厚壁圆筒应力分析
- 格式:ppt
- 大小:4.26 MB
- 文档页数:57
厚壁圆筒应力分析剖析一、应力分析方法1.在应力分析中,通常采用静力学的方法,根据力学定律对厚壁圆筒进行应力分析。
2.厚壁圆筒的应力分析可以分为轴向应力、周向应力和切向应力三个方向上的应力分析。
二、应力计算公式1.轴向应力:σa=(P·r)/t其中,σa表示轴向应力,P表示圆筒受到的内外压力,r表示圆筒内径,t表示圆筒壁厚。
2.周向应力:σc=(P·r)/(2t)其中,σc表示周向应力。
3. 切向应力:τ = (P · ri) / t其中,τ 表示切向应力,ri 表示圆筒中心点到任意一点的径向距离。
三、实例分析假设有一个内径为 10cm,外径为 15cm,壁厚为 2cm 的厚壁圆筒,内外压力分别为 5MPa 和 10MPa。
现对该厚壁圆筒进行应力分析。
1.轴向应力:根据公式σa = (P · r) / t,代入 P = 5MPa,r = 7.5cm,t =2cm,计算得σa = (5×7.5) / 2 = 18.75MPa。
同理,代入 P = 10MPa,r = 7.5cm,t = 2cm,计算得σa =(10×7.5) / 2 = 37.5MP a。
2.周向应力:根据公式σc = (P · r) / (2t),代入 P = 5MPa,r = 7.5cm,t= 2cm,计算得σc = (5×7.5) / (2×2) = 9.375MPa。
同理,代入 P = 10MPa,r = 7.5cm,t = 2cm,计算得σc =(10×7.5) / (2×2) = 18.75MPa。
3.切向应力:根据公式τ = (P · ri) / t,代入 P = 5MPa,ri = 7.5cm,t =2cm,计算得τ = (5×7.5) / 2 = 18.75MPa。
同理,代入 P = 10MPa,ri = 7.5cm,t = 2cm,计算得τ =(10×7.5) / 2 = 37.5MPa。
厚壁圆筒应力分析1、概述K>1.2的壳体成为厚壁圆筒。
厚壁容器承压的应力特点有(此处不考虑热应力):一、不能忽略径向应力,应做三向应力分析;二、厚壁容器的应力在厚度方向不是均匀分布,而是应力梯度。
所以,在求解的时候需要联立几何方程、物理方程、平衡方程才能确定厚壁各点的应力大小。
2、解析解一、内压为i p ,外压为0p 的厚壁圆筒,需要求出径向应力r σ、周向应力θσ和轴向应力z σ,其中轴向应力z σ不随半径r 变化。
(1)几何方程如图所示,取内半径r ,增量为dr 的一段区域两条弧边的径向位移为ω和ωωd +,其应变的表达式为:r rd rd d r drd dr d r ωθθθωεωωωωεθ=-+==-+=))((周向应力:径向应力:(1)θσ对r 求导,得:()θθσσωωωωωσ-=⎪⎭⎫⎝⎛-=-='⎪⎭⎫ ⎝⎛=r rr dr d r r r dr d r dr d 112 (2) (2)物理方程 根据胡克定理表示为[]z Eσσμσεθθ+-=r (1(3) 两式相减,消去z σ得:[]θθσσμεε-+=r E )(1-r []z r Eσσμσεθ+-=(1r(4) 将(4)代入(2)得:[])z r Edr d σσμσεθθ+-=(1(5) 对(3)的θε求导得,z σ看做常数:⎪⎭⎫⎝⎛-=dr r d dr d E dr d σμσεθθ1 (6) 联立(5)、(6)得:[]θθθσσμσμσ-)1-r rdr d dr d +=( (7) (3)平衡方程如图所示,沿径向和垂直径向建立坐标 系,把θσ向x 轴和y 轴分解,得:⎪⎭⎫ ⎝⎛=-+2sin 2θθd p p p r dr