平方根与立方根复习ppt课件
- 格式:ppt
- 大小:782.50 KB
- 文档页数:19
第二章平方根、算术平方根和立方根知识点汇总1. 平方根、算术平方根和立方根三者的区别与联系( 理清概念方能百战不殆)指数 2 在根号的里面。
2 ( a) 2与a2的关系( 难点)(1) 区别:①意义不同:( a) 2表示非负数 a 的算术平方根的平方;a2表示实数a的平方的算术平方根。
②取值范围不同:( a)2中的a为非负数,即a≥0;a2中的 a 为任意数。
③运算顺序不同:( a)2是先求 a 的算术平方根,再求它的算术平方根的平方;a2是先求 a 的平方,再求平方后的算术平方根。
④写法不同。
在( a) 2中,指数 2 在根号的外面;而在a2中,⑤运算结果不同:(a)2=a(a≥0) ; a =| a|=a,a≥0,-a,a<0.(2) 联系:①在运算时,都有平方和开平方的运算。
②两式运算的结果都是非负数,即 ≥0. ③仅当 a ≥0时,有 ( a )2= a 2 。
3. 立方根的化简公式: 3 a 3 =a ;(3 a )3=a ; 3 a =- 3 a( a ) 2≥ 0, a 21..选择2014·南京) 8 的平方根是( A . 4B .±42. (2014 。
东营 ) 的平方根是( A .±3 B .3 3. 2014?连云港) 计算 A . ﹣3 B . 4.(2014。
厦门) 4 的算术平方根是( A . 16 B .5.下列计算中,正确的是( 典型题精选)C .的结果是(±9 C . C . D .D .9﹣9 D . ﹣2 D . ±2 3 2 6 A.a · a =a B. ( π -3.14 )o =1 C. (13)1) 2C .( ab ) 3 D. 93 6.(2014 年湖北荆门 )下列运算正确的是 A .3﹣1=﹣3 B . =±3 7. 下列说法错误的是( ) A .5是 25 的算术平方根 C .(-4)2 的平方根是- 4 8.如果 x 是 0.01的算术平方根,则 A . 0.000 1 C .0.1 9.下 列说法中,正确的是( ) A. 一个有理数的平 方根有两个,B. 一个有理数的 立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是- 10. 下列各式中,无意义的是( ) x =( B . D . 36 =a b D .a 6 2 ÷a =a A. 32 B .1 是 1 的一个平方根D .0 的平方根与算术平方根都是 )±0.000 1±0.1 它们互为相反数 1, 0,1 B. 3 ( 3)3 C. ( 3)2 D. 10 3 绝对值与算术平方根的非负性)11. 若 a,b 为实数,且满足 |a -2|+ b 2 =0,则 b -a 的值为( )A .2B .0C .- 2D .以上都不对平方与算术平方根的非负性)12.(2014·福州) 若(m-1)2+ n 2 =0,则 m + n 的值是( A .- 1 B . 0 C .1 13. 有一个数值转换器,原理如图所示:当输入的D .2x 错误!未找到引用源。
C-平方根、算术平方根和立方根知识结构1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
【例1】平方根、算术平方根、立方根的意义(1)36的平方根是 ;16的算术平方根是 ;(2)一个数的平方是9,则这个数是 ( ),一个数的立方根是1,则这个数是 ( );(3)当x=__________ 时,13-x 有意义;当x= _________ 时,325+x 有意义;(4)若164=x ,则x=_________ ;若813=n ,则n= ________ 。
【例2】求下列各数的平方根:1)49 2)2.89 3)解:1)∵ ∴49的平方根是即 2)∵ 2.89的平方根是经检验时∴注意:因为负数没有平方根,所以一定组成立方程组的解必须代入上述两个不等式检验是否成立,若有一不成立,则此题无解。
【例14】已知实数a、b、c满足,2|a-1|+2b c++c2-c+14=0,,求a+b+c的值.【例15】若12112--+-=xxy,求xy的值。
【例16】若312-a和331b-互为相反数,求ba的值。
一、填空题:1、144的算术平方根是_________ ,16的平方根是_________ ;2、327= ___________ ,64-的立方根是________ ;3、7的平方根为_________ ,21.1= __________ ;4、平方数是它本身的数是();平方数是它的相反数的数是( ) ;5、若23-=x,则x= __________ ;。