《立方根》示范公开课教学设计【北师大版八年级数学上册】
- 格式:docx
- 大小:169.21 KB
- 文档页数:5
2.3 立方根教学设计一、学生起点分析学生已经学习了平方根的概念,掌握了求一个非负数的平方根和算术平方根的方法,明确了平方运算与开平方的互逆关系.学生在平方根学习活动中体会了类比的思想方法,为立方根的学习提供了一定的经验基础和学习方法.立方根的计算有着非常广泛的应用,有关空间形体的计算经常涉及开立方,因此本节知识是后续学习内容的基础.二、教学任务分析《立方根》是义务教育教科书北师大版八年级(上)第二章《实数》第三节.本节内容1个学时完成.主要是通过对立方根与平方根的类比,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能以外,关注学生的学习方法培养,渗透数学思想方法也是教师教学过程中的关注点.为此本节课的三维教学目标是:①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;三、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为334R =v ,R 为球的半径) 提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(. 目的:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a 的取值分别选为正数、负数、0,这样设计,在此过程中渗透分类讨论的思想方法.2议一议:(1)正数有几个立方根?(2)0有几个立方根(3)负数呢?意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.3在上面的基础上明晰下列内容,对知识进行梳理(1)每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.例如x 3=7时,x 是7的立方根,即37=x ;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.(3)求一个数a 的立方根的运算叫做开立方(extrction of cubic root) , 其中a 叫做被开方数.开立方与立方互为逆运算.效果:学生通过类比学习,初步掌握立方根的概念,能用符号语言表示一个数的立方根. 第四环节:尝试反馈,巩固练习内容:例1求下列各数的立方根:(1)27-; (2)1258 ; (3)833 ; (4)216.0 ; (5)5-. 解:(1)因为2733=-)(-,所以27-的立方根是3-,即3273=--; (2)因为1258523=⎪⎭⎫ ⎝⎛,所以1258的立方根是52,即5212583=; (3)因为833827233==)(,所以833的立方根是23,即238333=; (4)因为216.06.03=)(,所以216.0的立方根是6.0,即6.0216.03=; (5)5-的立方根是35-.例2 求下列各式的值:(1);83- (2);064.03 (3)31258-; (4)()339. 解:(1)38-=()2233-=-; (2)3064.0=()4.04.033=;(3)31258-=525233-=⎪⎭⎫ ⎝⎛-; (4)()339=9. 反馈练习 1.求下列各数的立方根: ().1656464125.03333333 ;;-;;- 2.通过上面的计算结果,你发现了什么规律?目的:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:().8283273228333333333=)=(;==;=--= -引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论.第五环节:深入探究想一想: (1)3a 表示a 的立方根,那么()33a 等于什么?33a 呢? (2)3a -与3a -有何关系?目的:明晰()33a =a ,33a =a说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果3x =a ,那么x 就是a 的立方根,即x =3a ,所以3x =()33a =a , 同样,根据定义,3a 是的a 三次方,所以3a 的立方根就是a , 即a a =33,3a -=3a -.第六环节 课时小结内容1:提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容:1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号3a 中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:(3a )3=a , a a =33,3a -=3a -; (5)立方与开立方也互为逆运算.我们可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性.内容2:回顾引例某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?如有时间,学生学力许可,还可以安排学生探究下列问题:1.回顾上节课的内容:已知01822=-x ,求x 的值.2.求下列各式中的x . ()()--=+=-=x x x x 3435(1)8+27=0; (2)10.3430; (3)81116;(4)3210.目的:回顾引例,使得教学环节更完整,同时体现了数学的实用价值.