1B .2C .4D .5二、多选题13.已知函数()f x 是一次函数,满足()()98ff x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =-C .()34f x x =-+D .()34f x x =-- 14.已知函数2,[1,2)x y x ∈-=,下列说法正确的是( )A .函数是偶函数B .函数是非奇非偶函数C .函数有最大值是4D .函数的单调增区间是为(0,2)15.下列函数中,与y x =是同一个函数的是( ) A .3log 3x y = B.3log 3x y = C.y = D .2y = 16.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合-{}1,1,2,4M =-,{}1,2,4,16N =,给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( )A .2y x =B .2y x =+C .2x y =D .2y x三、填空题17.函数()f x =_______.18.偶函数()f x 满足当0x >时,()34f x x =+,则()1f -=_____.19.已知定义在R 上的偶函数()f x 在(0,)+∞上单调递增,则()f x 在(,0)-∞上的单调性是________.20.设,0()ln ,0x e x g x x x ⎧≤=⎨>⎩则1()2g g ⎡⎤=⎢⎥⎣⎦____________.四、解答题21.已知()222f x x x =-+.(1)画出()f x 的图象.(2)根据图象写出()f x 的单调区间和值域.22.用函数的单调性的定义证明函数()4f x x x=+在()2,+∞上是增函数. 23.求解下列函数的定义域(1)(2) 24.求函数1,01(),12x f x x x x ⎧<<⎪=⎨⎪⎩的最值25.已知函数1(),f x a x=-其中0a >。
重庆市第一中学校2023-2024学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.在某次学科期末检测后,从全部考生中选取100名考生的成绩(百分制,均为整数)分成[50,60),[)[)60,70,70,80,[80,90),[90,100)五组后,得到频率分布直方图(如右图),则下列说法正确的是()据学校共有的人数,得到关于高一人数的方程,解方程得到高一人数,用人数乘以抽取的比例,得到结果.本题考查分层抽样,在分层抽样之前有一个小型的运算,是一个基础题,运算量不大,可以作为选择和填空出现.分层抽样主要用于个体数量较多,且个体间具有明显差异的,这时采用分层抽样合适.4.D【分析】分甲得2个和甲得1个磁力片两种情况分类求解,再由分类加法计数原理得解.【详解】若甲分得两个磁力片,共有1232C A 6=种分法,若甲只分得一个磁力片,共有2232C A 6=种分法,由分类加法计数原理,可得共有6612+=种分法.故选:D 5.A【分析】根据递推关系式可知数列{}n a 是以6为周期的周期数列,根据周期性和对数运算法则可求得结果.【详解】由题意知:0n a >,31n n a a +=Q ,361n n a a ++\=,6n n a a +\=,即数列{}n a 是以6为周期的周期数列;()()()1234561425361a a a a a a a a a a a a ==Q ,()()()33712202412202412345612ln ln ln ln ln ln a a a a a a a a a a a a a a \++×××+=×××××=+ln1ln 2ln 2=+=.故选:A.6.C【分析】根据题意找出相应的规律,第37个数为第21行第3个数,从而可求解.【详解】由题意可得每行有2个数且从第3行开始计数,所以第37项为“杨辉三角”中第21行第3个数,所以20n =,3r =,所以3122020C C 190-==.故C 正确.故选:C.=。
重庆市第一中学2024-2025学年高三上学期适应性月考(一)数学试题一、单选题1.已知集合(){}22log 13A x x =<−≤,{}5,6,7,8B =,则集合A B ⋂的子集个数为( ) A .16B .8C .4D .22.已知m ∈R ,n ∈R ,则“228m n +>”是“4mn >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数()()22,2,1,2,x x x f x f x x −⎧+≥⎪=⎨+<⎪⎩则()2log 3f =( )A .83B .103C .356D .3764.已知角α,β都是锐角,且tan α,tan β是方程2430x x −+=的两个不等实根则()cos αβ+=( )A .5−B .5−C D .55.我校田径队有十名队员,分别记为,,,,,,,,,A B C D E F G H J K ,为完成某训练任务,现将十名队员分成甲、乙两队.其中将,,,,A B C D E 五人排成一行形成甲队,要求A 与B 相邻,C 在D 的左边,剩下的五位同学排成一行形成乙队,要求F 与G 不相邻,则不同的排列方法种数为( ) A .432B .864C .1728D .25926.在ABC V 中,若sin :sin :sin 2:5:6A B C =,且AC =ABC V 的外接圆的面积为( ) A .4πB .8πC .16πD .64π7.若()*n n ∈N 次多项式()()1212100n n n n n n P t a t a t a t a t a a −−=++⋅⋅⋅+++≠满足()cos cos n P x nx =,则称这些多项式()n P t 为切比雪夫多项式.如,由2cos 22cos 1θθ=−可得切比雪夫多项式()2221P x x =−,同理可得()3343P x x x =−.利用上述信息计算sin 54︒=( )A B C D .488.若eln1.5a =,0.15e 4b −=,98c =(其中e 为自然对数的底数),则实数a ,b ,c 的大小关系是( ) A .c b a >>B .c a b >>C .b a c >>D .b c a >>二、多选题9.下列关于概率统计的知识,其中说法正确的是( ) A .数据1−,0,2,4,5,6,8,9的第25百分位数是1 B .已知随机变量(),XB n p ,若()40E X =,()30D X =,则160n =C .若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且()()1P N M P N +=,则M 与N 相互独立D .若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线132y x =−+上,则这组样本数据的相关系数为12−10.若0x >,0y >,且22x y +=,则下列结论正确的是( )A .224x y +的最小值为2B .24x y +的最小值为C .()sin 123x y ++>D .若实数1z >,则2232121x x y z xy z ⎛⎫++−⋅+ ⎪−⎝⎭的最小值为811.已知函数()2cos sin sin 21f x x x x =−++,则下列说法正确的是( )A .函数()f x 的一个周期为πB .函数()f x 的一个对称中心为π,4⎛− ⎝C .函数()f x 在区间π,04⎡⎤−⎢⎥⎣⎦上单调递增 D .方程()f x =3π11π,44⎛⎤⎥⎝⎦上共有6个不同实根三、填空题12.已知函数()()3f x x ax a =+∈R 在1x =处取得极值,则函数()f x 的极大值为 .13.已知函数()()ππcos 0,22f x x ωϕωϕ⎛⎫=+>−<< ⎪⎝⎭,直线π9x =和点5π,018⎛⎫⎪⎝⎭是()f x 的一组相邻的称轴和对称中心,且()f x 在区间ππ,63⎛⎫⎪⎝⎭上单调递减,则ϕ= .14.函数()f x 及其导函数()f x '的定义域均为R ,()()2f x f x x −=+,且()()1T x f x ='+为奇函数,()2512n f n ='=∑ .四、解答题15.锐角ABC V 的内角,,A B C 所对的边分别为,,a b c ,若2cos 2b a B c +=,且a =3b =. (1)求边c 的值;(2)求内角A 的角平分线AD 的长.16.已知函数()2ππsin sin 12cos 442x f x x x x ⎛⎫⎛⎫⎛⎫=−+−− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)若123x f ⎛⎫= ⎪⎝⎭,求πsin 26x ⎛⎫− ⎪⎝⎭的值;(2)若先将()f x 的图象上每个点的横坐标变为原来12倍,再将函数图象向右平移π4个单位,将函数图象上每个点的纵坐标变为原来的2数()g x 图象,求()g x 在ππ,86x ⎛⎫∈− ⎪⎝⎭上的值域和单调递减区间.17.某工厂生产某款电池,在满电状态下能够持续放电时间不低于10小时的为合格品,工程师选择某台生产电池的机器进行参数调试,在调试前后,分别在其产品中随机抽取样本数据进行统计,制作了如下的22⨯列联表:(1)根据表中数据,依据0.01α=的独立性检验,能否认为参数调试与产品质量有关联; (2)现从调试前的样本中按合格和不合格,用分层随机抽样法抽取8件产品重新做参数调试,再从这8件产品中随机抽取3件做对比分析,记抽取的3件中合格的件数为X ,求X 的分布列和数学期望;(3)用样本分布的频率估计总体分布的概率,若现在随机抽取调试后的产品1000件,记其中合格的件数为Y ,求使事件“Y k =”的概率最大时k 的取值.参考公式及数据:()()()()22()n ad bc a b c d a c b d χ−=++++,其中n a b c d =+++.18.在平面直角坐标系中,若点(),T x y 绕着原点O 逆时针旋转θ角后得到点(),T x y ''',则cos sin x x y θθ=−',sin cos y x y θθ=+'.已知曲线1C 绕原点顺时针旋转π4后得到曲线2C :2xy =.(1)求曲线1C 的方程;(2)已知1F ,2F 分别是曲线1C 的上、下焦点,M ,N 是曲线1C 上两动点且它们分布在y 轴同侧、x 轴异侧,12MF NF ∥,若1212MF NF MF NF λ+=⋅,求实数λ的值;(3)在(2)问中,若2MF 与1NF 的交点为P ,则是否存在两个定点1T ,2T ,使得12PT PT +为定值?若存在,求1T ,2T 的坐标;若不存在,请说明理由.19.已知曲线()2e cos mxf x x mx =⋅+(m ∈R ,e 为自然对数的底数)在0x =处的切线的倾斜角为π4,函数()2sin 1g x x x =++.(1)若函数()()2x f x x ϕ=−在区间[],t t −上单调递增,求实数t 的最大值;(2)证明:函数()f x 的图象与函数()g x 的图象在[]0,5πx ∈内有5个不同的交点; (3)记(2)中的5个交点分别为A ,B ,C ,D ,E ,横坐标依次为0x ,1x ,2x ,3x ,4x (01234x x x x x <<<<),求证:01324x x x x x +−>−.。