r (8)其中()θσσd dr r d p r r dr r ++=+)( (9)θσrd p r r =由于θd 很小,22sin θθd d ≈⎪⎭⎫⎝⎛,略去二阶微量r r d d σ,得 drd rrr σσσθ=- (10) 联立(7)(10)得0322=+drd dr d r r r σσ (11)对(11)进行求得r σ,在代入(10)得22rBA rB A r +=-=θσσ (12) 其中A 、B 是两个积分常数,要求A ,B 需要两个方程,根据内外壁边界条件0,,p R r p R r r i r i -==-==σσ (13)将(13)代入(12)得:22020202202002)(ii i i i i RR R R p p B R R R p R p A --=--=(14)最后剩下z σ未求出,最后在轴向用平衡方程,内力等于外力。
厚壁圆筒应力分析3.3.1弹性应力 3.3.2弹塑性应力3.3.3屈服压力和爆破压力33.4提高屈服承载能力的措施3.3.1弹性应力 3.3.2弹塑性应力一、弹塑性应力描述弹塑性疗壁圆筒的儿何与载荷参数:尺,/>; RJ;陽P () 本小节的U 的:求弹性区和塑性区里的应力假设:a.理想弹塑性材料b.圆筒体只取远离边缘区第三节 厚壁圆筒应力分析内压t 塑性区t2-22处于弹塑性状态的厚壁圆筒图2-23理想弹•塑性材料的应力■应变关系1、塑性区应力平衡方程:刃-旦drMises屈服失效判据:CF e-丐=—=丁2联立积分,得<T r=-^trJnr+Ar = &:6=-Pi内壁边界条件,求出A后带回上式得将r = R e: cr r= -p c代入(2-42)得2 ! R<p(=--a s ln-+Pl结论:① b = pjbj②q, cr^=/(lnr) rt,③cr:=-(b「+ b&) H const (区别:弹区cr. =-© + b&) =const )2 2弹性区内壁处于屈服状态:(刃)Y一(6)“ =眉$Kc=Ro/Rc(2-46)(2-26) (2-40) (2-41)将(2-42)带入(2-40)得(2-42 )(2-43)(2-44 )(2-45 ) 山表2J拉美公式得出:与2-45联立导出弹性区与塑性区交界面的pi与Rc的关系Pi =由(2-34)式(以代代替门)得若按屈雷斯卡(H.Tresca)屈服失效判据,也可导岀类似的上述各表达式。
各种应力表达式列于表2-4中结论:② 6 a d=f(r) rT->(r z. T,与「无关二、残余应力肖厚壁圆筒进入弹塑性状态后卸除内爪力pi —残余应力思考:残余应力是如何产生的卸载定理:卸载时应力改变量Ab = b-b和应变的改变量△£ = £-£之间存在着弹性关系= 图2・24。
厚壁圆筒应力分析1、概述K>1.2的壳体成为厚壁圆筒。
厚壁容器承压的应力特点有(此处不考虑热应力):一、不能忽略径向应力,应做三向应力分析;二、厚壁容器的应力在厚度方向不是均匀分布,而是应力梯度。
所以,在求解的时候需要联立几何方程、物理方程、平衡方程才能确定厚壁各点的应力大小。
2、解析解一、内压为i p ,外压为0p 的厚壁圆筒,需要求出径向应力r σ、周向应力θσ和轴向应力z σ,其中轴向应力z σ不随半径r 变化。
