压力容器厚壁圆筒的弹塑性应力分析
- 格式:ppt
- 大小:1.81 MB
- 文档页数:8
高压容器筒体的结构与强度设计----------厚壁圆筒的弹性应力分析厚壁容器承受压力载荷时产生的应力具有如下特点:1、薄壁容器中的应力只考虑经向和周向两向应力,忽略径向应力。
但厚壁容器中压力很高,径向应力则难以忽略,应考虑三向应力分析。
2、在薄壁容器中将二向应力视为沿壁厚均匀分布薄膜应力,厚壁容器沿壁厚出现应力梯度,薄膜假设不成立。
3、内外壁间的温差随壁厚的增大而增加,由此产生的温差应力相应增大,厚壁容器中的温差应力不应忽视。
(一)受内压单层厚壁圆筒中的弹性应力(1)几何方程图中所示单元体两条圆弧边的径向位移分别为w和w+dw,可导出其应变表达式为:径向应变(1)周向应变对第二式求导并变换得:(2)物理方程按广义虎克定律可表示为:(3)(4)同时对(3)式的第二式求导,可得:另将(4)式代入(2)式得:由这两个式相等可得:(5)(2)平衡方程得:(6)为消去将(5)式代入(6)式得:由该微分方程求解便可得s r通解,再将s r代入(6)得:,仅有内压作用时,上式可以简化,即著名的拉美公式(Lame)(3)分布规律(二)单层厚壁圆筒的位移表达式由(1)式和(3)式可得,开口厚壁筒的径向位移封闭厚壁筒的径向位移当采用过盈配合的热套筒时需要计算在内压或外牙作用下的直径变化量ΔD。
圆筒在任意半径r处的直径变化量可由下式导出:两端开口的ΔD两端封闭的ΔD(三)单层厚壁圆筒中的温差应力(1)温差应力方程对无保温层的高压容器,若内部有高温介质,内外壁面必然形成温差,内外壁材料的热膨胀变形存在相互约束,变形不是自由的,导致温差应力。
1、内壁温度高于外壁时(称为内加热),内层材料的自由热膨胀变形大于外层,但内层变形受到外层材料的限制,因此内层材料出现了压缩温差应力,而外层材料则出现拉伸温差应力。
2、当外加热时,内外层温差应力的方向则相反。
可以想象,当壁厚愈厚时,沿壁厚的传热阻力加大,内外壁的温差也相应增大,温差应力便随之加大。
工程上一般将设计压力在10≤p≤100MPa之间的压力容器称为高压容器,而将100MPa压力以上的称为超高压容器。
高压容器不但压力高,而且同时伴有高温,例如合成氨就是在15~32MPa压力和500℃高温下进行合成反应。
一般来说,高压和超高压容器的径比K > 1.2,称此类容器为“厚壁容器”。
本章讨论的对象,是厚壁圆筒型容器。
承受压力载荷或者温差载荷的厚壁圆筒容器,其上任意点的应力,是三向应力状态。
即存在经向应力(又称轴向应力)、周向应力和径向应力。
针对厚壁筒的应力求解,将在平衡方程、几何方程、物理方程三个方面进行分析。
2.2.1 弹性应力-压力载荷引起的弹性应力(1)轴向(经向)应力ϭz222200002200002220()1i z i i i i i i i z i iP P FP P p R p R F R R p R p R p p KR K R R K R σππππσ−=−=⋅−⋅=−−−⋅===−−径比(2) 周向应力ϭ和径向应力ϭrθ三对截面:一对圆柱面,相距dr一对纵截面,相差dθ一对横截面,长度为1Ϭz作用在横截面上Ϭr作用在圆柱面上Ϭθ作用在纵截面上平衡方程(沿径向列平衡方程)()()112sin 102r r r d d r dr d rd dr θθσσθσθσ++⋅−⋅−⋅=sin 22d d θθ≈略去高阶无穷小,并使得到平衡方程r r d r drθσσσ−=几何方程()r w dw wdwdr drε+−==径向应变周向应变()r w d rd wrd r θθθεθ+−==上述表达式是Lame 在1833年推得的,又称为Lame 公式。