安排有层次的探究问题,可更好地调动不同学生的学习热情,让学生通过练习解决有关问题,培养学生综合解决问题的能力.效果:学生通过引例的解决,体会到了立方根及开立方运算的实用性,并类比应用方法解决(3)(4),培养并形成能力.第七环节 作业布置1、 习题2.52、再次体会总结立方根与平方根的区别与联系四、教学设计说明(一)关注类比思想的渗透,关注学习方法的指导类比是在两类不同的事物之间进行的对比,在找出若干相同或相似点之后,推测在这两类事物的其他方面也可能存在相同或相似之处的一种思维方式.当然,类比的结果是猜测的,不一定可靠,但它作为一种思考问题的方法,可以发现数学结论,可以沟通数学知识,可以解决生活中的一些实际问题,具有发现的功能,有助于发展学生的创新精神.因此,学习中要注意渗透这样的思维方式,实际上,类比学习法让学生省时省力,在学习新知的同时巩固已学的知识,通过新旧对比更好地掌握知识.为此,本节课让学生应用类比法顺理成章的学习立方根的概念、性质、运算.同样在学生以后的数学学习中,可以通过三角形类比四面体、通过圆类比球……(二)关注学生个体差异,关注学生探究过程根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对“议一议”、“想一想”、“比一比”的探究情况和学生反馈练习的完成情况,教师要关注学生是否理解立方和开立方是互为逆运算的,是否会用根号正确的表示一个数的立方根。
北师大版八年级数学上册:2.3《立方根》教学设计2一. 教材分析《立方根》是北师大版八年级数学上册第二章第三节的内容。
本节内容是在学生已经掌握了有理数的乘方、平方根和算术平方根的基础上进行学习的,是进一步深化学生对数的概念的理解,也是进一步培养学生的抽象思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、平方根和算术平方根的概念和性质,能够进行相关的运算。
但是,对于立方根的概念和性质的理解可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过实际操作和思考,来理解和掌握立方根的概念和性质。
三. 教学目标1.知识与技能:使学生理解立方根的概念,掌握立方根的性质,能够进行立方根的运算。
2.过程与方法:通过实际操作和思考,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探索精神。
四. 教学重难点1.重点:立方根的概念和性质。
2.难点:立方根的运算。
五. 教学方法采用问题驱动法,通过引导学生思考和探索,让学生在实际操作中理解和掌握立方根的概念和性质。
六. 教学准备1.准备一些立方体的教具,用于引导学生直观地理解立方根的概念。
2.准备一些有关立方根的练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过向学生展示一些立方体的教具,引导学生直观地感受立方体的形状,从而引出立方根的概念。
2.呈现(10分钟)向学生介绍立方根的概念,并引导学生通过实际操作,理解立方根的性质。
3.操练(10分钟)让学生通过实际的计算,来理解和掌握立方根的运算方法。
4.巩固(10分钟)让学生通过做一些有关立方根的练习题,来巩固所学的知识。
5.拓展(10分钟)引导学生思考:除了立方根,还有哪些其他的根呢?它们的性质又是怎样的呢?6.小结(5分钟)让学生总结一下,今天学到了什么,有哪些收获。
7.家庭作业(5分钟)布置一些有关立方根的家庭作业,让学生在家里进行练习。
8.板书(5分钟)在黑板上写出立方根的概念和性质,以及立方根的运算方法。
立方根教学目标1.使学生了解一个数的立方根概念,并会用根号表示一个数的立方根;2.理解开立方的概念;3.明确立方根个数的性质,分清一个数的立方根与平方根的区别.教学重点和难点重点:立方根的概念及求法.难点:立方根与平方根的区别.教学过程一、复习:请同学回答下列问题:(1)什么叫一个数a的平方根?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(3)当a≥0时,式子a,-a,±a,的意义各是什么?二、引入新课1.计算下列各题:(1) 31.0;(2) 33)( ;(3) 30.22.立方根的概念.一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).用式子表示,就是,如果3x=a,那么x叫做a的立方根.数a的立方根用符号“3a”表示,读作“三次根号a,其中a是被开方数,3是根指数.(注意:根指数3不能省略).3.开立方.求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.三、讲解例题:例1 求下列各数的立方根:(1)8;(2)-8;(3)0.125;(4)-27125;(5)0.分析:求一个数的立方根,我们可以通过立方运算来求.(2)因为3)2(-=8,所以-8的立方根是-2即 38-=-2(3)因为35.0=0.125,所以0.125的立方根是0.5,即3125.0=0.5.(4)因为(-53)3=-12527,所以-27 125的立方根是-35,即312527-=-53. (5)因为30=0,所以0的立方根是0,即30=0.例2 求下列各式的值: (1) 327; (2) 364-; (3) 3100027-. 四、随堂练习1.判断题:(1)4的平方根是2; (2)8的立方根是2;(3)-0.064的立方根是-0.4; (4)127的立方根是±13(5)-161的平方根是±4;(6)-12是144的平方根 2.选择题:(1)数0.000125的立方根是 .A.0.5B.±0.5C.0.05D.0.005(2)下列判断中错误的是()A.一个数的立方根与这个数的乘积为非负数B.一个数的两个平方根之积负数C.一个数的立方根未必小于这个数D.零的平方根等于零的立方根3.求下列各数的立方根:(1)27;(2)-38;(3)1;(4)0.五、小结请思考下面的问题:1.什么叫一个数的立方根?怎样用符号表示数a的立方根?a的取值范围是什么?2.数的立方根与数的平方根有什么区别?3.正数只有一个正的立方根,但有两个互为相反数的平方根;负数有一个负的立方根,但没有平方根.4.求一个数的立方根,可以通过立方运算来求.。