重庆市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}{}432A B x x ==,,则A B =I ( )A .2163x x ⎧⎫<≤⎨⎬⎩⎭ B .{}316x x ≤<C .223x x ⎧⎫<≤⎨⎬⎩⎭D .{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是( ) A .230,1x x x ∀≥+≤ B .230,1x x x ∀<+≤ C .230,1x x x ∃<+≤D .230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1f xg x +的定义域为( )A .()4,3-B .()2,5-C .1,33⎛⎫⎪⎝⎭D .1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是( )A .2a ≥B .2a >C .6a >D .6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A .{31}mm -<<∣ B .{3m m <-∣或1}m > C .{13}mm -<<∣D .{1mm <-∣或3}m > 6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是( ) A .30,2⎛⎫⎪⎝⎭B .30,2⎡⎫⎪⎢⎣⎭C .()0,1D .[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是( )AB .34a a b ++的最小值为7+C .()()11a b ++的最大值为94D .2232a b a b +++的最小值为16 8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为( ) A .2048B .2024C .1024D .512二、多选题9.已知,,a b c ∈R ;则下列不等式一定成立的有( ) A .若0ab ≠且a b <,则11a b> B .若0a b >>,则20242024b b a a +<+ C .若,a bcd >>,则ac bd >D .()221222a b a b ++≥--10.下列说法正确的是( )A .若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B .若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C .若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D .“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有( )A .()()101320272024f f λ+=B .当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C .当0λ<时,()f x 在区间[]2024,2025上单调递减D .当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题12.已知集合{}210A xx =-=∣,则集合A 有个子集. 13.已知集合[]()(){}1,4,10A B xx a ax ==+-≤∣,若A B B =U 且0a ≥,则实数a 的取值范围是.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为.四、解答题15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围. 16.已知函数()f x =A ,集合{}321B xx =->∣. (1)求A B U ;(2)集合{}321M xa x a =-≤≤-∣,若M ()R A ð,求实数a 的取值范围. 17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值; (2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >L,则有*12,2n a a a n n n+++∈≥N L ,当且仅当12n a a a ===L 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11k k ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=- ⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=; ③对任意32x >,恒有()0f x <; ④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞ ⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.。
2021-2022学年重庆一中八年级第一学期第一次月考数学试卷(10月份)一、选择题:(本大题12个小题,每小题4分,共48分).1.9的相反数是()A.B.﹣C.9D.﹣92.下列电视台标志中是轴对称图形的是()A.B.C.D.3.估计(2+)÷的值应在()之间.A.7和8B.8和9C.9和10D.10和114.下列事件中确定事件是()A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上5.下列计算正确的是()A.=3B.×=C.=8a3b3D.6.下列几组数据中不能作为直角三角形三边长的是()A.0.5、1.2、1.3B.、3、2C.9、40、41D.32、42、527.《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,若设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则可列方程组为()A.B.C.D.8.下列说法中正确的有()个.①(﹣1,﹣x2)位于第三象限;②的平方根是3;③若x+y=0,则点P(x,y)在第二、四象限角平分线上;④点A(2,a)和点B(b,﹣3)关于x轴对称,则a+b的值为5;⑤点N(1,n)到x轴的距离为n.A.1B.2C.3D.49.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(100,50)B.(50,50)C.(25,50)D.(26,50)10.如图,在边长为7的正方形ABCD中,E为BC边上一点,F为AD边上一点,连接AE、EF,将△ABE沿EF折叠,使点A恰好落在CD边上的A′处,若A′D=2,则B′E 的长度为()A.B.C.D.211.某客运公司的特快巴士与普通巴士同时从甲地出发,以各自的速度匀速向乙地行驶,普通巴士到达乙地后停止行驶,特快巴士到达乙地后,停留30分钟,然后按原路以另一速度匀速返回甲地,已知两辆巴士分别距乙地的路程y(千米)与行驶时间x(小时)之间的图象如图所示,则下列说法错误的是()A.普通巴士的速度是60km/hB.特快巴士返回甲地时的速度为80km/hC.行驶过程中,特快巴士与普通巴士的相遇时间为4小时D.普通巴士到达乙地时,特快巴士与甲地之间的距离为185千米12.如图,Rt△ABC中,∠ACB=90°且CA=CB,D为△ABC外一点,连接AD,过D作DE⊥DA交BC于点E,F为DE上一点且DF=DA,连接BF,CD.将线段CD绕点C 逆时针旋转90°到线段CG,连接DG分别交BF、BA于点M、N,连接BG、CF.下列结论:①BM=FM;②CG=DM;③∠BCG>AND;④CF+AD>DG;⑤若BG=2,BC=,CF=,则S四边形ADFC=2+.其中正确的个数为()A.2个B.3个C.4个D.5个二、填空题:(本大题共8个小题,每小题3分,共24分)请将每小题的正确答案直接填在答题卡中对应的横线上.13.(﹣1)2021+(3﹣π)0=.14.新冠疫情爆发至今全球各个国家受到不同程度的影响,印度作为受疫情影响较严重的国家,已有累计确诊病例约3300万,数据3300万用科学记数法可表示为.15.若代数式有意义,则x的取值范围是.16.已知是关于x,y的二元一次方程组的解,则m+2n的值为.17.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球4个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数n=.18.如图,长方体中,AB=6m,BC=4m,BE=2m,一只蚂蚁从点A出发沿长方体表面爬行到点F,至少需要爬行米.19.国庆期间,小艾同学和小一同学相约在某小区门口一同出发,各自骑自行车前往距离2000米的欢乐谷游玩,出发后不久,小艾突感身体不适,于是在路旁休息了4分钟后再次出发,以1.2倍之前的速度冲向终点,小一同学则在到达终点之后立即原路原速返回迎接小艾同学,最终陪同小艾同学骑完了全程.在整个骑行过程中,变速前后小艾同学、小一同学两人均保持匀速,且途中掉头时间忽略不计,小艾同学、小一同学两人相距的路程y(米)与出发的时间x(秒)之间的关系如图所示.则第二次相遇时,小艾、小一两位同学距离终点米.20.开学伊始,各校新生都组织了军训,某校军训汇演的场地为一块长方形地块,某班准备学生在场地内站成行距、列距均为1m的方阵,场地边缘不站人,且最靠边的行、列距离边缘都是1m.但后来发现这样安排只能刚好站下参加汇演的所有女性,就决定男生站在边缘一圈的位置,且行、列与女生对齐,发现刚好占满所有可以站人的位置.汇演时男生挥舞彩旗,女性摇动啦啦球,采购彩旗和啦啦球时发现啦啦球的单价是彩旗的4倍,而啦啦球的总价是彩旗总价的 4.8倍.如果场地面积不超过60m2.那么场地的面积为.三、解答题:(本大题共7个小题,其中22、24题各8分,21、23、25-27题各10分,共66分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.(1)﹣()(2+);(2)解方程组:.22.已知:在△ABC中,AB=AC,BD⊥AC交AC于D.(1)尺规作图:作线段BC的垂直平分线交BD于O,交BC于E,连接CO;(2)若∠BAC=56°,求∠DOC的度数.23.先化简,再求值:[(3a+2b)(a﹣b)﹣(2a+b)(2a﹣b)+b(2a+b)]÷(a),其中+b2+2b+1=0.24.为选拔同学参加全市组织的青少年科学知识竞赛,重庆一中在全校进行了“请党放心,强国有我”科学知识竞赛,并对八年级(3)班全体同学本次知识竞赛成绩进行了统计,我们将成绩分为A、B、C、D、E五类,制成了如下不完整的条形统计图和扇形统计图(如图所示).请你根据统计图中的信息,解答下列问题:(1)八年级(3)班学生总人数是人;在扇形统计图中,a的值是;(2)若八年级(3)班得C等级的同学人数是得E等级的同学人数的4倍,请将条形统计图补充完整;(3)若等级为A表示优秀,等级为B表示良好,等级为C表示合格,等级为D表示不合格,等级为E表示差,根据本次统计结果,估计全校2000名学生中知识竞赛成绩在合格及以上的学生大约有多少人?25.体育与健康是学校素质教育的重要组成部分,为了活跃校园气氛,增强学生的集体观念,培养学生团队合作的精神.某学校将于11月份举办学生趣味运动会,计划用7380元购买足球和篮球共43个,分别作为运动会团体一、二等奖的奖品.已知足球的单价为180元,篮球的单价为160元.(1)学校计划购买足球和篮球各多少个?(列二元一次方程组解决该问题)(2)某老师按计划到商场购买足球和篮球时,正好赶上商场对商品价格进行调整,足球单价下降了a%,篮球单价上涨了a%,最终经费比计划节省了774元,求a的值.26.如图,在平面直角坐标系内,点B是x轴上的点,点A是y轴上的点,将△AOB沿直线AB翻折使点O落在C点处,过C点作CD⊥y轴交y轴于点D,已知C(4,8).(1)直接写出A、B两点的坐标;(2)若在x轴上存在某点N,使得以A、B、C.N四点为顶点的四边形面积为40,求N 点的坐标;(3)若P点是y轴上一动点,当△PAB为等腰三角形时,请直接写出点P的坐标.27.任意一个四位正整数,如果它的千位数字与百位数字的和是7,十位数字与个位数字的和为8,那么我们把这样的数称为“七上八下数”.例如:3453 的千位数字与百位数字的和为:3+4=7,十位数字与个位数字的和为:5+3=8,所以3453是一个七上八下数”:3452的十位数字与个位数字的和为:5+2≠8,所以3452不是一个“七上八下数”.(1)判断2571和4425是不是“七上八下数”?并说明理由;(2)若对于一个七上八下数m,交换其百位数字和十位数字得到新数m',并且定义F (m)=,若F(m)与m个位数字的135倍的和刚好为一个正整数的平方,求出满足条件的所有“七上八下数”m,并说明理由.四、解答题:(本题共12分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.28.如图,在△ABC中,∠A=45°.(1)如图1,若AC=6,BC=2,求△ABC的面积;(2)如图2,D为△ABC外的一点,连接CD,BD且CD=CB,∠ABD=∠BCD.过点C作CE⊥AC交AB的延长线于点E.求证:BD+2AB=AC;(3)如图3,在(2)的条件下,作AP平分∠CAE交CE于点P,过E点作EM⊥AP交AP的延长线于点M,点K为直线AC上的一个动点,连接MK,过M点作MK'⊥MK,且始终满足MK'=MK,连接AK',若AC=4,请直接写出AK'+MK'取得最小值时(AK'+MK′)2的值.参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个选项,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.9的相反数是()A.B.﹣C.9D.﹣9【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.解:9的相反数是﹣9,故选:D.2.下列电视台标志中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.解:A、是轴对称图形,本选项符合题意;B、不是轴对称图形,本选项不符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意;故选:A.3.估计(2+)÷的值应在()之间.A.7和8B.8和9C.9和10D.10和11【分析】先化简原式,估算出的范围,再求出2+2的范围,即可得出选项.解:原式=2+2,∵9<15<16,∴3<<4,∵3.82=14.44,3.92=15.21,∴3.8<<4,∴7.6<2<8,∴9.6<2+2<10,∴(2+)÷的值应在9和10之间.故选:C.4.