(1)几何方程如图所示,取内半径r ,增量为dr 的一段区域两条弧边的径向位移为ω和ωωd +,其应变的表达式为:r rd rd d r dr d dr d r ωθθθωεωωωωεθ=-+==-+=))((周向应力:径向应力:(1) θσ对r 求导,得:()θθσσωωωωωσ-=⎪⎭⎫ ⎝⎛-=-='⎪⎭⎫ ⎝⎛=r r r dr d r r r dr d r dr d 112 (2) (2)物理方程根据胡克定理表示为:[]z Eσσμσεθθ+-=r (1 (3) 两式相减,消去z σ得:[]θθσσμεε-+=r E)(1-r []z r E σσμσεθ+-=(1r (4) 将(4)代入(2)得:[])z r Edr d σσμσεθθ+-=(1 (5) 对(3)的θε求导得,z σ看做常数:⎪⎭⎫ ⎝⎛-=dr r d dr d E dr d σμσεθθ1 (6) 联立(5)、(6)得:[]θθθσσμσμσ-)1-r rdr d dr d +=( (7) (3)平衡方程如图所示,沿径向和垂直径向建立坐标系,把θσ向x 轴和y 轴分解,得:⎪⎭⎫ ⎝⎛=-+2sin 2θθd p p p r dr r (8) 其中()θσσd dr r d p r r dr r ++=+)( (9)θσrd p r r =由于θd 很小,22sin θθd d ≈⎪⎭⎫⎝⎛,略去二阶微量r r d d σ,得 drd r r r σσσθ=- (10) 联立(7)(10)得0322=+drd dr d r r r σσ (11)对(11)进行求得r σ,在代入(10)得22r B A r BA r +=-=θσσ(12) 其中A 、B 是两个积分常数,要求A ,B 需要两个方程,根据内外壁边界条件00,,p R r p R r r ir i -==-==σσ(13)将(13)代入(12)得:22020202202002)(i ii i i i R R RR p p B R R R p R p A --=--=(14)最后剩下z σ未求出,最后在轴向用平衡方程,内力等于外力。
厚壁圆筒应力分析剖析厚壁圆筒是一种常见的结构,广泛应用于各个领域,比如压力容器、热交换器等。
在使用厚壁圆筒的过程中,必须进行应力分析,以确保结构的安全性和可靠性。
首先,研究厚壁圆筒的应力分析需要考虑以下几个方面。
1.圆筒的几何形状:厚壁圆筒是由外径、厚度和长度组成的。
这些几何参数会影响圆筒内部的应力分布情况。
2.材料特性:圆筒的材料特性直接影响其应力分布。
研究厚壁圆筒时,通常会考虑材料的弹性模量和泊松比等参数。
3.加载条件:圆筒的应力分布受外部载荷的影响。
载荷的形式可以是压力、温度、重力等。
加载条件的确定对于应力分析至关重要。
接下来,我们将详细介绍厚壁圆筒的应力分析方法。
1.内外压力分析:考虑厚壁圆筒内外的压力差异。
当内外压力相等时,圆筒应力较小。
当内压大于外压时,圆筒将会受到较大的应力。
2.纵向应力分析:厚壁圆筒在纵向方向上承受的应力主要为轴向拉应力。
如果存在压力差,则拉应力沿厚度逐渐增加。
3.周向应力分析:在周向上,厚壁圆筒受到的应力主要为周向拉应力。
当圆筒内外压力不平衡时,周向应力将会增加。
4.切应力分析:切应力是圆筒内部的剪切应力分量。
在圆筒壁厚度的不同位置,切应力的大小也会有所不同。
5.应力分布图:为了更好地理解厚壁圆筒的应力分布情况,可以绘制应力分布图。
这样可以直观地了解不同部位的应力分布情况,以便进行结构优化。
总结一下,厚壁圆筒的应力分析对于确保结构安全性至关重要。
通过分析内外压力、纵向应力、周向应力和切应力,可以更好地理解圆筒的应力分布情况。
通过应力分布图,可以更直观地了解圆筒不同部位的应力情况,从而进行优化设计。
在实际工程中,应力分析的结果可以用来指导材料的选择、结构的设计以及使用中的安全操作。
05_压力容器应力分析_厚壁圆筒弹性应力分析压力容器是广泛应用于石油、化工、冶金、医药等行业的重要设备,用于存储和运输气体或液体。
在使用过程中,由于内外压差的存在,压力容器的壁会产生应力,如果超过了材料的极限承载能力,就会发生破裂事故。