2.3 立方根教学设计一、学生起点分析学生已经学习了平方根的概念,掌握了求一个非负数的平方根和算术平方根的方法,明确了平方运算与开平方的互逆关系.学生在平方根学习活动中体会了类比的思想方法,为立方根的学习提供了一定的经验基础和学习方法.立方根的计算有着非常广泛的应用,有关空间形体的计算经常涉及开立方,因此本节知识是后续学习内容的基础.二、教学任务分析《立方根》是义务教育教科书北师大版八年级(上)第二章《实数》第三节.本节内容1个学时完成.主要是通过对立方根与平方根的类比,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能以外,关注学生的学习方法培养,渗透数学思想方法也是教师教学过程中的关注点.为此本节课的三维教学目标是:①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;三、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为,R为球的半径)提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识.目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a的平方根?如何用符号表示数a(a≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).2.一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root, 也叫做三次方根).如:2是8的立方根,,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1);(2);(3).目的:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a的取值分别选为正数、负数、0,这样设计,在此过程中渗透分类讨论的思想方法.2议一议:(1)正数有几个立方根?(2)0有几个立方根(3)负数呢?意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.3在上面的基础上明晰下列内容,对知识进行梳理(1)每个数a都只有一个立方根,记为“”,读作“三次根号a”.例如x3=7时,x是7的立方根,即=x;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.(3)求一个数a的立方根的运算叫做开立方(extrction of cubic root) , 其中a叫做被开方数.开立方与立方互为逆运算.效果:学生通过类比学习,初步掌握立方根的概念,能用符号语言表示一个数的立方根.第四环节:尝试反馈,巩固练习内容:例1求下列各数的立方根:(1);(2);(3);(4);(5).解:(1)因为,所以的立方根是,即;(2)因为,所以的立方根是,即;(3)因为,所以的立方根是,即;(4)因为,所以的立方根是,即;(5)的立方根是.例2 求下列各式的值:(1)(2)(3);(4).解:(1)=;(2)=;(3)=;(4)=9.反馈练习1.求下列各数的立方根:2.通过上面的计算结果,你发现了什么规律?目的:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论.第五环节:深入探究想一想:(1)表示a的立方根,那么等于什么?呢?(2)与有何关系?目的:明晰=a, =a说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果=a,那么x就是a的立方根,即x=,所以==a, 同样,根据定义,是的a三次方,所以的立方根就是a, 即, =.第六环节课时小结内容1:提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容: 1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:()3=a,, =;(5)立方与开立方也互为逆运算.我们可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性.内容2:回顾引例某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?如有时间,学生学力许可,还可以安排学生探究下列问题:1.回顾上节课的内容:已知,求x的值.2.求下列各式中的x.目的:回顾引例,使得教学环节更完整,同时体现了数学的实用价值.安排有层次的探究问题,可更好地调动不同学生的学习热情,让学生通过练习解决有关问题,培养学生综合解决问题的能力.