下列事件中确定事件是()A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上【分析】确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解:A、掷一枚均匀的硬币,正面朝上是随机事件;B、买一注福利彩票一定会中奖是随机事件;C、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,即确定事件;D、掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上是随机事件.故选:C.5.下列计算正确的是()A.=3B.×=C.=8a3b3D.【分析】直接利用二次根式的性质以及积的乘方运算法则和二次根式的加减运算法则分别化简得出答案.解:A.无法化简,故此选项不合题意;B.×==,故此选项符合题意;C.(ab)3=2a3b3,故此选项不合题意;D.+无法计算,故此选项不合题意;故选:B.6.下列几组数据中不能作为直角三角形三边长的是()A.0.5、1.2、1.3B.、3、2C.9、40、41D.32、42、52【分析】根据如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.解:A、0.52+1.22=1.32,能组成直角三角形,故此选项不合题意;B、22+32=()2,能组成直角三角形,故此选项不合题意;C、92+402=412,能组成直角三角形,故此选项不合题意;D、∵32=9,42=16,52=25,9+16=25,不能组成三角形,更不能组成直角三角形,故此选项符合题意.故选:D.7.《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,若设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则可列方程组为()A.B.C.D.【分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故选:A.8.下列说法中正确的有()个.①(﹣1,﹣x2)位于第三象限;②的平方根是3;③若x+y=0,则点P(x,y)在第二、四象限角平分线上;④点A(2,a)和点B(b,﹣3)关于x轴对称,则a+b的值为5;⑤点N(1,n)到x轴的距离为n.A.1B.2C.3D.4【分析】①根据平面直角坐标系中的点的坐标特点判断即可;②根据平方根的定义判断即可;③根据第二、四象限角平分线上的点的横坐标与纵坐标的和等于0判断即可;④直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案;⑤根据点到x轴的距离等于纵坐标的绝对值判断即可.解:当x=0时,(﹣1,﹣x2)位于x轴上,故①说法错误;的平方根是±3,故②说法错误;若x+y=0,则点P(x,y)在第二、四象限角平分线上,故③说法正确;∵点A(2,a)与点B(b,﹣3)关于x轴对称,∴a=3,b=2,∴a+b的值是:3+2=5.故④说法正确;⑤点N(1,n)到x轴的距离为|n|.故⑤说法错误;说法中正确的有②,共2个.故选:B.9.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(100,50)B.(50,50)C.(25,50)D.(26,50)【分析】根据题意,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到P100的横坐标.解:经过观察可得:P1和P2的纵坐标均为1,P3和P4的纵坐标均为2,P5和P6的纵坐标均为3,因此可以推知P99和P100的纵坐标均为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n 是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).故选:D.10.如图,在边长为7的正方形ABCD中,E为BC边上一点,F为AD边上一点,连接AE、EF,将△ABE沿EF折叠,使点A恰好落在CD边上的A′处,若A′D=2,则B′E 的长度为()A.B.C.D.2【分析】由正方形的性质和折叠的性质可得AB=BC=CD=7,∠B=∠C=90°,A'C=CD﹣A'D=5,AE=AE',BE=B'E,由勾股定理可求B'E的长度.解:∵四边形ABCD是正方形,∴AB=BC=CD=7,∠B=∠C=90°,∴A'C=CD﹣A'D=5,∵△ABE沿EF折叠,使点A恰好落在CD边上的A′处,∴AE=A'E,BE=B'E,在Rt△ABE中,AE2=AB2+BE2,在Rt△A'CE中,A'E2=A'C2+EC2,∴49+BE2=25+(7﹣BE)2,∴BE==B'E,故选:C.11.某客运公司的特快巴士与普通巴士同时从甲地出发,以各自的速度匀速向乙地行驶,普通巴士到达乙地后停止行驶,特快巴士到达乙地后,停留30分钟,然后按原路以另一速度匀速返回甲地,已知两辆巴士分别距乙地的路程y(千米)与行驶时间x(小时)之间的图象如图所示,则下列说法错误的是()A.普通巴士的速度是60km/hB.特快巴士返回甲地时的速度为80km/hC.行驶过程中,特快巴士与普通巴士的相遇时间为4小时D.普通巴士到达乙地时,特快巴士与甲地之间的距离为185千米【分析】根据题意和函数图象中的数据,可以先计算出普通巴士的速度,从而可以判断A;再计算出特快巴士的速度,从而判断B;然后根据图象中的时间,可以计算出行驶过程中,特快巴士与普通巴士的相遇时间,从而可以判断C,再计算出普通巴士到达乙地时,特快巴士与甲地之间的距离,即可判断D.解:由图象可得,普通巴士的速度是:(300﹣120)÷3=60(km/h),故选项A不符合题意;特快巴士返回甲地时的速度为:300÷(7﹣3﹣)=80(km/h),故选项B不符合题意;设行驶过程中,特快巴士与普通巴士的相遇时间为a小时,60a+80(a﹣3﹣)=300,解得a=4,故选项C不符合题意;普通巴士到达乙地时用的时间为:300÷60=5(小时),∴普通巴士到达乙地时,特快巴士与甲地之间的距离为:80×(7﹣5)=180(千米),故选项D符合题意;故选:D.12.如图,Rt△ABC中,∠ACB=90°且CA=CB,D为△ABC外一点,连接AD,过D作DE⊥DA交BC于点E,F为DE上一点且DF=DA,连接BF,CD.将线段CD绕点C 逆时针旋转90°到线段CG,连接DG分别交BF、BA于点M、N,连接BG、CF.下列结论:①BM=FM;②CG=DM;③∠BCG>AND;④CF+AD>DG;⑤若BG=2,BC=,CF=,则S四边形ADFC=2+.其中正确的个数为()A.2个B.3个C.4个D.5个【分析】先证明△BCG≌△ACD,得到对应边,对应角相等,依次得出①正确和③错误,由等腰直角三角形的性质和勾股定理得出②正确,由三角形的三边关系得出④正确,利用勾股定理逆定理和三角形的面积计算公式即可判定⑤正确,从而得出结论.解:连接AF,∵∠ACB=90°,∠GCD=90°,∴∠7=∠5,又∵CA=CB且CD=CG,∴△BCG≌△ACD(SAS),∴BG=AD,∠2=∠CAD,∴BG=AD=DF,∵∠ADE=90°,∴∠CAD+∠CED=360°﹣∠ACB﹣∠ADE=180°,∴∠CAD=∠1,∴∠1=∠2,∴∠3=∠1+∠4=∠2+∠4=∠GBM,又∵∠DMF=∠GMB,BG=DF,∴△DMF≌△GMB(AAS),∴GM=DM,BM=FM,故①正确;∵CD2+CG2=DG2,∴2CG2=(2DM)2,CD=,∴,故②正确;∵CF+AD=CF+DF>CD,即CF+AD>,故④正确;∵∠CAN=∠CDN=45°,∠8=∠NDC+∠6,∠8=∠NAC+∠5,∴∠5=∠6,∴∠7=∠6,故③错误;如图,连接AF,若BG=2,BC=,CF=,∴BG=AD=DF=2,∴AF2=AD2+DF2=8,即AF=2,∴AF2+CF2=BC2=AC2,∴AF⊥CF,∴S四边形ADFC=S△ADF+S△AFC==2+,故⑤正确,∴正确的个数为4个,故选:C.二、填空题:(本大题共8个小题,每小题3分,共24分)请将每小题的正确答案直接填在答题卡中对应的横线上.13.(﹣1)2021+(3﹣π)0=0.【分析】直接利用有理数的乘方运算法则、零指数幂的性质分别化简,再利用有理数的加减运算法则计算得出答案.解:原式=﹣1+1=0.故答案为:0.14.新冠疫情爆发至今全球各个国家受到不同程度的影响,印度作为受疫情影响较严重的国家,已有累计确诊病例约3300万,数据3300万用科学记数法可表示为 3.3×107.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.解:3300万=33000000=3.3×107.故答案为:3.3×107.15.若代数式有意义,则x的取值范围是x>﹣4.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.解:由题意得:x+4>0,解得:x>﹣4,故答案为:x>﹣4.16.已知是关于x,y的二元一次方程组的解,则m+2n的值为7.【分析】根据二元一次方程的解的定义解决此题.解:由题得:﹣3+2n=8,﹣m﹣2=2.∴m=﹣4,n=.∴m+2n=﹣4+2×=﹣4+11=7.故答案为:7.17.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球4个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数n=5.【分析】根据口袋中装有白球6个,黑球4个,黄球n个,故球的总个数为6+4+n,再根据黄球的概率公式列式解答即可.解:∵口袋中装有白球6个,黑球4个,黄球n个,∴球的总个数为6+4+n,∵从中随机摸出一个球,摸到黄球的概率为,∴=,解得,n=5.经检验,n=5是分式方程的解.故答案为:5.18.如图,长方体中,AB=6m,BC=4m,BE=2m,一只蚂蚁从点A出发沿长方体表面爬行到点F,至少需要爬行6米.【分析】蚂蚁经过两个面有三种爬行路线,分别将其展开成长方形,利用勾股定理求其对角线即可.解:如图,若从前面再到上面可得:AF==6,如图,若从前面再到右面可得:AF==4,如图,若从左面再到上面可得:AF==2,∵6<4,∴蚂蚁从点A出发沿长方体表面爬行到点F,至少需要爬行6米,故答案为:6.19.国庆期间,小艾同学和小一同学相约在某小区门口一同出发,各自骑自行车前往距离2000米的欢乐谷游玩,出发后不久,小艾突感身体不适,于是在路旁休息了4分钟后再次出发,以1.2倍之前的速度冲向终点,小一同学则在到达终点之后立即原路原速返回迎接小艾同学,最终陪同小艾同学骑完了全程.在整个骑行过程中,变速前后小艾同学、小一同学两人均保持匀速,且途中掉头时间忽略不计,小艾同学、小一同学两人相距的路程y(米)与出发的时间x(秒)之间的关系如图所示.则第二次相遇时,小艾、小一两位同学距离终点204米.【分析】根据题意和函数图象中的数据,可以先计算出小一的速度,然后即可计算出小艾开始的速度和后来的速度,再根据小艾突感身体不适,于是在路旁休息了4分钟后再次出发,可以求得当小一到达终点时小艾走的路程,然后即可求得他们第二次相遇时,小一从终点到他们相遇的时间,此时小一从终点到他们相遇走的路程就是小艾、小一两位同学距离终点的距离.解:由图象可得,小一在第500秒到达终点,故小一的速度为:2000÷500=4(米/秒),前70秒,小艾比小一多走70米,故小艾开始的速度为:4+70÷70=4+1=5(米/秒),后来的速度为:5×1.2=6(米/秒),当小一到达终点时,小艾走的路程为:70×5+(500﹣70﹣4×60)×6=1490(米),小一从终点返回到与小艾相遇用的时间为:(2000﹣1490)÷(4+6)=51(秒),故第二次相遇时,小艾、小一两位同学距离终点:4×51=204(米),故答案为:204.20.开学伊始,各校新生都组织了军训,某校军训汇演的场地为一块长方形地块,某班准备学生在场地内站成行距、列距均为1m的方阵,场地边缘不站人,且最靠边的行、列距离边缘都是1m.但后来发现这样安排只能刚好站下参加汇演的所有女性,就决定男生站在边缘一圈的位置,且行、列与女生对齐,发现刚好占满所有可以站人的位置.汇演时男生挥舞彩旗,女性摇动啦啦球,采购彩旗和啦啦球时发现啦啦球的单价是彩旗的4倍,而啦啦球的总价是彩旗总价的 4.8倍.如果场地面积不超过60m2.那么场地的面积为33m2或50m2.【分析】先设出相应未知数,再根据题意列出方程,利用实际问题的限制要求,得到a 和>的取值范围,在范围内判断求解即可.解:设长方形地块的长为am,宽为bm,彩旗的单价为x元/个;由题意可知女生占地的长为(a﹣2)m,宽为(b﹣2)m,由间隔均为1m,可得女生人数为(a﹣2+1)(b﹣2+1),即为(ab﹣a﹣b+1)人,由于男生站在边缘一圈的位置,且行、列与女生对齐,发现刚好占满所有可以站人的位置,所以男生人数为2(a+I)+2(b﹣1),即为(2a+2b)人;∵采购彩旗和啦啦球时发现啦啦球的单价是彩旗的4倍,而啦啦球的总价是彩旗总价的4.8倍,∴4.8(2a+2b)x=4(ab﹣a﹣b+1)x,化简得:ab+1=(a+b),∵长方形地块学生横纵间距都是1m,且刚好站满,a和b都是正整数,且a≥3,b≥3,∴ab≤60且(a+b)为5的整数倍,∴a+b=10或a+b=15,∴ab=33或ab=50.