电磁场与电磁波第二章课后答案
- 格式:doc
- 大小:1.27 MB
- 文档页数:35
第二章习题解答【习题2.1】101929=.=101.6102.0810e qR R mq e Cp m Ce e 解:电偶极矩p 其中 1.3可得电偶极矩p 的大小其方向为从负电荷指向正电荷,即从氯离子指向氢离子。
---´== =醋【习题2.2】解1解:由例2.2得,电偶极子所产生的电场为533()1[]4e e P R RP E RRπε=-0()R R << ……………………①其中 0e P qR = ,0R方向从负电荷指向正电荷,R是从电偶极子指向电场中任一点的矢量,起点在正负电荷连线的中点。
(如图)本题 100 1.310R m -=⨯ 1010010R m -=⨯满足 0R R << .将①式整理:32013[()]4e e E P R R P RRπε=-令 ()e m k P R R P =-(23k R=)则 304m E Rπε=…………………………②欲求E的最大值,求出m最大值即可.222222[()]()2()()e e e e e e m k P R R P k P R R P k P R P R =-=+- 2222(2)()e e k R k P R P =-+2224296()()e e R P R P R R=-+ 2223()e e P R P R=+其中 00cos e P R qR R qR R θ== , (θ是0R 和R之间的夹角)易见,当cos 1θ=,即0θ=时,2m可取最大值22222m ax 234e e e m R P P P R=+=则 m=2e P 代入②式得 m a x33m ax042e P mERRπεπε==将习题2.1中的结论 e P=2.082910c m -⨯⋅ 代入得29112103max2.08102 3.148.910(10010)EV m ----⨯=⋅⨯⨯⨯⨯⨯513.710V m-≈⨯⋅距离自由电子处的电场 191712121020 1.6101.41044 3.148.910(10010)e E V mV mRπε-----⨯==⋅≈⨯⋅⨯⨯⨯⨯⨯故 距离电偶极子处的电场最大值为 513.710V m -⨯⋅ 距离自由电子处的电场为 711.410V m -⨯⋅【习题2.2】解2解:设矢量0R e的方向从电荷C L -指向电荷H +R n 是从由C L - H +构成的电偶极子指向电场中的任一点的矢量,起点在正负电荷连线的中点,且0R 〈〈R. ( e , n 为单位矢量,θ是e , n的夹角)(1)003303cos 1[]4qR qR E n e R R θπε=- (41P )由向量减法的三角形法则及余弦定理得:=03024qR R πε⎛⎫⎪⎝⎭E =由上题得290( 2.110)e p qR cm -==⨯因此,当0θ=或θπ=时E有最大值, 03024qR E R πε==50302 3.7104qR V M R πε=⨯ (2)7201() 1.4104q R VE M R R πε==⨯【习题2.3】证明: 电偶极距qRe p =其方向为从负电荷指向正电荷。
电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。
如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。
解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。
解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。
由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。
解:以球心为坐标原点,转轴(一直径)为$z$轴。
设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。
电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
1-1. (1) 叙述库仑定律,并写出数学表达式。
(2)电荷之间的作用力满足牛顿第三定律吗?请给出证明。
解:(1)库仑定律内容为:真空中两个静止的点电荷之间的相互作用力的大小,与它们的电量q 和'q 的乘积成正比,与它们之间距离R 的平方成反比。
作用力的方向沿两者连线的方向。
两点电荷同号时为斥力,异号时为吸力。
所以:(2)电荷之间的作用力不满足牛顿第三定律,请看下面的例证:1q 以速度1v 运动,q 2以速度2v运动。
如图1-2所示。
此时,2q 在1q 处产生有电场2E和磁场2H 。
而1q 在2q 处也产生电场1E和磁场1H 。
但因2q 在1q 处产生的磁场方向与1v 平行。
故由洛仑兹公式知,q 1所受的力为 )(2120112121N E q H v q E q F=⨯+=μ 只有电场力。
但q 1对q 2的作用力为:10221112H v q E q Fμ⨯+= (N) 既有电场力,又有磁场力,所以两者不相等。