效果:学生通过引例的解决,体会到了立方根及开立方运算的实用性,并类比应用方法解决(3)(4),培养并形成能力.第七环节作业布置1、习题2.52、再次体会总结立方根与平方根的区别与联系四、教学设计说明(一)关注类比思想的渗透,关注学习方法的指导类比是在两类不同的事物之间进行的对比,在找出若干相同或相似点之后,推测在这两类事物的其他方面也可能存在相同或相似之处的一种思维方式.当然,类比的结果是猜测的,不一定可靠,但它作为一种思考问题的方法,可以发现数学结论,可以沟通数学知识,可以解决生活中的一些实际问题,具有发现的功能,有助于发展学生的创新精神.因此,学习中要注意渗透这样的思维方式,实际上,类比学习法让学生省时省力,在学习新知的同时巩固已学的知识,通过新旧对比更好地掌握知识.为此,本节课让学生应用类比法顺理成章的学习立方根的概念、性质、运算.同样在学生以后的数学学习中,可以通过三角形类比四面体、通过圆类比球……(二)关注学生个体差异,关注学生探究过程根据新课标的评价理念,教师在课堂教学中应尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表述方式和解题方法的多样化.在教学活动中教师关注的是学生的参与程度和表现出来的思维水平,关注的是学生对“议一议”、“想一想”、“比一比”的探究情况和学生反馈练习的完成情况,教师要关注学生是否理解立方和开立方是互为逆运算的,是否会用根号正确的表示一个数的立方根。
立方根一、教学内容与分析:(一)内容:探索立方根的概念、计算和简单性质.(二)分析:本节的重点是立方根的概念及计算.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)二、教学目标与分析:(一)目标:1、了解立方根的概念,会用根号表示一个数的立方根.2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.(二)分析:.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.在学习了平方根的基础上,用类比的方法学习立方根的有关知识。
三、教学支持条件分析:四、问题诊断分析:本节中学生可能出现的问题是平方根与立方根的区别。
所以在教学中应强调一个数总有立方根,但未必总有平方根,只有非负数才有平方根。
五、教学过程:(一)复习引入、类比学习提问:(1)什么叫一个数a的平方根?如何用符号表示数a(a≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别和联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了前面场景的问题中,需要引出一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).2.一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root, 也叫做三次方根).如:2是8的立方根,,0是0的立方根.(三)初步探究1、做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1);(2);(3).2、议一议:(1)正数有几个立方根?(2)0有几个立方根(3)负数呢?(1)每个数a都只有一个立方根,记为“”,读作“三次根号a”.例如x3=7时,x是7的立方根,即=x;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.(2)正数的立方根是正数;0的立方根是0;负数的立方根是负数.(3)求一个数a的立方根的运算叫做开立方(extrction of cubic root) , 其中a叫做被开方数.开立方与立方互为逆运算.(三)巩固练习例1求下列各数的立方根:(1);(2);(3);(4);(5).解:(1)因为,所以的立方根是,即;(2)因为,所以的立方根是,即;(3)因为,所以的立方根是,即;(4)因为,所以的立方根是,即;(5)的立方根是.例2 求下列各式的值:(1)(2)(3);(4).解:(1)=;(2)=;(3)=;(4)=9.(四)环节:深入探究想一想:(1)表示a的立方根,那么等于什么?呢?(2)与有何关系?六、课时小结:1、提问通过本节课的学习你学到了哪些知识?归纳、总结学生的回答,得出下列内容: 1.了解立方根的概念,会用三次根号表示一个数的立方根,能用立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号中根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:()3=a,, =;(5)立方与开立方也互为逆运算.我们也可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.七、目标检测:1、求下列各数的立方根:2、课本P46随堂练习。
北师大版数学八年级上册3《立方根》教案1一. 教材分析《立方根》是北师大版数学八年级上册第三章的内容。
本节课主要让学生理解立方根的概念,掌握求一个数的立方根的方法,并能运用立方根解决一些实际问题。
通过本节课的学习,培养学生观察、思考、动手操作的能力。
二. 学情分析学生在七年级时已经学习了乘方,对乘方的概念和运算有一定的了解。
但立方根与乘方有所区别,需要学生能够理解并区分。
另外,学生需要具备一定的空间想象力,能够理解立方根在实际问题中的应用。