故答案为:33m2或50m2.三、解答题:(本大题共7个小题,其中22、24题各8分,21、23、25-27题各10分,共66分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.(1)﹣()(2+);(2)解方程组:.【分析】(1)利用完全平方公式和平方差公式计算;(2)利用加减消元法解方程组.解:(1)原式=18﹣6+1﹣×(﹣)(+)=19﹣6﹣×(2﹣3)=19﹣6+=19﹣5;(2),①×5+②得15x+2x=25+26,解得x=3,把x=3代入①得9﹣y=5,解得y=4,∴方程组的解为.22.已知:在△ABC中,AB=AC,BD⊥AC交AC于D.(1)尺规作图:作线段BC的垂直平分线交BD于O,交BC于E,连接CO;(2)若∠BAC=56°,求∠DOC的度数.【分析】(1)利用基本作图作BC的垂直平分线;(2)根据线段垂直平分线的性质得到点A、O、E共线,OB=OC,再利用等腰三角形的性质和等腰三角形的性质得∠ABC=∠ACB=62°,接着利用互余计算出∠DBC=28°,然后根据等腰三角形的性质和三角形外角性质计算∠DOC的度数.解:(1)如图,点O、E为所作;(2)∵AB=AC,OE垂直平分BC,∴点A、O、E共线,OB=OC,∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠BAC)=(180°﹣56°)=62°,∵BD⊥AC,∴∠ODC=90°,∴∠DBC=90°﹣62°=28°,∵OB=OC,∴∠OBC=∠OCB=28°,∴∠DOC=∠OBC+∠OCB=56°.23.先化简,再求值:[(3a+2b)(a﹣b)﹣(2a+b)(2a﹣b)+b(2a+b)]÷(a),其中+b2+2b+1=0.【分析】直接利用乘法公式以及多项式乘多项式、单项式乘多项式运算法则分别化简,再利用整式的除法运算法则计算,结合非负数的性质得出a,b的值,代入计算得出答案.解:原式=[(3a2﹣3ab+2ab﹣2b2)﹣(4a2﹣b2)+2ab+b2]÷(a)=(3a2﹣3ab+2ab﹣2b2﹣4a2+b2+2ab+b2]÷(a)=(﹣a2+ab)÷(a)=﹣a2÷(a)+ab÷(a)=﹣3a+3b,∵+b2+2b+1=0,∴+(b+1)2=0,∴a﹣2=0,b+1=0,解得:a=2,b=﹣1,∴原式=﹣3×2+3×(﹣1)=﹣6﹣3=﹣9.24.为选拔同学参加全市组织的青少年科学知识竞赛,重庆一中在全校进行了“请党放心,强国有我”科学知识竞赛,并对八年级(3)班全体同学本次知识竞赛成绩进行了统计,我们将成绩分为A、B、C、D、E五类,制成了如下不完整的条形统计图和扇形统计图(如图所示).请你根据统计图中的信息,解答下列问题:(1)八年级(3)班学生总人数是50人;在扇形统计图中,a的值是20;(2)若八年级(3)班得C等级的同学人数是得E等级的同学人数的4倍,请将条形统计图补充完整;(3)若等级为A表示优秀,等级为B表示良好,等级为C表示合格,等级为D表示不合格,等级为E表示差,根据本次统计结果,估计全校2000名学生中知识竞赛成绩在合格及以上的学生大约有多少人?【分析】(1)用B等级的人数除以所占的百分比求出八年级(3)班学生总人数,用D 等级的人数除以总人数,即可得出a;(2)设E等级的同学有x人,则C等级的同学人数有4x,根据总人数是50,列出方程,求出x的值,从而补全统计图;(3)用全校的总人数乘以知识竞赛成绩在合格及以上的学生所占的百分比即可.解:(1)八年级(3)班学生总人数是:12÷24%=50(人),a%=×100%=20%,即a=20;故答案为:50,20;(2)设E等级的同学有x人,则C等级的同学人数有4x,根据题意得:8+12+4x+10+x=50,解得:x=4,则4x=4×4=16,则E等级的同学有4人,则C等级的同学人数有16人,补全统计图如下:(3)2000×=1440(人),答:估计全校2000名学生中知识竞赛成绩在合格及以上的学生大约有1440人.25.体育与健康是学校素质教育的重要组成部分,为了活跃校园气氛,增强学生的集体观念,培养学生团队合作的精神.某学校将于11月份举办学生趣味运动会,计划用7380元购买足球和篮球共43个,分别作为运动会团体一、二等奖的奖品.已知足球的单价为180元,篮球的单价为160元.(1)学校计划购买足球和篮球各多少个?(列二元一次方程组解决该问题)(2)某老师按计划到商场购买足球和篮球时,正好赶上商场对商品价格进行调整,足球单价下降了a%,篮球单价上涨了a%,最终经费比计划节省了774元,求a的值.【分析】(1)设学校计划购买足球x个,篮球y个,利用总价=单价×数量,结合用7380元购买足球和篮球共43个,即可得出关于x,y的二元一次方程组,解之即可得出学校计划购买足球和篮球的数量;(2)利用总价=单价×数量,结合商场对商品价格进行调整后可节省774元,即可得出关于a的一元一次方程,解之即可得出a的值.。
2021届重庆市第一中学校高三上学期第三次月考数学试题一、单选题1.复数z 满足21iz i=-,则复数z 的虚部为()A .﹣1B .1C .iD .﹣i【答案】B【分析】利用复数的除法运算化简211ii i=-+-,再利用复数的代数形式求出结果.【详解】解:∵()()()()2121211112i i i i i z i i i i ++====-+--+,则复数z 的虚部为1.故选:B .【点睛】本题考查复数的除法运算.复数的除法运算关键是分母“实数化”,其一般步骤如下:(1)分子、分母同时乘分母的共轭复数;(2)对分子、分母分别进行乘法运算;(3)整理、化简成实部、虚部分开的标准形式.2.已知集合{}22,A xx x Z =<∈∣,则A 的真子集共有()个A .3B .4C .6D .7【答案】D【分析】写出集合{1,0,1}A =-,即可确定真子集的个数.【详解】因为{}22,{1,0,1}A xx x Z =<∈=-∣,所以其真子集个数为3217-=.故选:D.【点睛】本题考查集合的真子集个数问题,属于简单题.3.已知某圆锥的母线长为4,底面圆的半径为2,则圆锥的全面积为()A .10πB .12πC .14πD .16π【答案】B【分析】首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.【详解】底面周长是:2×2π=4π,则侧面积是:14π48π2⨯⨯=,底面积是:π×22=4π,则全面积是:8π+4π=12π.故选B .【点睛】本题考查了圆锥的全面积计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的()倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.22【答案】B【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg0.1E E =,∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈.故选:B .【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.5.向量,a b 满足||1a = ,a 与b 的夹角为3π,则||a b - 的取值范围为()A .[1,)+∞B .[0,)+∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎫+∞⎪⎢⎪⎣⎭【答案】D【分析】把||a b -用数量积表示后结合函数的性质得出结论.【详解】22222||()2121cos 3a b a b a a b b b b π-=-=-⋅+=-⨯⨯+ 21b b -+= 2134423b ⎛⎫=+≥⎪⎝⎭- ,所以3||2a b -≥ .1||2b = 时取得最小值.故选:D .【点睛】本题考查平面向量的模,解题关键是把模用向量的数量积表示,然后结合二次函数性质得出结论.6.已知三棱锥P ABC -,过点P 作PO ⊥面,ABC O 为ABC ∆中的一点,,PA PB PB PC ⊥⊥,PC PA ⊥,则点O 为ABC ∆的()A .内心B .外心C .重心D .垂心【答案】D【分析】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,可得BC ⊥PA ,由PO ⊥平面ABC 于O ,BC ⊂面ABC ,PO ⊥BC ,可得BC ⊥AE ,同理可以证明CO ⊥AB ,又BO ⊥AC .故O 是△ABC 的垂心.【详解】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,∴BC ⊥PA ,∵PO ⊥平面ABC 于O ,BC ⊂面ABC ,∴PO ⊥BC ,∴BC ⊥平面APE ,∵AE ⊂面APE ,∴BC ⊥AE ;同理可以证明CO ⊥AB ,又BO ⊥AC .∴O 是△ABC 的垂心.故选D .【点睛】本题主要考查了直线与平面垂直的性质,解题时要注意数形结合,属于基本知识的考查.7.设sin5a π=,b =,2314c ⎛⎫= ⎪⎝⎭,则()A .a c b <<B .b a c <<C .c a b<<D .c b a<<【答案】C【分析】借助中间量1和12比较大小即可.【详解】解:由对数函数y x =在()0,∞+单调递增的性质得:1b =>=,由指数函数12xy ⎛⎫= ⎪⎝⎭在R 单调递减的性质得:2413311142212c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<=,由三角函数sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增的性质得1sin sin 562a ππ=>=.所以c ab <<.故选:C.【点睛】本题考查利用函数的单调性比较大小,考查运算能力,化归转化思想,是中档题.本题解题的关键在于借助中间量1和12,尤其在比较a 与c 的大小时,将c 变形得24331142c ⎛⎫⎛⎫= ⎪ =⎪⎝⎭⎝⎭,进而与12比较大小是重中之核心步骤.8.已知三棱锥P ABC -的四个顶点均在同一个确定的球面上,且BA BC ==,2ABC π∠=,若三棱锥P ABC -体积的最大值为3,则其外接球的半径为()A .2B .3C .4D .5【答案】A【分析】由题意分析知三棱锥P ABC -体积的最大时,P ,O ,O '共线且O P '⊥面ABC ,P 在大于半球的的球面上,根据棱锥体积公式求得||O P ',进而应用勾股定理求外接球的半径.【详解】由题意知:AC 中点O '为面ABC 外接圆圆心,若外接球球心为O ,半径为R ,三棱锥P ABC -体积的最大时,P ,O ,O '共线且O 在P ,O '之间,∴1||33P ABC ABC V S O P -'=⋅⋅= ,1||||32ABC S BA BC =⋅⋅= ,即||3O P '=,||||32AC O C '==,所以()22222'|||'|33O C OC OO R R =-=--=,解得2R =,故选:A【点睛】关键点点睛:理解三棱锥P ABC -体积的最大时P 的位置及与球心、底面外接圆圆心的关系,结合棱锥体积公式、勾股定理求球体半径.二、多选题9.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中错误..的是()A .若,,//m n m n αβ⊂⊂,则//αβB .若,m n m α⊂⊥,则n α⊥C .若,m n αα^Ì,则m n ⊥D .若//,,m n αβαβ⊂⊂,则//m n【答案】ABD【分析】根据空间线、面关系,结合空间关系相关图例以及线线、线面、面面间的平行、垂直判定与性质,即可知选项的正误.【详解】A :,,//m n m n αβ⊂⊂,α、β不一定平行,错误.B :,m n m α⊂⊥,n 不一定垂直于α,错误.C :由线面垂直的性质:,m n αα^Ì,则必有m n ⊥,正确.D ://,,m n αβαβ⊂⊂,m 、n 不一定平行,错误.故选:ABD10.下列函数中,在(0,1)内是减函数的是()A .||12x y ⎛⎫= ⎪⎝⎭B .212log y x =C .121=+y x D .2log sin y x=【答案】ABC【分析】根据复合函数的单调性判断确定选项中各函数是否为减函数即可.【详解】A :1(2t y =为减函数,||t x =在(0,1)上为增函数,所以||12x y ⎛⎫= ⎪⎝⎭为减函数;B :12log y t =为减函数,2t x =在(0,1)上为增函数,所以212log y x =为减函数;C :1y t =为减函数,21t x =+在(0,1)上为增函数,所以121=+y x 为减函数;D :2log y t =为增函数,sin t x =在(0,1)上为增函数,所以2log sin y x =为增函数;故选:ABC【点睛】结论点睛:对于复合函数的单调性有如下结论1、内外层函数同增或同减为增函数;2、内外层函数一增一减为减函数;11.