因此,对压力容器的应力分析非常重要,通过分析容器内壁的应力分布情况,可以判断容器的安全性能,从而采取相应的措施保证其安全运行。
厚壁圆筒作为一种常见的压力容器结构,其应力分析是非常有代表性的。
在进行弹性应力分析时,首先需要确定内压力和外压力的大小。
通常情况下,我们假设容器的内部和外部都是完全承受压力的,即容器内部压力和外部压力均匀分布。
其次,我们需要了解容器的内径、外径、壁厚等几何参数,以及容器所使用的材料的弹性模量和泊松比等弹性性质参数。
在厚壁圆筒的弹性应力分析中,一般采用极限状态设计方法进行计算。
首先,可以根据容器内外压力差的大小,计算容器内部的径向应力和环向应力,这两个应力分量是产生破裂的主要因素。
然后,通过应力的叠加原理,将径向应力和环向应力合成为合成应力,进一步计算合成应力与容器材料的屈服强度之间的比值,根据这个比值可以评估容器的安全性能。
在实际应用中,为了保证压力容器的安全性能,通常会将容器的设计和制造有一定的安全裕量。
在计算容器的弹性应力时,需要将其与容器材料的屈服强度进行比较,以确保应力值处于安全范围内。
如果计算得到的应力值超过了材料的屈服强度,就需要重新设计容器的结构或者更换更高强度的材料,以满足安全性能的要求。
总之,压力容器的应力分析是确保容器安全运行的重要手段之一、通过对容器内壁的应力分布进行分析,可以评估容器的安全性能,并采取相应的措施保证其安全运行。
在进行压力容器的设计和制造过程中,应该遵循相应的规范和标准,确保容器的结构和材料能够承受内外压力的作用,从而保证容器在工作过程中不会发生破裂事故,保障工业生产和人身安全。
第二章 厚壁圆筒的弹塑性应力分析1.只受内压作用:(1)在厚壁圆筒中,筒体处于三向应力状态,其中θσ为拉应力,r σ为压应力,且沿壁厚非均匀分布;而z σ介于θσ和r σ之间,即2r z θσσσ+=,且沿壁厚均匀分布。
(2)在筒体内壁面处,θσ、r σ的绝对值比外壁面处为大,其中θσ具有最大值,且恒大于内压力i p ,其危险点将首先在内壁面上产生。
(3)θσ沿壁厚分布随径比K 值的增加趋向更不均匀,不均匀度为内、外壁周向应力之比,即2()1()2io r R r R K θθσσ==+=。
显然,不均匀度随2K 成比例,可见K 值愈大,应力分布愈不均匀。
当内壁材料开始屈服时,外壁材料远小于屈服限,因此筒体材料的强度不能得到充分的利用。
由此可知,用增加筒体壁厚(即增加K 值)的方法来降低厚壁圆筒的内壁应力,只在一定范围内有效,而内压力接近或超过材料的许用应力时,增加厚度是完全无效的。
为了提高筒壁材料的利用率,有效的办法是改变应力沿壁厚分布的不均匀性,使其趋于均化。
2.往往采用组合圆筒或单层厚壁圆筒自增强处理技术,以提高筒体的弹性承载能力。
3.温差应力:厚壁圆筒的厚壁可能从内表面或外表面被加热,由于筒壁较厚,并有一定的热阻,在筒体的内、外壁之间存在温度差,温度较高部分因受热而引起膨胀变形,同时受到温度较低部分的约束,从而使前者受压缩,而后者受拉伸,出现了温差应力或称热应力。
(1)厚壁圆筒中,温差应力与温度差t ∆成正比,而与温度本身的绝对值无关,因此在圆筒内壁或外壁进行保温以减小内、外壁的温度差,可以降低厚壁圆筒的温差应力。
(2)温差应力的分布规律为三向应力沿壁厚均为非均匀分布,其中,轴向应力是环(周)向应力与径向应力之和,即t t t z r θσσσ=+ ;在内、外壁面处,径向应力为零,轴向应力和环(周)向应力分别相等,且最大应力发生在外壁面处。
(3)温差应力是由于各部分变形相互约束而产生的,因此应力达到屈服极限而屈服时,温差应力不但不会继续增加,而且在很大程度上会得到缓和,这就是温差应力的自限性,它属于二次应力。