当仅有内压时,p o =0,有()222222211111112i o i o r z i z r p R K r p R K r p K θθσσσσσσ⎧⎛⎞=⋅−⎪⎜⎟−⎝⎠⎪⎪⎛⎞⎪=⋅+⎜⎟⎪−⎝⎠⎨⎪⎛⎞=⋅⎪⎜⎟−⎝⎠⎪⎪=+⎪⎩246810010********σθ R i / σθ R oK可见,当K 越大时,应力的分布就越不均匀。
厚壁圆筒应力分析剖析厚壁圆筒是一种常见的结构,广泛应用于各个领域,比如压力容器、热交换器等。
在使用厚壁圆筒的过程中,必须进行应力分析,以确保结构的安全性和可靠性。
首先,研究厚壁圆筒的应力分析需要考虑以下几个方面。
1.圆筒的几何形状:厚壁圆筒是由外径、厚度和长度组成的。
这些几何参数会影响圆筒内部的应力分布情况。
2.材料特性:圆筒的材料特性直接影响其应力分布。
研究厚壁圆筒时,通常会考虑材料的弹性模量和泊松比等参数。
3.加载条件:圆筒的应力分布受外部载荷的影响。
载荷的形式可以是压力、温度、重力等。
加载条件的确定对于应力分析至关重要。
接下来,我们将详细介绍厚壁圆筒的应力分析方法。
1.内外压力分析:考虑厚壁圆筒内外的压力差异。
当内外压力相等时,圆筒应力较小。
当内压大于外压时,圆筒将会受到较大的应力。
2.纵向应力分析:厚壁圆筒在纵向方向上承受的应力主要为轴向拉应力。
如果存在压力差,则拉应力沿厚度逐渐增加。
3.周向应力分析:在周向上,厚壁圆筒受到的应力主要为周向拉应力。
当圆筒内外压力不平衡时,周向应力将会增加。
4.切应力分析:切应力是圆筒内部的剪切应力分量。
在圆筒壁厚度的不同位置,切应力的大小也会有所不同。
5.应力分布图:为了更好地理解厚壁圆筒的应力分布情况,可以绘制应力分布图。
这样可以直观地了解不同部位的应力分布情况,以便进行结构优化。
总结一下,厚壁圆筒的应力分析对于确保结构安全性至关重要。
通过分析内外压力、纵向应力、周向应力和切应力,可以更好地理解圆筒的应力分布情况。
通过应力分布图,可以更直观地了解圆筒不同部位的应力情况,从而进行优化设计。
在实际工程中,应力分析的结果可以用来指导材料的选择、结构的设计以及使用中的安全操作。
第二章 厚壁圆筒的弹塑性应力分析1.只受内压作用:(1)在厚壁圆筒中,筒体处于三向应力状态,其中θσ为拉应力,r σ为压应力,且沿壁厚非均匀分布;而z σ介于θσ和r σ之间,即2r z θσσσ+=,且沿壁厚均匀分布。
(2)在筒体内壁面处,θσ、r σ的绝对值比外壁面处为大,其中θσ具有最大值,且恒大于内压力i p ,其危险点将首先在内壁面上产生。
(3)θσ沿壁厚分布随径比K 值的增加趋向更不均匀,不均匀度为内、外壁周向应力之比,即2()1()2io r R r R K θθσσ==+=。
显然,不均匀度随2K 成比例,可见K 值愈大,应力分布愈不均匀。
当内壁材料开始屈服时,外壁材料远小于屈服限,因此筒体材料的强度不能得到充分的利用。
