两个位似图形坐标之间的关系 (2)
- 格式:docx
- 大小:4.36 MB
- 文档页数:5
图形的位似--知识讲解【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化. 【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k或-k.【典型例题】类型一、位似多边形1.下列每组的两个图形不是位似图形的是().A. B. C. D.【思路点拨】根据位似图形的概念对各选项逐一判断,即可得出答案.【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A 、B 、C 三个图形中的两个图形都是位似图形; 而D 的对应顶点的连线不能相交于一点,故不是位似图形. 故选D .【总结升华】位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21C.31 D.不知AB 的长度,无法判断【答案】C2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.A B DE【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.举一反三【变式】在已知三角形内求作内接正方形.A 1B 1C 1D 1E 1【答案与解析】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD; ∴四边形DEFG 即为所求.类型二、坐标系中的位似图形B C3.(优质试题•漳州)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.【思路点拨】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【答案与解析】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【总结升华】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.(优质试题春•威海期末)如图△ABC的顶点坐标分别为A (1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F 的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)如图,△DEF和△D′E′F′为所作;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).【总结升华】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.。
初中-数学-打印版
位似图形与坐标有什么关系?
位似图形与坐标有什么关系?
难易度:★★★★
关键词:画相似图形
答案:
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。
【举一反三】
典例:如图,四边形ABCD和四边形A′B′C′D′位似,位似比k1=2,四边形A′B′C′D′和四边形A″B″C″D″位似,位似比k2=1.四边形A″B″C″D″和四边形ABCD是位似图形吗?位似比是多少?
思路引导:此题考查了位似图形的判定方法,好考查了位似图形的性质,位似是相似的特殊形式,位似比等于相似比.因为四边形A″B″C″D″和四边形ABCD的对应顶点的连线已经相交于一点了,所以我们只要证明四边形A″B″C″D″∽四边形ABCD即可;相似具有传递性,所以可证得四边形A″B″C″D″∽四边形ABCD;又因为位似比等于相似比,所以可求得四边形A″B″C″D″和四边形ABCD的位似比.∵四边形ABCD和四边形A′B′C′D′位似,∴四边形ABCD∽四边形A′B′C′D′.∵四边形A′B′C′D′和四边形A″B″C″D″位似,∴四边形A′B′C′D′∽四边形A″B″C″D″.∴四边形A″B″C″D″∽四边形ABCD.∵对应顶点的连线过同一点,∴四边形A″B″C″D″和四边形ABCD是位似图形.∵四边形ABCD和四边形
A′B′C′D′位似,位似比k1=2,四边形A′B′C′D′和四边形A″B″C″D″位似,位似比k2=1,∴四边形A″B″C″D″和四边形ABCD的位似比为.
标准答案:四边形A′B′C′D′和四边形A″B″C″D″位似,位似比为.
初中-数学-打印版。
位似对应点坐标公式位似对应点坐标公式,这可是个在数学世界里有点小神秘但又超级实用的家伙!咱先来说说位似是啥。