1-2 (1) 洛仑磁力表达式中,哪部分做功,哪部分不做功,为什么? (2) 洛仑兹力满足迭加原理吗?为什么? 解: (1) 洛仑磁力公式为H v q E q F0μ⨯+= (N )洛仑兹力做的功为⎰⋅=csd F W,其中dt v s d = 所以有:⎰⋅=cs d F W=⎰∆⋅tdt v F=⎰∆⨯+tdt v H v q E q)(0μ=⎰⎰∆∆⋅⨯+⋅ttdt v H v q dt v E q)(0μ=⎰∆⋅tdt v E q(J)其中使用了矢量恒等式()()BA C CB A ⨯⋅=⨯⋅所以,洛仑兹力作的功为⎰∆⋅=tdt v E q W=)(J sd E qC⎰⋅所以,洛仑兹力中,因为E q 与电荷的做功无关。
而H v q0μ⨯部分总是与电荷的运动方向垂直,故E q 部分做功,而H v q0μ⨯部分不做功。
(2)因为电荷受力与E 和H间都是线性关系,所以,洛仑兹力满足迭加原理。
电磁场与电磁波第2章课后答案2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:z y r z x r z y r z xr ??;??;??;??4321+=+=+-=+-=ρρρρ 84?15?6?3)(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=ρ2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。
题2-2图解:(a) 由对称性04321=+++=E E E E E ρρρρρ(b) 由对称性0321=++=E E E E ρρρρ(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ?2)}??()??{(40021περπερ-=+--=+=ρρρ 半径为a 的半圆环线电荷产生的电场为y aE lb ?20περ=ρ总电场为0=+=b a E E E ρρρ2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为?ad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为?ρρad s l =,对?积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ?)?cos ?sin (22?00000??-=--==πππερπερπε?ρρ 题2-3图题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。
解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'?21),(0dx y x E d s =ρ其中 22)'(y x x +-=ρ;22)'(??)'(?yx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2?)2/()2/(ln ?{4),(2222y a x arctg y a x arctg y y a x y a x x y x E s --+++-++=περρ2-5.已知真空中电荷分布为ρ=≤>r a r ar a220;;ρs b r a ==;r 为场点到坐标原点的距离,a ,b 为常数。
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
静电场 恒定电场习题解答主要问题: 1) 矢量标量书写不加区分(忘记在矢量顶部加箭头) 2) 机械抄袭标准答案,不理解其含义3)不理解极化电荷面密度和极化电荷体密度含义:极化电荷面密度仅仅存在于介质表面,静电场情形下导体表面没有极化电荷面密度(题2-15) 4)所谓验证边界条件对静电场而言有两种方法(题2-13),一是从电位着手判断电位是否连续(12?Φ=Φ)法向电位条件如何?(1212s n nεερ∂Φ∂Φ-+=∂∂,这里格外需要注意说明边界上有没有电荷?s ρ=)二是判断切向电场是不是连续,法向电通密度是不是相等,要是不等,面电荷密度是多少 这两种方法等价。
5)2-2题很多人和标准答案中的坐标图不一致,答案却一样,明显错误2-1、半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。
若已知球内和球外的电位分别为:122(,) ()(,) ()r Ar r a Aa r r a rθθθθΦ=≤⎧⎪⎨Φ=≥⎪⎩ 式中A 为常数。
求1) 两种介质中的E 和D ;2) 两种介质中的自由电荷密度。
解:1) 在r < a 区域内:111111111A Ar r A A θθεεθε∂Φ∂Φ=-∇Φ=--=--∂∂==--rθr θ1r θE e e e e D E e e , 在r > a 区域内:()()2222222121Aa r r rAarθθεεθ∂Φ∂Φ=-∇Φ=--=-∂∂==-2r θr θ22r θE e e e e D E e e 2) 在r < a 区域内:。
()()()21112111sin sin 2cot r r D D r r r Arθρθθθεθθ∂∂=∇⋅=+∂∂=-+1D在r > a 区域内:()()2222222311sin sin cot r r D D r r r Aa rθρθθθεθ∂∂=∇⋅=+∂∂=-2D 在球面r = a 上,电荷面密度()()()12s r a r a A ρεεθ===⋅-=⋅-=+21r 21n D D e D D2-2一个半径为a 的半圆环上均匀分布线电荷ρl ,求垂直于半圆环平面的轴线z =a 处的电场强度。