三. 教学目标1.知识与技能:理解立方根的概念,掌握求一个数的立方根的方法。
2.过程与方法:通过观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:立方根的概念及其求法。
2.难点:立方根在实际问题中的应用。
五. 教学方法1.启发式教学:通过提问、引导学生思考,激发学生的学习兴趣。
2.直观教学:利用图形、模型等直观教具,帮助学生理解立方根的概念。
3.小组合作学习:学生分组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.教学课件:制作课件,包括立方根的定义、例题、练习等。
2.教具:立方体模型、卡片等。
3.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示立方根的定义,引导学生思考:什么是立方根?为什么要学习立方根?2.呈现(10分钟)展示一些有关立方根的例子,让学生观察、思考,并引导学生总结求一个数的立方根的方法。
3.操练(10分钟)学生分组讨论,利用立方体模型进行操作,巩固立方根的概念。
4.巩固(10分钟)学生独立完成一些有关立方根的练习题,教师巡回指导。
5.拓展(10分钟)利用立方根解决一些实际问题,如计算物体的体积、解决几何问题等。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固立方根的概念和求法。
7.家庭作业(5分钟)布置一些有关立方根的家庭作业,让学生课后巩固所学知识。
立方根教学目标知识与技能1.使学生了解一个数的立方根概念,并会用根号表示一个数的立方根;2.理解开立方的概念;3.明确立方根个数的性质,分清一个数的立方根与平方根的区别.过程与方法1、创设情境,激发学生的求知欲。
2、鼓励学生积极思维,体会类比的数学方法。
情感与价值观培养学生团结协作的团队精神。
教学重点和难点重点:立方根的概念及求法.难点:立方根与平方根的区别.教学过程设计一、复习:请同学回答下列问题:(1)什么叫一个数a 的平方根?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(3)当a≥0时,式子a ,-a ,±a,的意义各是什么?答:(1)如果一个数x 的平方等于a ,即x2=a ,那么x 叫做a 的平方根,表示为x=±a.(2)正数有两个平方根,它们互为相反数,负数没有平方根,0的平方根是0.(3)a≥0,a 表示a 的算术平方根,-a 表示a 的负平方根,±a 表示a 的平方根.二、引入新课1.计算下列各题:(1) 31.0; (2) 33)2(-; (3) 30.答:(1) 31.0=0.001; (2) 33)2(-=-827; (3) 30=0.指出:上面各题是已知底数和乘方指数求三次幂的运算,也叫乘方运算.怎样求下列括号内的数?各题中已知什么?求什么?(1)( )3=18; (2)( )3=-27 125; (3)( )3=0. 答:已知乘方指数和3次幂,求底数,也就是“已知某数的立方,求某数”.设某数为x ,则(1)式为3x =18,求x ; (2)式为3x =-27125,求x ;(3)式为x3=0求x 。
2.立方根的概念.一般地,如果一个数的立方等于a ,这个数就叫做a 的立方根(也叫做三次方根).用式子表示,就是,如果3x =a ,那么x 叫做a 的立方根.数a 的立方根用符号“3a ”表示,读作“三次根号a ,其中a 是被开方数,3是根指数.(注意:根指数3不能省略).3.开立方.求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.做一做(1)2的立方是多少?是否还有其它的数它的立方也是8?(2)-3的立方等于多少?是否还有其它的数它的立方也是-27?正数的立方根是正数;0的立方根是0;负数的立方是负数。
立方根一、教材分析《立方根》是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》第三节.本节内容安排了1 个学时完成.主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质.因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要昂学生感受类比的思想方法,为今后的学习打下基础.二、学情分析在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及个数的唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.三、目标分析教学目标(1) 知识与技能目标1.了解立方根的概念,会用根号表示一个数的立方根.2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.(2) 过程与方法目标1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.(3) 情感与态度目标:1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.(4) 教学重点立方根的概念及计算.(5) 教学难点立方根的求法,立方根与平方根的联系及区别.四、教法学法1.教学方法:类比法.2 •课前准备:教具:教材,软件Microsoft PowerPoint 2007,电脑.学具:教材,练习本.