想象一下,有两个图形,它们不仅形状相同,而且对应顶点的连线相交于一点,对应边互相平行,这就是位似啦。
就好比两个相似的双胞胎,只不过一个大一点,一个小一点,但是五官比例啥的都一样。
位似对应点坐标公式呢,就是用来描述这两个相似图形中对应点坐标之间关系的神奇公式。
比如说,如果位似中心是坐标原点 O ,原图形上一点的坐标是(x,y),位似比为 k ,那么位似图形对应点的坐标就是(kx,ky)或者(-kx,-ky)。
记得有一次,我给学生们讲这个知识点。
当时有个小同学瞪着大眼睛,一脸迷茫地问我:“老师,这公式有啥用啊?”我笑着跟他说:“孩子,你想想啊,假如你是个建筑师,要设计一个大楼的模型,是不是得根据实际大楼和模型的比例关系来确定模型上每个点的位置呀?这公式就能帮你算出来!”那孩子似懂非懂地点点头。
在实际解题中,这个公式能帮咱们省不少事儿。
比如说,给你一个三角形,告诉你位似中心和位似比,让你求位似后的三角形顶点坐标。
这时候,只要把原来顶点的坐标按照公式一计算,答案就出来啦。
不过,同学们在运用这个公式的时候可别马虎。
一定要搞清楚位似中心的位置,还有位似比是正数还是负数。
有一次考试,有个题给出的位似比是 -2 ,好多同学都忘了还有负数这回事,结果全做错啦,那叫一个可惜哟!其实啊,数学里的每个公式就像是一把钥匙,能帮我们打开知识的大门。
位似对应点坐标公式这把钥匙,能让我们更轻松地探索图形的奥秘。
大家在学习的时候,多做几道练习题,把这个公式用熟了,以后遇到相关的问题就能轻松应对啦。
就像骑自行车,刚开始可能摇摇晃晃,但练得多了,就能自由自在地在路上飞驰啦!希望大家都能和位似对应点坐标公式成为好朋友,让数学学习变得更有趣、更轻松!。
位似图形对应点坐标变化规律及拓展
归纳图形点移动规律,可概括为“双曲线关于原点的对称性规律”。
即,点的水平(x)坐标无论如何变化,纵(y)坐标却要遵循特定的函数关系式。
按照此原理,绘制图形时可先
确定点的水平位置,再利用其他函数确定点的纵坐标,即可完成图形的绘制。
接下来要拓展的是,如果双曲线的曲率系数不定,那么可以由双曲线方程得出点移动规律。
例如,假设双曲线曲率系数是k,那么,
x^2=k*y^2
y^2=k^(-1) * x^2
可以看出,当k > 0时,在直角坐标系上,横坐标和纵坐标要做相反的运动,当k < 0时,横坐标和纵坐标要做相同的运动,而当k=0时,反而得到的是一条平行于横轴的直线。
另外,双曲线的能量关系也可以用来求解双曲线上特定点的位置机制:
能量关系式为:E = k*(x^2 + k^(-1)*y^2)
可以从中求得位置关系式:
x^2 = (E/k)*(1-k^(-1)*y^2)
以此类推,可以把这种求解机制扩展到定义域内的任意多边形上,按照多边形各顶点及其
位置属性计算出点移动规律,此类规律更为灵活,可以用于更多的图形绘制形式。
总之,双曲线点移动规律可概括为“双曲线关于原点的对称性规律”,通过其灵活性,可用
于绘制多边形,得出特定点的移动机制,并可以从能量方程上求解双曲线上特定点的位置
机制。
画相似图形及图形与坐标
一、位似图形的定义:如果两个图形不仅形状相同,而且每组对应顶点的连线相交于一点,对应边相
互平行(或在同一直线上),那么这样的两个相似图形是位似图形。
辨析:(1)位似图形与相似图形的关系:位似图形是具有特殊位置关系的相似图形,位似图形一定是相似图形,但相似图形不一定是位似图形。
(2)两个位似图形的位似中心只有一个。
例1判断每组图形中两个图形是不是位似图形,如果是指出位似中心
二、位似图形的性质——如果两个图形位似,那么他们的相似比就是相似比。
(1)位似图形上的任意一对对应点到位似中心的距离之比等于相似比。
(2)位似图形对应点的连线或延长线交于一点。
(3)位似图形对应线段平行(或在同一条直线上)且成比例。
(4)位似图形的对应角相等。
三、位似图形的画法
四、确定物体位置的方法
方法1:用坐标确定位置。
先选取某点为坐标原点,建立平面直角坐标系,然后用一对有序实数来表示一个点的位置,即为某物体的位置。
方法2:用一个角度和距离确定点的位置。
先选定某个参照物和某个方向,然后用一个角度和距离来表示一个点的位置,即为某物体的位置。
这种方法在军事和地理中经常用到。
注意:用此方法确定点的位置时,角度与距离二者缺一不可。
五、图形的变换与坐标
1.在平移过程中(1)左右移,横坐标变,纵坐标不变.
(2)上下移,纵坐标变,横坐标不变.
2.关于x轴对称的图形对应点的横坐标不变,纵坐标互为相反数;
关于y轴对称的图形对应点的纵坐标不变,横坐标互为相反数.