由此可知,用增加筒体壁厚(即增加K 值)的方法来降低厚壁圆筒的内壁应力,只在一定范围内有效,而内压力接近或超过材料的许用应力时,增加厚度是完全无效的。
为了提高筒壁材料的利用率,有效的办法是改变应力沿壁厚分布的不均匀性,使其趋于均化。
2.往往采用组合圆筒或单层厚壁圆筒自增强处理技术,以提高筒体的弹性承载能力。
3.温差应力:厚壁圆筒的厚壁可能从内表面或外表面被加热,由于筒壁较厚,并有一定的热阻,在筒体的内、外壁之间存在温度差,温度较高部分因受热而引起膨胀变形,同时受到温度较低部分的约束,从而使前者受压缩,而后者受拉伸,出现了温差应力或称热应力。
(1)厚壁圆筒中,温差应力与温度差t ∆成正比,而与温度本身的绝对值无关,因此在圆筒内壁或外壁进行保温以减小内、外壁的温度差,可以降低厚壁圆筒的温差应力。
(2)温差应力的分布规律为三向应力沿壁厚均为非均匀分布,其中,轴向应力是环(周)向应力与径向应力之和,即t t t z r θσσσ=+ ;在内、外壁面处,径向应力为零,轴向应力和环(周)向应力分别相等,且最大应力发生在外壁面处。
(3)温差应力是由于各部分变形相互约束而产生的,因此应力达到屈服极限而屈服时,温差应力不但不会继续增加,而且在很大程度上会得到缓和,这就是温差应力的自限性,它属于二次应力。
厚壁圆筒的弹塑性分析弹塑性分析是一种结构分析方法,适用于材料在一定强度范围内既具有弹性行为又具有塑性行为的情况。
厚壁圆筒是一种常见的结构,广泛应用于工程中,如汽车零部件、压力容器等。
本文将介绍厚壁圆筒的弹塑性分析方法,并结合一个具体的例子进行说明。
厚壁圆筒的弹性分析是指在圆筒内外受到压力作用时圆筒的变形和应力分布的计算。
在弹性阶段,材料的应力-应变关系是线性的,可以通过胡克定律描述。
在塑性阶段,材料的应力-应变关系是非线性的,需要采用本构关系来描述。
首先,我们来介绍圆筒的几何参数。
厚壁圆筒可以由内外半径分别为R1和R2的圆柱体围成,圆柱体的高度为h。
此外,圆筒的材料有一个屈服强度σy,用于描述材料的塑性行为。
对于厚壁圆筒,弹性阶段的计算相对简单。
在内外压力P的作用下,圆筒的应变可以通过应力与材料的弹性模量E之间的关系得到。
圆筒的轴向应变εr可以通过胡克定律得到:εr=σr/E其中,σr是圆筒轴向应力,E是材料的弹性模量。
圆筒的周向应变、轴向切变应变可以根据几何关系得到。
在弹性阶段,应力满足柯西-格林弹性方程:σr=λ(εr+εθ)+2μεrσθ=λ(εr+εθ)+2μεθτrz = μ(εr - εθ)其中,λ和μ是材料的拉梅常数,可以通过杨氏模量E和泊松比ν计算得到。
当圆筒的应力达到屈服强度σy时,就进入了塑性阶段。
在塑性阶段,应力与应变之间的关系通过本构关系来描述。
常用的本构关系包括线性硬化本构关系、塑性截面变形本构关系等。
本文以线性硬化本构关系为例进行说明。
线性硬化本构关系假设材料的塑性应变是线性增加的。
圆筒中心的塑性应力σp和塑性应变εp可以通过以下方程计算:σp=σyεp=(σr-σy)/E*H其中,E*是圆筒在弹性阶段的等效弹性模量,H是圆筒的等效刚度。
对于给定的压力P,可以通过迭代法来确定圆筒的应力和应变分布。
首先假设圆筒是在弹性阶段,在初始状态下计算应力和应变分布。
然后,通过本构关系计算塑性应力和塑性应变分布。