电磁场与电磁波第二章电磁场的基本规律讲解
- 格式:ppt
- 大小:3.18 MB
- 文档页数:37
电磁场与电磁波第二章电磁场的基本规律笔记下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!第一节电磁场的基本概念。
1.1 电磁场的概念。
《电磁场和电磁波》讲义一、什么是电磁场在我们生活的世界中,电磁场是一种无处不在但又常常被我们忽略的存在。
简单来说,电磁场就是由带电粒子的运动所产生的一种物理场。
想象一下,当一个电子在空间中移动时,它的周围就会产生一个电场。
这个电场会对周围的其他带电粒子产生力的作用。
与此同时,如果这个电子在移动的过程中还在不断地改变速度,那么就会产生磁场。
电场和磁场就像是一对好兄弟,它们总是同时出现,相互关联,并且相互影响。
这种相互作用的结果就是我们所说的电磁场。
电磁场的强度和方向可以用数学上的向量来描述。
电场强度用 E 表示,磁场强度用 B 表示。
它们的大小和方向会随着带电粒子的运动状态以及空间位置的变化而变化。
二、电磁场的特性电磁场具有一些非常重要的特性。
首先,电磁场可以在空间中传播。
这就像我们扔一块石头到水里,会产生一圈圈的水波向外扩散一样,电磁场也能以电磁波的形式在空间中传播能量和信息。
其次,电磁场遵循一定的规律。
比如,库仑定律描述了两个静止点电荷之间的电场力作用;安培定律则描述了电流与磁场之间的关系。
再者,电磁场具有能量。
当电磁场发生变化时,能量会在电场和磁场之间相互转换。
这也是电磁波能够传播的一个重要原因。
三、电磁波的产生电磁波的产生通常需要一个源,比如一个加速运动的电荷或者一个变化的电流。
以天线为例,当电流在天线中快速变化时,就会产生迅速变化的电磁场,并向周围空间发射出去,形成电磁波。
另外,原子内部的电子在不同能级之间跃迁时,也会释放出电磁波。
这种电磁波的频率和能量与电子跃迁的能级差有关。
四、电磁波的性质电磁波具有波动性和粒子性双重性质。
从波动性的角度来看,电磁波和其他波一样,具有波长、频率、振幅等特征。
波长是相邻两个波峰或波谷之间的距离;频率则是单位时间内波振动的次数;振幅表示波的能量大小。
电磁波的频率范围非常广泛,从极低频率的无线电波到高频率的伽马射线。
不同频率的电磁波在性质和应用上有着很大的差异。
电磁场与电磁波(第5版)第2章本节介绍了电磁学的基本概念和原理,包括电荷、电场、电势、电场强度和电势差等。
本节讨论了静电场和静磁场的性质和特点,包括库伦定律、电场强度的计算、电场线和磁感线的性质等。
本节介绍了电场和磁场的性质,包括电场的叠加原理、高斯定律、环路定理和安培定律等。
本节讨论了电场和磁场相互作用的现象和规律,包括洛伦兹力、洛伦兹力的计算和洛伦兹力的方向等。
本节介绍了电磁波的基本概念和特征,包括电磁波的产生、传播和检测等。
本节讨论了电磁波的性质,包括电磁波的速度、频率、波长和能量等。
本节介绍了电磁波谱的分类和特点,包括射线、微波、红外线、可见光、紫外线、X射线和γ射线等。
本节讨论了电磁波在生活和科学研究中的广泛应用,包括通信、雷达、医学诊断和天文观测等。
本章节将介绍电荷的性质以及电场的基本概念。
首先,我们将讨论电荷的性质,包括电荷的类型和带电体的基本特征。
之后,我们将深入研究电场,包括电场的定义、电场的强度和方向,以及电场的计算公式。
电荷是物质的一种基本特性,它可以分为正电荷和负电荷两种类型。
正电荷表示物体缺少电子,而负电荷表示物体具有多余的电子。
电荷是一种离散的量子化现象,它以元电荷为单位进行计量。
带电体是指带有正电荷或负电荷的物体,而不带电的物体则是不具有净电荷的。
电场是指电荷周围所具有的一种物理现象,它可以影响周围空间中其他电荷的运动和状态。
电场的强度和方向决定了电场对其他电荷的力的大小和方向。
电场的强度用符号E表示,单位是牛顿/库仑。
电场的方向由正电荷朝向负电荷的方向确定。
库仑定律是描述电荷间作用力的基本定律。
根据库仑定律,两个电荷之间的作用力正比于它们的电荷量的乘积,反比于它们之间距离的平方。
电场强度是描述某处电场强度大小和方向的物理量。
电场强度的计算公式正是库仑定律的一种推导结果,它可以通过已知电荷量和距离来计算。
以上是《电磁场与电磁波(第5版)第2章》中2.1节的内容概述。
电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。
电场是电荷及变化磁场周围空间里存在的一种特殊物质,电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。
电场的基本性质是对放入其中的电荷有作用力,这种力称为电场力。
电场强度是描述电场强弱和方向的物理量,用 E 表示,单位为伏特/米(V/m)。
磁场是一种看不见、摸不着的特殊物质。
磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。
电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。
磁场的基本特性是对处于其中的磁体、电流和运动电荷有力的作用。
磁感应强度是描述磁场强弱和方向的物理量,用 B 表示,单位为特斯拉(T)。