3.位似中心是原点的位似变换中,坐标扩大或缩小相同的倍数.。
27.1图形的相似2【教学内容】课本26---27页内容。
【教学目标】知识与技能1、知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等;2、会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进 行相关的计算. 过程与方法通过观察、归纳等数学活动,与他人交流思维的过程,能用所学的知识去解决问题。
情感、态度与价值观培养学生学习数学的兴趣。
【教学重难点】重点:比例的基本性质的应用。
难点:比例的基本性质的应用。
【导学过程】【知识回顾】1、什么叫相似图形?2、观察下列图形,指出哪些是相似图形:【情景导入】1、观察图片,体会相似图形性质(教材P36页)(1) 图中的111A B C ∆是由正ABC ∆放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?(2) 对于图中两个相似的正六边形,是否也能得到类似的结论?结论:(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______.反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______.几何语言:在ABC ∆和111A B C ∆中若111;;A A B B CC ∠=∠∠=∠∠=∠.111111C A AC C B BC B A AB == 则ABC ∆和111A B C ∆相似(2)相似比:相似多边形________的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.【新知探究】探究一、 例、如图,四边形ABCD 和EFGH 相似,求角βα和的大小和EH 的长度x .…….【知识梳理】 本节课你学习了什么知识?【随堂练习】1.ABC ∆与DEF ∆相似,且相似比是23,则DEF ∆ 与ABC ∆与的相似比是( ). A .23 B .32 C .25 D .492.下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A .3个B .4个C .5个D .6个3.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm ,求两地的实际距离.4.如图所示的两个五边形相似,求未知边a 、b 、c 、d 的长度.5.已知四边形ABCD 和四边形1111A B C D 相似,四边形ABCD 的最长边和最短边的长分别是10cm 和4cm ,如果四边形1111A B C D 的最短边的长是6cm ,那么四边形1111A B C D 中最长的边长是多少?。
《两个位似图形坐标之间的关系》评课稿
授课人
评课人
《两个位似图形坐标之间的关系》评课稿
聆听了周老师的课。
下面就周老师执教的《两个位似图形坐标之间的关系》这一课谈谈自己的看法。
周老师这堂课紧凑有序,首先复习平移、轴对称、旋转和位似这四种图形变换带来的坐标变化,为接下来探究位似与坐标之间的关系做好准备。
自主探究一中,两次作位似图形的背景起于一个三角形位似中心都是原点,相似比一个大于1,另一个小于 1.在两次画图对比中,总结归纳出:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k。
例题学习过程中,很多学生将原四边形缩小为原来的0.5,并没想到将既定图形扩大为原来的2倍,在多情况分析方面缺乏全面考虑问题的失误。
当然,数学是一门逻辑性较强的科目,任何好的理念和设计在实际的教学过程中总会留下一些遗憾:学生对多情况分析中的另一种情况理解不够透彻,在今后运用中仍有很多的漏洞,下节课仍需加强。
两个位似图形坐标之间的关系
导学案
一、导入新课
(一)探究
1.如图1,在平面直角坐标系中,有两点 A (6,3),B (6,0).以原点O 为位似
中心,相似比为 3
1 ,把线段AB 缩小,观察对应点之间坐标的变化.你有什么发现?
图1 图2
2.如图2,△AOC 三个顶点的坐标分别为A (4,4)O (0,0),C (5,0).以点O 为位似中心,相似比为2,将△AOC 放大.观察对应点之间坐标的变化.你有什么发现?
二、 新课学习
(一)通过上面的探究,你发现平面直角坐标系中,以原点为位似中心的位似图
形坐标之间有什么关系?
1. 在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以 作 个.
2.在平面直角坐标系中,如果位似变换是以原点为位似中心,它与原图形的相似比为k ,那么原图形上的点(x ,y )对应的位似图形的坐标为 或 . 当k 时,原图形与位似图形在原点同侧;
当k 时,原图形与位似图形在原点异侧.
(二)应用新知
例1 如图,在直角坐标系中,有两点A (6,3)、B (6, 0).以
原点O 为位似中心,相似比为 3
1在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为 。
变式: 如图,在平面直角坐标系中,已知点A (-3,
6),B (-9,-3),以原点O 为位似中心,相似比为3
1把△ABO 缩小,则点A 的对应点A ′的坐标是( )
A .(-1,2)
B .(-9,18)
C .(-9,18)或(9,-18)
D .(-1,2)或(1,-2)
例2.∆ABO 的三个顶点的坐标分别为A(-2,4),B(-2,0),
O(0,0).以原点O 为位似中心,画出一个三角形,使它
与∆ABO 的相似比为
23.
解:
同步练习:在平面直角坐标系中, 四边形ABCD 的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O 为位似中心,相似比为2
1的位似图形.
解:
(三)拓展提升
例3.如图,在平面直角坐标系中,每个小方格的边
长均为1,△AOB 与△A′OB ′是以原点O 为位似中心的位
似图形,且相似比为3∶2,点A ,B 都在格点上,则点B ′
的坐标是___________.
同步练习:如图,把△AOB 缩小后得到△COD ,则
△COD 与△AOB 的相似比为 ;若点C 的坐
标为(1,2)则点A 的坐标为 .
(四)巩固练习
1.在平面直角坐标系中,已知点E (-4,2),若△O E′F′与△OEF 关于原点O 位似,且S
△O E′F′:S △OEF = 1:4,则点E′的坐标为 .
2. 如右图,在平面直角坐标系中,
和是以坐标原点为位似
中心的位似图形,且点
,。
(1)若点,则的坐标为_____; (2)若的面积为,则的面积_ __.
3.如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,
相似比为1∶2,∠OCD=90°,CO=CD ,若点B(1,0),则
点C 的坐标为 ( )
A. (1,-2)
B. (-2,1)
C. (2 ,2 )
D. (1,-1)
4. 如图,△OAB 与△OCD 是以点O 为位似中心的位似图形,
相似比为3:4,∠OCD=90°,∠AOB=60°,若点B 的坐标
是(6,0),则点C 的坐标是____.
三、课堂小结
1、四种变换的坐标规律:
2、你能在下图中找出平移,旋转,轴对称和位似这些图形变换吗?。