下列关于函数1()2sin 26f x x π⎛⎫=+⎪⎝⎭的图像或性质的说法中,正确的为()A .函数()f x 的图像关于直线83x π=对称B .将函数()f x 的图像向右平移3π个单位所得图像的函数为12sin 23y x π⎛⎫=+ ⎪⎝⎭C .函数()f x 在区间5,33ππ⎛⎫-⎪⎝⎭上单调递增D .若()f x a =,则1cos 232a x π⎛⎫-=⎪⎝⎭【答案】AD 【分析】令1262x k πππ+=+得到对称轴,即可判断A ;根据平移变换知识可判断B ;求出其单调增区间即可判断C ;利用配角法即可判断D.【详解】对于A ,令1262x k πππ+=+()k ∈Z ,解得22()3x k k Z ππ=+∈,当1k =时,得83x π=,故A 正确;对于B ,将函数()f x 的图像向右平移3π个单位,得112sin[()]2sin 2362y x x ππ=-+=,故B 错误;对于C ,令122()2262k x k k Z πππππ-+<+<+∈4244()33k x k k Z ππππ⇒-+<<+∈,故C 错误;对于D ,若12sin()26x a π+=,则11cos()sin[()]23223x x πππ-=+-=1sin()262ax π+=,故D 正确.故选:AD【点睛】方法点睛:函数()sin (0,0)y A x B A ωϕω=++>>的性质:(1)max min =+y A B y A B =-,.(2)周期2π.T ω=(3)由()ππ2x k k +=+∈Z ωϕ求对称轴(4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.12.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有()A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】由()()f x f x x '<知:()()0xf x f x x'-<,令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >;A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+;B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+;C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <;D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小.故选:ABC【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<,1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=.2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.三、填空题13.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【解析】由题意,根据球的体积公式343V R π=,则343233R ππ=,解得2R =,又根据球的表面积公式24S R π=,所以该球的表面积为24216S ππ=⋅=.14.设向量a ,b 不平行,向量a b λ+ 与2a b + 平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则{12,k k λ==,所以12λ=.【解析】向量共线.15.一般把数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则第21行从左至右的第4个数字应是____________.【答案】228【分析】由题知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,从左到右第4个数字为228.【详解】观察数据可知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,所以第21行从左到右第4个数字为228.故答案为:228.【点睛】关键点睛:本题考查合情推理、数列的前n 项和,解题关键要善于观察发现数据特征,考查了学生的逻辑思维能力、数据处理能力、运算求解能力,综合性较强,属于较难题型.四、双空题16.已知等比数列{}n a 的公比为q ,且101a <<,20201a =,则q 的取值范围为______;能使不等式12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立的最大正整数m =______.【答案】(1,)+∞4039【分析】根据已知求得1a 的表达式,由此求得q 的取值范围.根据12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立列不等式,化简求得m 的取值范围,从而求得最大正整数m .【详解】由已知201911201911a qa q =⇒=,结合101a <<知2019101q <<,解得1q >,故q 的取值范围为(1,)+∞.由于{}n a 是等比数列,所以1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列.要使12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立则1212111m ma a a a a a +++≤+++ 即()111111111m m a q a q q q⎛⎫-⎪-⎝⎭≤--,将120191a q=代入整理得:40394039m q q m ≤⇒≤故最大正整数4039m =.故答案为:(1,)+∞;4039【点睛】本小题主要考查等比数列的性质,考查等比数列前n 项和公式,属于中档题.五、解答题17.在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,M 是线段AB 的中点,1160,22,2,DAB AB CD DD C M ∠=︒====(1)求证:1//C M 平面11A ADD ;(2)求异面直线 CM 与1DD 所成角的余弦值.【答案】(1)证明见解析;(2)14.【分析】(1)易得1111//,C D MA C D MA =,则四边形11AMC D 为平行四边形,得到11//C M D A ,再利用线面平行的判定定理证明.(2)由//CM DA ,将异面直线CM 与1DD 成的角,转化为 DA 与1DD 相交所成的角,然后在1ADD ,利用余弦定理求解.【详解】(1)因为四边形ABCD 是等腰梯形,且2AB CD =,所以//AB DC .又由M 是AB 的中点,因此//CD MA 且CD MA =.如图所示:连接1AD ,在四棱柱1111ABCD A B C D -中,因为1111//,CD C D CD C D =,可得1111//,C D MA C D MA =,所以四边形11AMC D 为平行四边形.因此11//C M D A ,又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD ,所以1//C M 平面11A ADD .(2)因为//CM DA ,所以异面直线CM 与1DD 成的角,即为 DA 与1DD 相交所成的直角或锐角,在1ADD中,1C M =,所以111,2AD AD DD ===,由余弦定理可得:22211111cos 24AD DD AD ADD AD DD +-∠==-⋅,所以异面直线CM 和1DD 余弦值为14.【点睛】方法点睛:判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.已知数列{}n a 满足:13a =,且对任意的n *∈N ,都有1,1,n n a a +成等差数列.(1)证明数列{}1n a -等比数列;(2)已知数列{}n b 前n 和为n S ,条件①:()1(21)n n b a n =-+,条件②:11n n n b a +=-,请在条件①②中仅选择一个条件作为已知条件.............来求数列{}n b 前n 和n S .【答案】(1)证明见解析;(2)答案不唯一,具体见解析.【分析】(1)由条件得121n n a a +=-,利用等比数列定义可得证.(2)选条件①得(21)2nn b n =+,选条件②得1(1)()2nn b n =+⋅利用错位相减法可得解.【详解】(1)由条件可知112n n a a ++=,即121n n a a +=-,∴()1121n n a a +-=-,且112a -=∴{}1n a -是以112a -=为首项,2q =为公比的等比数列,∴12nn a -=,∴()21nn a n N*=+∈(2)条件①:()1(21)(21)2nn n b a n n =-+=+,123325272(21)2nn S n =⋅+⋅+⋅+++⋅ 23412325272(21)2n n S n +=⋅+⋅+⋅+++⋅利用错位相减法:123413222222222(21)2nn n S n +-=⋅+⋅+⋅+⋅++⋅+⋅- 118(12)6(21)212n n n S n -+--=++⋅--化简得()12(21)2n n S n n N +*=-+∈条件②:11(1)()12nn n n b n a +==+⋅-231111234(1)2222n nS n =⋅+⋅+⋅+++⋅ 234111111234(1)22222n n S n +=⋅+⋅+⋅+++⋅ 利用错位相减法:23411111111(1)222222n n n S n +=++++-+⋅ 1111[1()]11421(1)12212n n n S n -+-=+-+⋅-化简得()13(3)(2n n s n n N *=-+∈【点睛】错位相减法求和的方法:如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解;在写“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式19.已知椭圆C 的两个焦点分别为12(1,0),(1,0)F F -,短轴的两个端点分别为12,B B .且122B B =.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 与椭圆C 相交于P ,Q 两点,且11F P FQ ⊥ ,求直线l 的方程.【答案】(1)2212x y +=;(2)10x +-=,或10x -=.【分析】(1)由题干条件可得c 和b 的值,进而求出2a 的值,从而求出椭圆方程;(2)首先考虑斜率不存在的情况,不符合题意;当斜率存在时,联立方程,可得()22121222214,2121k k x x x x k k -+=⋅=++,又110F P FQ ⋅= ,向量坐标化可得()()()2221212111110k x x k x x k F P FQ ⋅--==++++uuu r uuu r ,代入1212,x x x x +⋅,化简,即可求出k 的取值,从而求出直线方程.【详解】解(1)由条件可知:1c =,又122B B =,所以1b =,则22a =,所以椭圆C 的方程为2212x y +=(2)当直线l 的斜率不存在时,其方程为1x =,不符合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得()()2222214210k x k x k +-+-=,()2810k ∆=+>,设()()1122,,,P x y Q x y ,则()22121222214,2121k k x x x x k k -+=⋅=++,()()1111221,,1,F P x y F Q x y =+=+ ,∵110F P FQ ⋅= ,即()()()()()22212121212111110x x y y k x x k x x k +++=+--+++=,即()()()222222221411()102121k k kk k k k -+--++=++化简得:2201172k k =+-解得217,77k k ==±.故直线l的方程为10x +-=,或10x --=.【点睛】方法点睛:(1)将向量转化为坐标的关系;(2)联立直线和椭圆,求出两根之和,两根之积;(3)将两根之和和两根之积代入坐标关系中,解出k .20.已知()cossin 222x x x f x ⎛⎫=+ ⎪⎝⎭,记ABC 的内角,,A B C 的对边分别为,,a b c .(1)求()f B 的取值范围;(2)当4a =,433b =,且()f B 取(1)中的最大值时,求ABC 的面积.【答案】(1)30,12⎛+ ⎝⎦;(2)833或433【分析】(1)利用公式对函数化简,根据B 角的范围,求函数值域.(2)由(1)求出B 的大小,利用正弦定理和三角形面积公式即可求出结果.