五、教学过程本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习; 第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:复习引入、类比学习(1)什么叫一个数a的平方根?如何用符号表示数a ( a> 0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别和联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.意图:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生类比学习法学习立方根知识第二环节:创设问题情境:问题1:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?4 3(球的体积公式为v= R3, R为球的半径)3提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识.问题2:要制作一种容积为27m3的正方体的包装箱,这种包装箱的边长应该是多少?解:设这种包装箱的边长为x m,则这就是要求一个数,使它的的立方等于27.27因为33=所以x= 3,即这种包装箱的边长应为 3 m.意图:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,有很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.在现实的一些场景的问题中,需要引出一个新的运算,你将如何定义这个新运算?般地,如果一个数x 的立方等于a ,即x 3=a,那么这个数x 就叫做a 的立方根(cube root,也叫做三次方根)第三环节:初步探究1 做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?27 (1) ()3 = 0.001 ; (2) ()3=- 27 ;(3) ( )3=0.64意图:通过计算练习,使学生进一步了解求一个数的立方,与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对 a 的取值分别选为正数、负数、 0,这样设计,在此过程中渗透分类讨论的思想方法.2、议一议:(1) 正数有几个立方根? (2) 0有几个立方根 (3) 负数呢?意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.3在上面的基础上明晰下列内容,对知识进行梳理(1) 每个数a 都只有一个立方根,记为“ Va ”读作“三次根号a ”例如x 3=7时,x 是7的立方根,即3 7 =x ;与数的平方根的表示比较,数的立方根中根号前 没有“土”符号,但根指数3不能省略.(2 )正数的立方根是正数;0的立方根是0 ;负数的立方根是负数.(3)求一个数a 的立方根的运算叫做 开立方(extrction of cubic root),其中a 叫做被开方数.开 立方与立方互为逆运算.效果:通过亲自运算、探究学习立方运算的逆运算,培养了学生的探究能力,初步掌握立 方根的概念.第四环节:尝试反馈,巩固练习 例1、求下列各数的立方根:83(1) -27 ;(2);(3) 3125 8解:(1)因为(一3)3=- 27,所以一27的立方根是一3,即3 — 27=- 3;(4) 0.216 ; (5) -5.(2)因为8,所以1258 1252的立方根是2,即53 27 3 3(3)因为(-)3=——=3-,所以33的立方根是2 8 8 8(4)因为(0.6)3=0.216,所以0.216 的立方根是0.6,即3 0.216=0.6 ;(5) -5的立方根是3- 5.例2、求下列各式的值:所以 3 二 _ -38.(2) ________________ 因为-~2^= ________ , -3 27 =.所以 3 -27' ____ -3 27. 例4 .求下列各数的立方根:____ _______ _______ ______ _____ 3 30.125 3 -64; —164 ; 3 53; 3 16 .2 •通过上面的计算结果,你发现了什么规律?意图:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上 采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法•例 2则巩固立方根的计算,弓I 导学生思考立方根的性质.效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:3.33二3 27 = 3; (3 8)3 = (2)3=8. 3二二3 — 23 = — 2;引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律; 若学生的讨论不够深入,可由教师补充得出结论.第五环节:深入探究想一想:(1) V a 表示a 的立方根,那么(V a 3等于什么? 睛 呢?(2) 3 — a 与一3 a 有何关系?意图:明晰 3a 3 =a , 3 a 3 =a 。
