《平方根与立方根》课件
- 格式:ppt
- 大小:7.57 MB
- 文档页数:5
第二章平方根、算术平方根和立方根知识点汇总1. 平方根、算术平方根和立方根三者的区别与联系( 理清概念方能百战不殆)指数 2 在根号的里面。
2 ( a) 2与a2的关系( 难点)(1) 区别:①意义不同:( a) 2表示非负数 a 的算术平方根的平方;a2表示实数a的平方的算术平方根。
②取值范围不同:( a)2中的a为非负数,即a≥0;a2中的 a 为任意数。
③运算顺序不同:( a)2是先求 a 的算术平方根,再求它的算术平方根的平方;a2是先求 a 的平方,再求平方后的算术平方根。
④写法不同。
在( a) 2中,指数 2 在根号的外面;而在a2中,⑤运算结果不同:(a)2=a(a≥0) ; a =| a|=a,a≥0,-a,a<0.(2) 联系:①在运算时,都有平方和开平方的运算。
②两式运算的结果都是非负数,即 ≥0. ③仅当 a ≥0时,有 ( a )2= a 2 。
3. 立方根的化简公式: 3 a 3 =a ;(3 a )3=a ; 3 a =- 3 a( a ) 2≥ 0, a 21..选择2014·南京) 8 的平方根是( A . 4B .±42. (2014 。
东营 ) 的平方根是( A .±3 B .3 3. 2014?连云港) 计算 A . ﹣3 B . 4.(2014。
厦门) 4 的算术平方根是( A . 16 B .5.下列计算中,正确的是( 典型题精选)C .的结果是(±9 C . C . D .D .9﹣9 D . ﹣2 D . ±2 3 2 6 A.a · a =a B. ( π -3.14 )o =1 C. (13)1) 2C .( ab ) 3 D. 93 6.(2014 年湖北荆门 )下列运算正确的是 A .3﹣1=﹣3 B . =±3 7. 下列说法错误的是( ) A .5是 25 的算术平方根 C .(-4)2 的平方根是- 4 8.如果 x 是 0.01的算术平方根,则 A . 0.000 1 C .0.1 9.下 列说法中,正确的是( ) A. 一个有理数的平 方根有两个,B. 一个有理数的 立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是- 10. 下列各式中,无意义的是( ) x =( B . D . 36 =a b D .a 6 2 ÷a =a A. 32 B .1 是 1 的一个平方根D .0 的平方根与算术平方根都是 )±0.000 1±0.1 它们互为相反数 1, 0,1 B. 3 ( 3)3 C. ( 3)2 D. 10 3 绝对值与算术平方根的非负性)11. 若 a,b 为实数,且满足 |a -2|+ b 2 =0,则 b -a 的值为( )A .2B .0C .- 2D .以上都不对平方与算术平方根的非负性)12.(2014·福州) 若(m-1)2+ n 2 =0,则 m + n 的值是( A .- 1 B . 0 C .1 13. 有一个数值转换器,原理如图所示:当输入的D .2x 错误!未找到引用源。
第1讲《平方根、立方根与非负数》知识点概述1、平方根(1)定义:如果一个数的平方等于a ,这个数就叫做a 的平方根(或二次方根)。
即:如果x 2=a ,那么x 就叫做a 的平方根。
(2)平方根的表示法:一个正数a 的正的平方根,用符号“a ”表示,读作“根号a ”; 正数a 的负平方根,表示为-a ,读作“负根号a ”。
(3)正数、零、负数的平方根:正数a 的平方根有两个,它们互为相反数,可以表示为±a ; 零的平方根有一个,仍是零; 负数没有平方根. 2.算术平方根(1)定义:一个正数a 的正的平方根,叫做a 的算术平方根,记作a ;0的算术平方根是0. (2)对a 的理解:①()2a =a ; ②a ≥0.(3)对记号a ,-a ,±a 的理解: ①a 表示非负数(a ≥0); ②-a 表示a 的算术平方根的相反数; ③±a 表示a 的平方根; ④a<0时,a ,-a ,±a 都没有意义.3、如果一个数的立方等于a ,那么这个数叫做a 的立方根。
即:如果x 3=a ,那么x 就叫做a 的立方根。
一个数a 的立方根,用符号“3a ”表示,读作“三次根号a ”。
注:任何数(正数、负数或零)都有一个立方根例题讲解例1、下列语句正确的是( )A .- a 没有平方根B .-5是 – 25的平方根C .( - 3)2 的平方根为-3D .-15是225的平方根例2、94的平方根是__;算术平方根是 ;0.04的算术平方根是 。
例3、求下列各数的立方根: (1)512 (2)-0.027 (3)-12564 (4)278 (5)-125 (6)-0.008.例4、求下列各数的平方根:(1)49 (2)8136 (3)232⎪⎭⎫ ⎝⎛-例5、求下列各数的算术平方根: (1)196(2)197(3)16例6、填空:(1)当x 时,3+x 有意义。
(2)如果a 的平方根是±3,则a = .(3)如果一个正数的平方根是a+3与2a -15,那么这个正数是(4的平方根是 ;算术平方根是___________ (5)若a 2=16,则a=________;若38a =,则a =(610y +=,则x 2+y 2=____________(7)代数式-3___________,这时a 与b 的关系是_________ (8)若2(2)289x +=,则x = ; 若24250x -=,则x =(9= 例7、下列命题中,正确的个数有( )(1)1的平方根是1; (2)1是1的平方根; (3)(-1)2的平方根是-1; (4)一个数的平方根等于它的算术平方根,这个数是0. A 、1 B 、2 C 、3 D 、4例8、要使2a -有意义,则a 的值为( )A 、a>0B 、a<0C 、a≥0D 、a=0例9、一个自然数的算术平方根是a ,则与这个自然数相邻的后继自然数的平方根是( ) A 、a+1 B 、a 2+1C 、±1+aD 、±12+a例10、当x 为何值时,下列各式在实数范围内有意义.(1)32+x ; (2)x 31-; (3)2)5(-x ; (4)21+x非负数的相关知识1、非负数的意义:在实数集合里,正数和零称为非负数.a 是非负数,可记作a ≥0,读作a 大于或等于零,即a 不小于零. 2、 初中学过的几种非负数:⑴ 实数的绝对值是非负数. 若a 是实数,则a ≥0.⑵ 实数的偶数次幂是非负数. 若a 是实数,则a 2n ≥0(n 是正整数).⑶ 算术平方根是非负数,且被开方数也是非负数。