【详解】(1)2()cossin sin cos 222222x x x x x x f x ⎛⎫=+=+ ⎪⎝⎭13(cos 1)3sin sin 2232x x x π+⎛⎫=+=++ ⎪⎝⎭因为B 为三角形的内角,所以(0,)B π∈所以4,333B πππ⎛⎫+∈ ⎪⎝⎭,所以3()0,12f B ⎛∈+ ⎝⎦(2)34()11,,23333f B B B ππππ⎛⎫⎛⎫=++=+∈ ⎪ ⎝⎭⎝⎭,,326B B πππ∴+==,由正弦定理得:4343sin 1sin sin sin 22a b A A B A =⇒=⇒=()0,,3A A ππ∈∴=,或23A π=,若3A π=,则2C π=,183sin 23ABC S ab C ==若23π=A ,则6π=C,1sin 23==ABC S ab C 【点睛】本题考查了三角恒等变换、正弦定理和三角形面积公式等基本数学知识,考查了数学运算能力和逻辑推理能力,属于中档题目.21.在直三棱柱111ABC A B C -中,112,120,,AB AC AA BAC D D ==∠=分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交,AB AC 于点,M N .(1)证明:平面1A MN ⊥平面11ADD A ;(2)求二面角1A A M N --的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)根据线面垂直的判定定理即可证明MN ⊥平面ADD 1A 1;又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)建立空间坐标系,利用向量法求出平面的法向量,利用向量法进行求解即可.【详解】(1)证明:∵AB=AC ,D 是BC 的中点,∴BC ⊥AD ,∵M ,N 分别为AB ,AC 的中点,∴MN ∥BC ,∴MN ⊥AD ,∵AA 1⊥平面ABC,MN ⊂平面ABC ,∴AA 1⊥MN ,∵AD,AA 1⊂平面ADD 1A 1,且AD∩AA 1=A ,∴MN ⊥平面ADD 1A 1∴,又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)设AA 1=1,如图:过A 1作A 1E ∥BC ,建立以A 1为坐标原点,A 1E ,A 1D 1,A 1A 分别为x ,y ,z 轴的空间直角坐标系如图:则A 1(0,0,0),A(0,0,1),∵P 是AD 的中点,∴M ,N 分别为AB ,AC 的中点.则31,,122M ⎛⎫ ⎪ ⎪⎝⎭,31,,122N ⎛⎫- ⎪ ⎪⎝⎭,则131,,122A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,)NM = ,设平面AA 1M 的法向量为(),,m x y z=,则100m AM m A A ⎧⋅=⎪⎨⋅=⎪⎩,得10220x y z z ++=⎨⎪=⎩,令1x =,则y =,则()1,m =,同理设平面A 1MN 的法向量为(),,n x y z=,则100n A M n NM ⎧⋅=⎨⋅=⎩,得310220x y z ++=⎪⎨⎪=⎩,令2y =,则1z =-,则()0,2,1n =-,则()15cos ,5m n m n m n ⋅===-⋅,∵二面角A-A 1M-N 是锐二面角,∴二面角A-A 1M-N 的余弦值是155.【点睛】本题主要考查直线垂直的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.22.已知21()(1)2xf x e ax b x =---.其中常数 2.71828e ≈⋅⋅⋅⋅⋅⋅.(1)当2,4a b ==时,求()f x 在[1,2]上的最大值;(2)若对任意0,()a f x >均有两个极值点()1212,x x x x <,(ⅰ)求实数b 的取值范围;(ⅱ)当a e =时,证明:()()12f x f x e +>.【答案】(1)max ()1f x e =-;(2)(ⅰ)1b >;(ⅱ)证明见解析.【分析】(1)由题得2()4(1)x f x e x x =---,()24x f x e x '=--,()2x f x e ''=-,由[1,2]x ∈,可得()0f x ''>,即()'f x 在[1,2]上单增,且2(2)80f e -'=<,即()0f x '<,可知()f x 在[1,2]上单减,求得max ()(1)1f x f e ==-.(2)(ⅰ)利用两次求导可得(,ln )x a ∈-∞时,()'f x 单减;(ln ,)x a ∈+∞时,()'f x 单增,再由()f x 有两个极值点,知(ln )ln 0f a a a a b =--<',即ln b a a a >-恒成立,构造函数()ln g a a a a =-,利用导数求其最大值,可得实数b 的取值范围;(ⅱ)设()()(2),(1)h x f x f x x ''=--<,求导可得()h x 在(,1)-∞单增,得到()(2)f x f x ''<-,可得()()112f x f x ''<-,()()122f x f x ''->,结合()'f x 在(1,)+∞上单增,可得()()122f x f x >-,得到()()()()2222122222222x x f x f x f x f x e e ex ex e -+>-+=+-+-,构造22()22x x M x e e ex ex e -=+-+-,(1)x >,再利用导数证明()2(1)M x M e >=,即可得到()()12f x f x e+>【详解】(1)由2,4a b ==得,2()4(1)x f x e x x =---,求导()24x f x e x '=--,()2x f x e ''=-,[1,2]x ∈ ,2[,]x e e e ∴∈,20x e ∴->,即()0f x ''>()f x '∴在[1,2]上单增,且2(2)80f e -'=<,即[1,2]x ∀∈,()0f x '<,()f x ∴在[1,2]上单减,max ()(1)1f x f e ∴==-.(2)(ⅰ)求导()x f x e ax b '=--,因为对任意0,()a f x >均有两个极值点12,x x ,所以()0f x '=有两个根,求二阶导()x f x e a ''=-,令()0f x ''=,得ln x a=当(,ln )x a ∈-∞时,()0f x ''<,()'f x 单减;当(ln ,)x a ∈+∞时,()0f x ''>,()'f x 单增,由()0f x '=有两个根12,x x ,知(ln )ln 0f a a a a b =--<',即ln b a a a >-对任意0a >都成立,设()ln g a a a a =-,求导()ln g a a '=-,令()0g a '=,得1a =,当(0,1)x ∈时,()0g a '>,()g a 单增;当(1,)x ∈+∞时,()0g a '<,()g a 单减,max (()1)1g g a =∴=,1b ∴>又0,,()ba b f e x f x a -⎛⎫''-=>→+∞→+∞ ⎪⎝⎭Q ,所以实数b 的取值范围是:1b >.(ⅱ)当a e =时,()x f x e ex b '=--,()x f x e e ''=-,令()0f x ''=,得1x =当(,1)x ∈-∞时,()0f x ''<,()'f x 单减;当(1,)x ∈+∞时,()0f x ''>,()'f x 单增,又12,x x 是()0f x '=的两根,且12x x <,121,1x x <∴>,121x ∴->设()()(2),(1)h x f x f x x ''=--<,即22(2)2()2,(1)xxx xe ex b ee x b e e ex e x h x --⎡⎤=-=-------+<⎣⎦,则2()2220x x h x e e e e e -=+->-='()h x ∴在(,1)-∞单增,()(1)0h x h ∴<=,即()(2)f x f x ''<-又11,x <,()()112f x f x ''∴<-,()()122f x f x ''∴->又()f x ' 在(1,)+∞上单增,122x x ∴->,即1222x x x <-<,又()f x 在()12,x x 上单减,()()122f x f x ∴>-()()()()2222122222222x x f x f x f x f x e e ex ex e-∴+>-+=+-+-令22()22x x M x e e ex ex e -=+-+-,(1)x >则2()22x x M x e e ex e -'=--+,2()20x x M x e e e -''=+-≥()M x '∴在(1,)+∞单增,且(1)0M '=,()0M x '∴>,故()M x 在(1,)+∞单增又21x > ,()2(1)M x M e ∴>=,即()()12f x f x e+>【点睛】方法点睛:本题考查利用导数研究函数的单调性,求极值,最值,以及证明不等式,证明不等式的方法:若证明()()f x g x <,(,)x a b ∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知(,)x a b ∈时,有()0F x <,即证明了()()f x g x <,考查学生的函数与方程思想,化归与转化思想,考查逻辑思维能力与推理论证能力,属于难题.。
2021届重庆市第一中学高三上学期第一次月考数学试题一、单选题1.设集合(){}ln 1A y y x ==-,{B y y ==,则A B =()A .[)0,2B .()0,2C .[]0,2D .[)0,1【答案】A【解析】先分别利用对数型函数以及指数型函数求值域的方法求出集合,A B ,注意集合中的代表元素,再利用集合的交集运算求解即可. 【详解】∵(){}ln 1A y y x R ==-=,{[)0,2B y y ===,∴[)0,2AB =.故选:A. 【点睛】本题主要考查了集合间的运算以及对数函数和指数函数.属于较易题.2.设a ,()0,b ∈+∞,A =+,B =,则A ,B 的大小关系是()A .AB < B .A B >C .A B ≤D .A B ≥【答案】B【解析】根据题意计算做差可得22A B >,得到答案. 【详解】由a ,()0,b ∈+∞,得0A =>,0B =>22220A B -=-=>,∴22A B >,故A B >, 故选:B. 【点睛】本题考查了做差法比较大小,意在考查学生的计算能力和推断能力.3.已知直线l 是曲线2y x =的切线,则l 的方程不可能是()A .5210x y -+=B .4210x y -+=C .13690x y -+=D .9440x y -+=【答案】B【解析】利用导数求出曲线2y x =的切线的斜率的取值范围,然后利用导数的几何意义判断各选项中的直线是否为曲线2y x =的切线,由此可得出结论.【详解】对于函数2y x =,定义域为[)0,+∞,则22y '=+>,所以,曲线2y x =的切线l 的斜率的取值范围是()2,+∞.对于A 选项,直线5210x y -+=的斜率为52,令522y '=+=,解得1x =,此时3y =,点()1,3在直线5210x y -+=上,则直线5210x y -+=与曲线2y x =相切;对于B 选项,直线4210x y -+=的斜率为2,该直线不是曲线2y x =的切线;对于C 选项,直线13690x y -+=的斜率为1326>, 令1326y '=+=,解得9x =,此时21y =,点()9,21在直线13690x y -+=上,所以,直线13690x y -+=与曲线2y x=相切;对于D 选项,直线9440x y -+=的斜率为924>, 令924y '==,解得4x =,此时10y =,点()4,10在直线9440x y -+=上,所以,直线9440x y -+=与曲线2y x =相切. 故选:B. 【点睛】本题考查利用导数的几何意义验证函数的切线方程,考查计算能力,属于中等题. 4.中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为()A .(35)π-B .(51)πC .51)πD .52)π【答案】A【解析】根据扇形与圆面积公式,可知面积比即为圆心角之比,再根据圆心角和的关系,求解出扇形的圆心角. 【详解】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则51αβ-=,又2αβπ+=,解得(35)απ=- 故选:A 【点睛】本题考查圆与扇形的面积计算,难度较易.扇形的面积公式:21122S r lr α==,其中α是扇形圆心角的弧度数,l 是扇形的弧长.5.若函数()(),2log 2,xa a x af x x x a⎧<<⎪=⎨->⎪⎩(其中0a >,1a ≠)存在零点,则实数a 的取值范围是() A .()1,11,32⎛⎫⋃⎪⎝⎭B .(]1,3C .()2,3D .(]2,3【答案】C【解析】根据题中所给的函数有零点,结合解析式的特征,求得函数的零点,再根据分段函数的意义再结合式子的特征求得结果. 