2.3 立方根教学目标:1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.5.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.6.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.7.其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.教学重点:立方根的概念.教学难点:1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法:类比学习法.教学过程:一、新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=±a.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?二、新课讲解1.请大家先回忆平方根的定义.下面大家能不能再根据平方根的写法来类推立方根的记法呢?.若x的平方等于a,则x叫a的平方根,记作x=±2a,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=±3a,读作x等于正、负三次根号a,简称x等于正、负根号a.[师]请大家对这位同学的回答展开讨论,小组总结后选代表发言.[生甲]我认为这位同学回答得不对.如果x2=a,则x=±a,x3=a时,x=±a也成立的话,那如何区分平方根与立方根呢?[生乙]因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是±2,所以立方根的个数不正确.[师]大家的分析非常有道理,请认真看书第13、14页可知,若一个数x 的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x=3a,读作x等于三次根号a.开立方的定义[师]大家先回忆开平方的定义,再类推开立方的定义.[生]求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.(2)立方根的性质[师]2的立方等于多少?是否有其他的数,它的立方也是8?[生]2的立方等于8,(-2)3=-8,所以没有其他的数的立方等于8.[师]-3的立方等于多少?是否有其他的数,它的立方也是-27?[生]-3的立方等于-27,33=27,所以没有其他的数的立方等于-27.[师]0的立方等于多少?0有几个立方根?[生]0的立方等于0,0有1个立方根是0.[师]从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?[生]正数有一个立方根,0有一个立方根是0,负数有一个立方根.[师]对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.(3)平方根与立方根的区别与联系.[师]我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.[生]从定义来看,若一个数x 的平方等于a ,即x 2=a ,则x 叫a 的平方根;若一个数x 的立方等于a ,即x 3=a ,则x 叫a 的立方根,都是一个数x 的乘方等于a ,但一个是平方,另一个是立方.[生]一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.[生]它们的表示方法和读法不同,一个正数a 的平方根表示为±a ,立方根表示为3a .[例1]求下列各数的立方根:(1)-27;(2)1258;(3)0.216;(4)-5. [师]请大家思考下列问题.3a 表示a 的立方根,则(3a )3等于什么?33a 等于什么?大家可以先举例后找规律.: (3a )3=a . 又∵a 3是a 的立方,所以a 3的立方根就是a ,所以33a =a .下面就这两个式子进行练习.[例2]求下列各式的值: (1)38-;(2)3064.0;(3)-31258;(4)(39)3 三、课堂练习(一)随堂练习1.求下列各式的值:333333)16(;5;64;125.0-.2.一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?(二)补充练习1.求下列各数的立方根:0,1,-8127,6,-1000125,0.001 2.求下列各式的值:3233333333)278(;)2(;)2(;16463;1251;1;027.0------ 3.下列说法对不对? -4没有立方根;1的立方根是±1;361的立方根是61;-5的立方根是-35;64的算术平方根是四、议一议1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?2.一个正方体的体积变为原来的n 倍,它的棱长变为原来的多少倍?五、课时小结1.立方根的定义.2.立方根的性质.3.开立方的定义.4.平方根与立方根的区别与联系.5.会求一个数的立方根.六、活动与探究1.求下列各式中的x .(1)8x 3+27=0; (2)(x -1)3-0.343=0;(3)81(x +1)4=16; (4)32x 5-1=0.七、作业[课堂作业][课堂练习册]八、板书设计九、教学反思。
第二章 实数
2. 3 立方根 教学设计
立方根是在学生学习无理数以及平方根、算术平方根的基础上进一步的学习,本节课主要研究立方根的概念和求法,强调平方根与立方根的区别与联系,
为后期学习二次根式以及解直角三角形奠定坚实的基础. 1. 能说出立方根的概念,
会表示一个数的平方根;知道开立方与立方是互逆的运算,会利
a 的平方根. 2. 通过用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的
异同.
3. 发展求同存异思维,培养学生合作交流的良好习惯.