二、库仑定律与电场强度库仑定律是描述真空中两个静止的点电荷之间相互作用力的定律。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中 F 是两个点电荷之间的库仑力,k 是库仑常量,q1 和 q2 分别是两个点电荷的电荷量,r是两个点电荷之间的距离。
电场强度是用来描述电场力的性质的物理量。
点电荷 Q 产生的电场中,距离点电荷 r 处的电场强度为:$E = k\frac{Q}{r^2}$。
对于多个点电荷组成的系统,某点的电场强度等于各个点电荷单独在该点产生的电场强度的矢量和。
三、高斯定理高斯定理是电场的一个重要定理。
通过一个闭合曲面的电通量等于该闭合曲面所包围的电荷的代数和除以真空中的介电常数。
在计算具有对称性的电场分布时,高斯定理非常有用。
例如,对于均匀带电的无限长直导线,利用高斯定理可以方便地求出其周围的电场强度分布。
四、安培环路定理安培环路定理反映了磁场的一个重要性质。
在稳恒磁场中,磁感应强度 B 沿任何闭合路径的线积分,等于这闭合路径所包围的各个电流的代数和乘以磁导率。
利用安培环路定理,可以方便地计算具有对称性的电流分布所产生的磁场。
五、法拉第电磁感应定律法拉第电磁感应定律指出,闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
主要内容o第一章矢量分析o第二章电磁场的基本规律o第三章静态电磁场o第四章静态场的边值问题o第五章平面电磁波o第六章平面电磁波的反射与折射o第七章导行电磁波o第八章电磁波的辐射第一章矢量分析1.梯度、散度、旋度的定义2.梯度、散度、旋度的计算。
记住直角坐标系、圆柱坐标系和球坐标系的拉米系数。
(广义坐标系中的梯度、散度、旋度公式不必记)3.散度定理、斯托克斯定理单位体积内发出的通量 环量最大面密度2.梯度、散度、旋度的计算。
记住直角坐标系、圆柱坐标系和球坐标系的拉米系数。
(广义坐标系中的梯度、散度、旋度公式不必记)sin ,,1321r h r h h 1231,,1h h h 1231,1,1h hh直角坐标系圆柱坐标系球坐标系,,x y z,,z ,,r第二章电磁场的基本规律1.麦克斯韦方程组的微分形式和积分形式。
记住并理解每一方程的物理意义。
2.电磁场的边界条件3.本构方程4.极化电荷和磁化电流分布的计算5.电磁能量和电磁传输功率的计算3.本构方程各向同性线性介质EP E D 0HM H B 0EJ H)(H M 1r m EE P 0r 0)1( e4.极化电荷和磁化电流分布的计算P PM J mP e nPSMeJ nmSPS12n)(PPemS12n)(JMMe第三章静态电磁场1.静电位、矢量磁位的概念及方程2.电位满足的边界条件第四章静态场的边值问题1. 理想导体平面和球面镜像法。
2. 分离变量法。
会由通解公式根据边界条件确定问题的特解。
第四章静态场的边值问题在给定的边界条件下求解泊松方程或拉普拉斯方程。
方法:1. 镜像法在所求解场区域以外的空间中适当位置上,设置适当的像电荷来替代界面上的电荷的效果,像电荷与源电荷共同作用结果满足场域边界面上给定的边界条件,从而可以将界面移去,使所求解的边值问题转化为无界空间的问题。
导体平面的镜像:q = – q,q , q 的位置关于平面对称。
导体球面的镜像:q = – aq/d,q , q 的位置关于球面反演。
电磁场与电磁波的基本原理电磁场和电磁波是电磁学的基本概念,它们在我们的日常生活中起着重要的作用。
本文将从电磁场和电磁波的基本原理入手,探讨它们的性质和应用。
一、电磁场的基本原理电磁场是指由电荷产生的电场和由电流产生的磁场所组成的空间。
根据麦克斯韦方程组,电场和磁场之间存在着相互作用,它们可以相互转换。
电场和磁场的转换是通过电磁感应的方式实现的。
电场是由电荷产生的,它的强度与电荷的大小和距离有关。
电场的作用是使电荷受到力的作用,使其发生运动或产生电流。
电场的强度可以用电场线来表示,电场线的方向与电场的方向相同。
磁场是由电流产生的,它的强度与电流的大小和距离有关。
磁场的作用是使磁性物质受到力的作用,使其发生运动或产生电流。
磁场的强度可以用磁感线来表示,磁感线的方向与磁场的方向相同。
电磁场的转换是通过电磁感应的方式实现的。
当电流通过导线时,会产生磁场。
当磁场与导线相互作用时,会在导线中产生电流。
这就是电磁感应的基本原理。
二、电磁波的基本原理电磁波是由电场和磁场相互作用而产生的一种波动现象。
根据麦克斯韦方程组,电场和磁场之间存在着相互耦合的关系,它们可以相互转换。
电磁波的传播是通过电磁感应的方式实现的。
电磁波的传播速度是光速,它在真空中的数值约为3×10^8米/秒。
电磁波的传播速度与电磁场的频率有关,频率越高,传播速度越快。
电磁波的频率和波长之间存在着一定的关系,即频率乘以波长等于光速。
电磁波的频率越高,波长越短,能量越大。
根据频率的不同,电磁波可以分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等不同的波段。
电磁波具有传播性、干涉性、衍射性和偏振性等特点。
它可以传播在真空和介质中,可以干涉和衍射,也可以被偏振。
这些特点使得电磁波在通信、遥感、医学和科学研究等领域得到广泛的应用。
三、电磁场和电磁波的应用电磁场和电磁波在我们的日常生活中起着重要的作用。
无线电、电视、手机和互联网等通信技术都是基于电磁波的传播原理。