【详解】因为x a >时,()log (2)a f x x =-,所以2a >,若函数若有零点,则()log 20a x -=,解得3x =, 故3a >,又2a >,∴实数a 的取值范围是()2,3. 故选:C. 【点睛】该题考查的是有关函数的问题,涉及到的知识点有根据分段函数有零点求参数的取值范围,属于简单题目.6.已知02ω<≤,函数()sin f x x x ωω=,对任意R x ∈,都有()3f x f x π⎛⎫-=- ⎪⎝⎭,则ω的值为() A .12B .1C .32D .2【答案】D【解析】化简函数()y f x =的解析式为()2sin 3f x x πω⎛⎫=- ⎪⎝⎭,由题意可知,点,06π⎛⎫⎪⎝⎭是函数()y f x =的一个对称中心,结合02ω<≤可求得ω的值. 【详解】()sin 2sin 3f x x x x πωωω⎛⎫==- ⎪⎝⎭,根据()3f x f x π⎛⎫-=-⎪⎝⎭,得,06π⎛⎫⎪⎝⎭是函数()y f x =的一个对称中心,则2sin 0663f ππωπ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,可得sin 063πωπ⎛⎫-= ⎪⎝⎭, 02ω<≤,0363ππωπ∴-<-≤,所以063πωπ-=,解得2ω=.故选:D. 【点睛】本题考查利用正弦型函数的对称性求参数值,同时也考查了辅助角公式的应用,考查计算能力,属于中等题.7.函数()2cos sin 2f x x x =+的一个单调减区间是()A .,42ππ⎛⎫ ⎪⎝⎭B .0,6π⎛⎫ ⎪⎝⎭C .,2ππ⎛⎫ ⎪⎝⎭D .5,6ππ⎛⎫⎪⎝⎭【答案】A【解析】利用导数求得函数()y f x =的单调递减区间,利用赋值法可得出结果. 【详解】()2cos sin 2f x x x =+,该函数的定义域为R ,()()()222sin 2cos2212sin 2sin 22sin sin 1f x x x x x x x '=-+=--=-+-()()2sin 12sin 1x x =-+-,1sin 1x -≤≤,可得sin 10x +≥,令()0f x '<,可得2sin 10x ->,即1sin 2x >,解得()52266k x k k Z ππππ+<<+∈. 所以,函数()y f x =的单调递减区间为()52,266k k k Z ππππ⎛⎫++∈ ⎪⎝⎭. 当0k =时,函数()y f x =的一个单调递减区间为5,66ππ⎛⎫⎪⎝⎭, 5,,4266ππππ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭, 对任意的k Z ∈,50,2,2666k k πππππ⎛⎫⎛⎫⊄++ ⎪ ⎪⎝⎭⎝⎭,5,2,2266k k ππππππ⎛⎫⎛⎫⊄++ ⎪ ⎪⎝⎭⎝⎭,55,2,2666k k ππππππ⎛⎫⎛⎫⊄++ ⎪ ⎪⎝⎭⎝⎭,故函数()y f x =的一个单调递减区间为,42ππ⎛⎫⎪⎝⎭. 故选:A. 【点睛】本题考查利用导数求解函数的单调区间,考查计算能力,属于中等题. 8.设函数()f x 在R 上存在导数()f x ',对任意的R x ∈,有()()2cos f x f x x +-=,且在[)0,+∞上有()sin f x x '>-,则不等式()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭的解集是()A .,4π⎛⎤-∞ ⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】构造函数,由已知得出所构造的函数的单调性,再利用其单调性解抽象不等式,可得选项. 【详解】设()()cos F x f x x =-,∵()()2cos f x f x x +-=,即()()cos cos f x x x f x -=--,即()()F x F x =--,故()F x 是奇函数,由于函数()f x 在R 上存在导函数()f x ',所以,函数()f x 在R 上连续,则函数()F x 在R 上连续.∵在[)0,+∞上有()sin f x x '>-,∴()()sin 0F x f x x ''=+>, 故()F x 在[)0,+∞单调递增,又∵()F x 是奇函数,且()F x 在R 上连续,∴()F x 在R 上单调递增, ∵()cos sin 2f x f x x x π⎛⎫--≥-⎪⎝⎭, ∴()cos sin cos 222f x x f x x f x x πππ⎛⎫⎛⎫⎛⎫-≥--=---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即()2F x F x π⎛⎫≥- ⎪⎝⎭,∴2x x π≥-,故4x π≥,故选:B . 【点睛】本题考查运用导函数分析函数的单调性,从而求解抽象不等式的问题,构造合适的函数是解决问题的关键,属于较难题. 二、多选题9.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin sin B A C =,则角B 的值不可能是() A .45°B .60°C .75°D .90°【答案】CD【解析】先利用正弦定理得到2b ac =,再利用余弦定理和基本不等式得到0,3B π⎛⎤∈ ⎥⎝⎦,即可判断. 【详解】∵2sin sin sin B A C =, 由正弦定理得: ∴2b ac =,∴2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,当且仅当a c =时取等号, 又0B π<<,故0,3B π⎛⎤∈ ⎥⎝⎦.故选:CD. 【点睛】本题主要考查了正弦定理以及余弦定理,考查了基本不等式.属于较易题. 10.下列说法正确的是() A .“4x π=”是“tan 1x =”的充分不必要条件B .命题:p “若a b >,则22am bm >”的否定是真命题C .命题“0R x ∃∈,0012x x +≥”的否定形式是“R x ∀∈,12x x+>” D .将函数()cos2f x x x =+的图象向左平移4π个单位长度得到()g x 的图象,则()g x 的图象关于点0,4π⎛⎫⎪⎝⎭对称 【答案】ABD【解析】解方程tan 1x =,利用集合的包含关系可判断A 选项的正误;判断命题p 的真假,可判断出该命题的否定的真假,进而可判断B 选项的正误;利用特称命题的否定可判断C 选项的正误;利用图象平移得出函数()y g x =的解析式,利用对称性的定义可判断D 选项的正误. 【详解】对于A 选项,解方程tan 1x =,可得()4x k k Z ππ=+∈,4π⎧⎫⎨⎬⎩⎭ ,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭,所以,“4x π=”是“tan 1x =”的充分不必要条件, A 选项正确;对于B 选项,当0m =时,22am bm =,则命题p 为假命题,它的否定为真命题,B 选项正确;对于C 选项,命题“0R x ∃∈,0012x x +≥”的否定形式是“R x ∀∈,12x x+<”,C 选项错误;对于D 选项,将函数()cos2f x x x =+的图象向左平移4π个单位长度, 得到()cos 2sin 2444g x x x x x πππ⎛⎫=+++=-++ ⎪⎝⎭, ()()sin 2sin 244g x x x x x ππ-=---+=-+,则()()2g x g x π+-=,故函数()y g x =的图象关于点0,4π⎛⎫⎪⎝⎭对称,D 选项正确; 故选:ABD. 【点睛】本题考查命题真假的判断,考查了充分不必要条件、命题的否定的真假、特称命题的否定的判断,同时也考查了函数对称性的验证,考查推理能力,属于中等题.11.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是() A .()2xf x x =+B .()23g x x x =--C .()21,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .()ln 1f x x =-【答案】BC【解析】只要解方程00()f x x =,观察它有没有实解即可得, 【详解】选项A ,若()00f x x =,则020x =,该方程无解,故A 中函数不是“不动点”函数;选项B ,若()00g x x =,则200230x x --=,解得03x =或-1,故B 中函数是“不动点”函数;选项C ,若()00f x x =,则01x ≤,0021xx -=,或01x >,002x x -=,解得01x =,故C 中函数是:“不动点”函数;选项D ,若()00f x x =,则00ln 1x x -=,该方程无解,故D 中函数不是“不动点”函数. 故选:BC. 【点睛】本题考查新定义“不动点”,解题关键是根据新定义把问题转化为方程有无实数解. 12.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,关于()f x 有下述四个结论,正确的是() A .()f x 的一个周期是2π B .()f x 是非奇非偶函数C .()f x 在(0,)π单调递减D .()f x【答案】ABD【解析】先根据周期函数定义判断选项A ,再根据[]y x =函数的意义,转化()f x 为分段函数判断B 选项,结合三角函数的图象与性质判断C ,D 选项. 【详解】[][]()2sin co (cos in )s s f x x x f x π+=+=,()f x ∴的一个周期是2π,故A 正确;sin11,01,0,2cos1,21sin1,,2()3cos1sin1,,23cos1,,22cos1,,02x x x x f x x x x πππππππππ+=⎧⎪⎛⎫⎪∈ ⎪⎪⎝⎭⎪⎪=⎪⎪⎛⎤⎪-∈ ⎪⎥=⎝⎦⎨⎪⎛⎫⎪-∈ ⎪⎝⎭⎪⎪⎡⎫⎪∈⎪⎢⎪⎣⎭⎪⎛⎫⎪∈- ⎪⎪⎝⎭⎩,()f x ∴是非奇非偶函数,B 正确;对于C ,(0,)2x π∈时,()1f x =,不增不减,所以C 错误;对于D ,[0,)2x π∈,()sin11sin11 1.742f x π=+>+=+>>D 正确. 故选:ABD 【点睛】本题主要考查了函数的周期性,单调性,奇偶性,考查了特例法求解选择题,属于中档题. 三、填空题13.若幂函数()f x 过点()2,8,则满足不等式(3)(1)f a f a -≤-的实数a 的取值范围是______. 【答案】(,2]-∞【解析】先求得幂函数()f x 的解析式,在根据()f x 的单调性求得不等式(3)(1)f a f a -≤-的解集.【详解】设()f x x α=,代入点()2,8,得28,3αα==,所以()3f x x =,所以()f x 在R 上递增,所以(3)(1)31f a f a a a -≤-⇒-≤-,解得2a ≤,所以实数a 的取值范围是(,2]-∞.故答案为:(,2]-∞ 【点睛】本小题主要考查幂函数解析式的求法,考查幂函数的单调性,属于基础题. 14.已知1a >,1b >,则log log 216a b b a +的最小值是______. 【答案】8【解析】利用换底公式可得log log 1a b b a ⨯=,再利用基本不等式可得答案. 【详解】因为1a >,1b >,所以log 0,log 0b a a b >>,因为lg log lg log log 1lg log lg aa b bb b a b a a a b ⎧=⎪⎪⇒⨯=⎨⎪=⎪⎩,所以,log log 2168a b b a +≥==,当log 2a b =时取“=”. 故答案为:8. 【点睛】本题主要考查指数式的运算、考查了换底公式与基本不等式的应用,属于中档题. 15.4cos50tan40-=______.【解析】【详解】4sin 40cos40sin 404cos50tan 40cos 40--=2cos10sin 30cos10sin10cos30cos 40--=,1sin102cos 40⎫-⎪⎝⎭=40340==【考点】三角函数诱导公式、切割化弦思想.16.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,()cos25cos 3A B C ++=-,点P 是ABC 的重心,且27AP =,则c =______.【答案】4【解析】首先根据余弦二倍角公式得到1cos 2A =,设BC 边上的中线为AD ,得到7AD =,从而得到()12AD AB AC =+,再平方解方程即可得到答案. 【详解】因为()cos25cos 3A B C +-+=,所以22cos 5cos 20A A -+=, 所以1cos 2A =或cos 2A =(舍去). 设BC 边上的中线为AD ,如图所示:因为27AP =,所以7AD = 又因为()12AD AB AC =+, 所以()222124AD AB AC AB AC =++⋅, 所以()22172cos 4c b bc A =++,2211722242⎛⎫=++⨯⨯ ⎪⎝⎭c c ,化简得22240c c +-=,解得4c =或6c =-(舍去). 故答案为:4 【点睛】本题主要平面向量数量积的应用,同时考查了余弦二倍角公式,属于简单题. 四、解答题17.