【教学重点】
立方根的概念及求法. 【教学难点】
立方根与平方根的区别. 一、 创设情境,引入新知
某化工厂使用半径为 1 米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8 倍,那么它的半径应是原来储气罐半径的多少倍? 二、合作交流,探究新知
问题:要做一个体积为 27 cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?
用多媒体展示图片和课件让学生动手做一做.在做的过程中引导学生思考,利用体积等于边长的立方,将此题转化为求一个数使它的立方等于27,得出边长为3m.这样从现实生活中提出数学问题,把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,使学生积极主动地投入到数学活动中去,同时为学习立方根提供背景和生活素材.
1.试一试
你能试着给数的立方根下个定义吗?(学生分组讨论,相互交流,再总结定义,最后由教师补充)
一般地,如果一个数x的立方等于a,那么这个数叫做a的立方根或三次方根.即:如果x3=a,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.(强调开立方与立方是逆运算)
让学生试着给出立方根和开立方的定义.在这里让学生原有的知识和经验出发,引导学生通过类比、思考、探索、交流来获取知识和学会学习,同时让学生经历数学知识的形成与应用过程,使他们更好地理解数学概念的形成,发展他们的数学能力.
在本次活动中,教师要关注:学生对平方根的了解程度;学生能否正确的利用类比的方法说出立方根和开立方的概念;通过对概念的探究,能否理解立方与开立方是一种互逆的运算;学生在活动中的参与意识及发表个人见解的勇气.
2.探究Ⅰ:
根据立方根的意义填空
(1)因为23=8,所以8的立方根是();
(2)因为()3=0.125,所以0.125的立方根是();(3)因为()3=0,所以0的立方根是();
(4)因为()3=-8,所以-8的立方根是();
(5)因为()3=
8
27
-,所以
8
27
-的立方根是();
学生在了解立方根的有关概念的基础上通过对问题的研究,进一步巩固立方根的概念,并能熟练地利用开立方与立方的互逆性,求一个数的立方根.
3.大家谈谈:(学生分组讨论)
观察练习题中正数、0和负数的立方根各有什么特点?并完成多媒体展示的表格
以填空的方式让学生计算具体的正数、0和负数的立方根,寻找它们各自的特点,通过小组讨论合作交流,归纳得出立方根的性质.这样让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究的过程中发展思维能力,有效的改变学生旧有学习方式.
4.自主探究:
如何表示一个数的立方根?
一个数a的立方根可表示为:3a,读作:三次根号a
其中a是被开方数,3是根指数.
通过让学生自主探究立方根的表示方法和读法,进一步训练学生利用类比的方法学习立方根,这样将新旧知识联系起来既有利于复习巩固平方根,又有利于理解和掌握立方根.
5.议一议:
你能说说数的平方根与数的立方根有什么不同吗?
设计这个问题,可以了解学生对立方根及平方根知识的掌握程度,可以在教的过程中,对于学生不理解的,没掌握的知识点再加以强调.学生在归纳的过程中可能结果不是很完善,教师可以引导学生从各自的定义、性质、表示方法上加以区别.
在本次活动中,教师要关注:学生能否根据立方根的概念填空;学生能否准确地归纳出立方根的性质;学生能否正确地用符号表示一个数的立方根;学生能否全面地说出平方根与立方根的区别. 三、运用新知
例1 求下列各数的立方根
例2 求下列各式的值
四、巩固新知
1. 判断下列说法是否正确.
(1) 25的立方根是5; ( ) (2) 任何数的立方根都只有一个; ( )
(3) 如果一个数的立方根是这个数本身,那么这个数一定是零; ( ) (4)一个数的立方根不是正数就是负数; ( ) (5) 0 的平方根和立方根都是 0 . ( ) 2. 求下列各式的值
3. 求下列各式的值
4. 将体积分别为 600 cm 3
和 129 cm 3
的长方体铁块,熔成一个正方体铁块,那么这个正方体的棱长是多少? 五、归纳小结
(
(
(
)(
)3
1234.
-
略.。