已知点()2,1P -在角α的终边上,且02απ≤<. (1)求值:2sin cos 4sin cos αααα-+;(2)若32ππβ<<,且sin 210αβ⎛⎫-= ⎪⎝⎭,求2αβ+的值.【答案】(1)2;(2)724απβ+=. 【解析】先利用同角三角函数的基本关系得到sin ,cos ,tan ααα;(1)原式分子分母同除cos α得到正切,代入已知量即可得出结果;(2)先利用已知角的范围求得5224παπβ<-<,求出cos 2αβ⎛⎫- ⎪⎝⎭,再利用22ααββα⎛⎫+=-+ ⎪⎝⎭,最后利用两角和的余弦公式求解即可得出结果. 【详解】由题意:sin α=,cos α=, 1tan 2α=-,且2παπ<<,(1)2sin cos 2tan 124sin cos 4tan 1αααααα--==++;(2)∵32ππβ<<,224παπ-<-<-,∴5224παπβ<-<,∴cos 210αβ⎛⎫-=- ⎪⎝⎭, ∴cos cos cos cos sin sin 2222ααααββαβαβα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=--- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,2⎛=- ⎭=⎝, ∵5242παβπ<+<, ∴724απβ+=. 【点睛】本题主要考查了同角三角函数的基本关系以及两角和的余弦公式.属于中档题.18.已知函数()22sin 24f x x x π⎛⎫=+- ⎪⎝⎭. (1)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;(2)是否存在实数()2,t ∈+∞,使得()f x 在()2,t 上单调递增?若存在,求出t 的取值范围,若不存在,说明理由.【答案】(1)()[]2,3f x ∈;(2)不存在,理由见解析.【解析】(1)由二倍角公式降幂,再由两角差的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得值域;(2)求出函数的单调区间,由2在减区间内部,得结论. 【详解】解:(1)∵()22sin 24f x x x π⎛⎫=+- ⎪⎝⎭1cos 21sin 212sin 223x x x x x ππ⎡⎤⎛⎫⎛⎫=-+-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.又∵,42x ππ⎡⎤∈⎢⎥⎣⎦,∴22633x πππ≤-≤,即212sin 233π⎛⎫≤+-≤ ⎪⎝⎭x ,∴()[]2,3f x ∈; (2)由222232k x k πππππ-+≤-≤+()k Z ∈得51212k x ππππ-+≤≤+()k Z ∈, 所以()f x 的递增区间是5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈,递减区间是511,1212k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈,令0k =,函数在511,1212ππ⎡⎤⎢⎥⎣⎦上递减,而5112,1212ππ⎡⎤∈⎢⎥⎣⎦,即函数在112,12π⎛⎫⎪⎝⎭上是递减的,故不存在实数()2,t ∈+∞,使得()f x 在()2,t 上递增. 【点睛】本题考查正弦型函数的值域,考查正弦型函数的单调性,解题方法由二倍角公式,两角和与差的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求解. 19.已知R a ∈,函数()1ln f x ax x =--在1x =处取得极值. (1)求函数()f x 的单调区间;(2)若对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的最大值.【答案】(1)函数()f x 在0,1上单调递减,在1,上单调递增;(2)211e -. 【解析】(1)首先对函数求导,根据函数()1ln f x ax x =--在1x =处取得极值,得到()110f a '=-=,求得1a =,根据导数的符号求得其单调区间; (2)将不等式转化为1ln 1x b x x +-≥,之后构造新函数()1ln 1xg x x x=+-,利用导数求得其最小值,进而求得最值,得到结果. 【详解】()11ax f x a x x-'=-=,由()110f a '=-=得1a =,()1ln =--f x x x , (1)()1x f x x-'=,由0f x 得1x >,由0f x 得01x <<,故函数()f x 在0,1上单调递减,在1,上单调递增.(2)()1ln 21x f x bx b x x≥-⇒+-≥, 令()1ln 1x g x x x =+-,则()2ln 2x g x x -'=,由0g x,得2x e >,由0g x ,得20x e <<,故()g x 在()20,e上递减,在()2e ,+∞上递增,∴()()22min 1e1e g x g ==-,即211e b ≤-, 故实数b 的最大值是211e-. 【点睛】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有根据极值点求参数的值,利用导数求函数的单调区间,利用导数求参数的取值范围,属于中档题目. 20.已知函数()1f x x ax =-,其中0a >. (1)求关于x 的不等式()2f x a>的解集; (2)若12a =,求[]0,x m ∈时,函数()f x 的最大值. 【答案】(1)2,a ⎛⎫+∞⎪⎝⎭;(2)2max 2,0121,112,12m m m y m m m m ⎧-<<⎪⎪⎪=≤≤⎨⎪⎪->⎪⎩.【解析】(1)根据分段函数定义域解不等式可求得答案; (2)画出函数()f x 的图象,数形结合可求得()f x 的最大值 【详解】(1)()()()11,11,x ax x af x x x x a α⎧-≥⎪⎪=⎨⎪-<⎪⎩,(0)a >当1x a ≥时,由()2>f x a ,得(12)x ax a ->,1(2)()0ax x a-+>,20ax ->,2x a>, 当1x a <时,由()2>f x a ,即(1)2x ax a ->,220ax x a -+<,令220ax x a-+=,180∆=-<,方程无解,而0a >,所以220ax x a-+<无解,综上所述,2x a >,所以不等式()2f x a >的解集为2,a ⎛⎫+∞ ⎪⎝⎭. (2)12a =时()22,21212,22x x x f x x x x x x ⎧-≤⎪⎪=-=⎨⎪->⎪⎩,∵()112f =,由1122x x -=得另一个根21x =,由()f x 的图像可知,当01m <<时,函数的最大值为()2122m m f m m m ⎛⎫=-=- ⎪⎝⎭;当121m ≤≤时,函数的最大值为12; 当21m >+时,函数的最大值为()22m f m m =-综上所述,函数的最大值为2max2,0121,1212,212mm my mmm m⎧-<<⎪⎪⎪=≤≤+⎨⎪⎪->+⎪⎩.【点睛】本题考查了解分段函数不等式的问题,分段函数求最值的问题,考查了数形结合的思想. 21.重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄O(如图).为吸引游客,准备在门前两条夹角为6π(即AOB∠)的小路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长23AB=且点A,B落在小路上,记弓形花园的顶点为M,且6MAB MBAπ∠=∠=,设OBAθ∠=.(1)将OA,OB用含有θ的关系式表示出来;(2)该山庄准备在M点处修建喷泉,为获取更好的观景视野,如何规划花园(即OA,OB长度),才使得喷泉M与山庄O距离即值OM最大?【答案】(1)43OAθ=;436OBπθ⎛⎫=+⎪⎝⎭;(2)当632OB OA==时,OM取最大值.【解析】(1)在OAB中,利用正弦定理即可将OA,OB用含有θ的关系式表示出来;(2)在OMB△中,由余弦定理得出2OM21632283πθ⎛⎫=-++⎪⎝⎭,结合三角函数的性质,即可得出OM的最大值,再求出,OA OB的长度即可.【详解】(1)在ABC中,由正弦定理可知sin sin6OA ABπθ=,则43OAθ=;同理由正弦定理可得sin sin 6OB ABOABπ=∠,则6OB OAB πθ⎛⎫=∠=+⎪⎝⎭, (2)∵AB =6MAB MBA π∠=∠=,∴2AM BM ==,在OMB △中,由余弦定理可知2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅+ ⎪⎝⎭248sin 4cos 666πππθθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭241cos 24233ππθθ⎛⎫⎛⎫⎛⎫=-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2823cos 228228333πππθθθ⎤⎛⎫⎛⎫⎛⎫=-++++=-++ ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎦, ∵50,6πθ⎛⎫∈ ⎪⎝⎭, ∴2272,333πππθ⎛⎫+∈ ⎪⎝⎭,∴2sin 21,32πθ⎡⎫⎛⎫+=-⎪⎢ ⎪⎪⎝⎭⎣⎭, 当2sin 213πθ⎛⎫+=- ⎪⎝⎭时,即512πθ=时, OM4=+,此时5sin cos cos sin 124646OA πππππ⎫==+=⎪⎭,5551261212OB πππππ⎛⎫⎛⎫=+=-== ⎪ ⎪⎝⎭⎝⎭即当OB OA ==OM 取最大值.【点睛】本题主要考查了正弦定理和余弦定理的实际应用,涉及了三角函数求值域,属于中档题.22.已知函数()sin ln()f x x a x b =++,()g x 是()f x 的导函数.(1)若0a >,当1b =时,函数()g x 在(,4)π内有唯一的极小值,求a 的取值范围; (2)若1a =-,1e 2b π<<-,试研究()f x 的零点个数.【答案】(1)(0,25sin 4)a ∈-;(2)()f x 有3个零点. 【解析】(1)先求导得2sin )(1)(ag x x x '=--+,求出2()0(1)a g ππ'=-<+()4sin 425a g '=--,再由sin 4025a --≤和sin 4025a-->两种情况讨论求得a 的取值范围;(2)分析可知,只需研究(,)b π-时零点的个数情况,再分(,),(,)22x b x πππ∈-∈两种情形讨论即可. 【详解】解:(1)当1b =时,si ()(l )n 1n f x a x x =++,cos 1()()x x ag f x x '==++, 2sin )(1)(a g x x x '=--+()0a >在(),4π是增函数,2()0(1)ag ππ'=-<+,(4)sin 425ag '=--, 当(4)sin 4025ag '=--≤时,()g x 在(,4)π是减函数,无极值; 当(4)sin 4025ag '=-->时,0(,4)x π∃∈,使得00()g x '=, 从而()g x 在0(,)x π单调递减,在0(,4)x 单调递增,0x 为()g x 唯一的极小值点,所以()0,25sin 4a ∈-(2)当1a =-时,()sin ln()f x x x b =-+,(1,)2b e π∈-,可知,(i )(),x π∈+∞时,()0f x <,无零点;所以只需研究(,)b π-,1()cos f x x x b'=-+, (ii )(,)2x ππ∈时,1()cos 0f x x x b'=-<+,可知()f x 单调递减, ()1ln()1ln()02222f b e ππππ=-+>-+-=,()0f π<,存在唯一的(,)2s ππ∈,()0f s =;(iii )当(,)2x b π∈-,21()sin ()f x x x b ''=-++是减函数,且21(0)00f b''=+>,21()102()2f b ππ''=-+<+ 则1(0,)2x π∃∈,1()0f x ''=,()f x '在1(,)b x -是增函数,1()2x π,是减函数,并且 lim ()0x b f x +→-'<,()1010f b'=->,1()022f b ππ'=-<+, 所以2(,0)x b ∃∈-,2()0f x '=;3(0,)2x π∃∈,3()0f x '=,且知()f x()f x 在()2,b x -减,在()23,x x 增,在3(,)2x π减,又因为()lim 0x b x f +→->,()00ln 0f b =-<,()02f π>,(,0)m b ∃∈-,()0f m =, (0,)2n π∃∈,()0f n =,综上所述,由(i )(ii )(iii )可知,()f x 有3个零点. 【点睛】本题主要考查利用导数研究函数的极值和零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.。