第三章第四节2--厚壁圆筒-应力
- 格式:ppt
- 大小:552.00 KB
- 文档页数:3
高压容器筒体的结构与强度设计----------厚壁圆筒的弹性应力分析厚壁容器承受压力载荷时产生的应力具有如下特点:1、薄壁容器中的应力只考虑经向和周向两向应力,忽略径向应力。
但厚壁容器中压力很高,径向应力则难以忽略,应考虑三向应力分析。
2、在薄壁容器中将二向应力视为沿壁厚均匀分布薄膜应力,厚壁容器沿壁厚出现应力梯度,薄膜假设不成立。
3、内外壁间的温差随壁厚的增大而增加,由此产生的温差应力相应增大,厚壁容器中的温差应力不应忽视。
(一)受内压单层厚壁圆筒中的弹性应力(1)几何方程图中所示单元体两条圆弧边的径向位移分别为w和w+dw,可导出其应变表达式为:径向应变(1)周向应变对第二式求导并变换得:(2)物理方程按广义虎克定律可表示为:(3)(4)同时对(3)式的第二式求导,可得:另将(4)式代入(2)式得:由这两个式相等可得:(5)(2)平衡方程得:(6)为消去将(5)式代入(6)式得:由该微分方程求解便可得s r通解,再将s r代入(6)得:,仅有内压作用时,上式可以简化,即著名的拉美公式(Lame)(3)分布规律(二)单层厚壁圆筒的位移表达式由(1)式和(3)式可得,开口厚壁筒的径向位移封闭厚壁筒的径向位移当采用过盈配合的热套筒时需要计算在内压或外牙作用下的直径变化量ΔD。
圆筒在任意半径r处的直径变化量可由下式导出:两端开口的ΔD两端封闭的ΔD(三)单层厚壁圆筒中的温差应力(1)温差应力方程对无保温层的高压容器,若内部有高温介质,内外壁面必然形成温差,内外壁材料的热膨胀变形存在相互约束,变形不是自由的,导致温差应力。
1、内壁温度高于外壁时(称为内加热),内层材料的自由热膨胀变形大于外层,但内层变形受到外层材料的限制,因此内层材料出现了压缩温差应力,而外层材料则出现拉伸温差应力。
2、当外加热时,内外层温差应力的方向则相反。
可以想象,当壁厚愈厚时,沿壁厚的传热阻力加大,内外壁的温差也相应增大,温差应力便随之加大。
工程上一般将设计压力在10≤p≤100MPa之间的压力容器称为高压容器,而将100MPa压力以上的称为超高压容器。
高压容器不但压力高,而且同时伴有高温,例如合成氨就是在15~32MPa压力和500℃高温下进行合成反应。
一般来说,高压和超高压容器的径比K > 1.2,称此类容器为“厚壁容器”。
本章讨论的对象,是厚壁圆筒型容器。
承受压力载荷或者温差载荷的厚壁圆筒容器,其上任意点的应力,是三向应力状态。
即存在经向应力(又称轴向应力)、周向应力和径向应力。
针对厚壁筒的应力求解,将在平衡方程、几何方程、物理方程三个方面进行分析。
2.2.1 弹性应力-压力载荷引起的弹性应力(1)轴向(经向)应力ϭz222200002200002220()1i z i i i i i i i z i iP P FP P p R p R F R R p R p R p p KR K R R K R σππππσ−=−=⋅−⋅=−−−⋅===−−径比(2) 周向应力ϭ和径向应力ϭrθ三对截面:一对圆柱面,相距dr一对纵截面,相差dθ一对横截面,长度为1Ϭz作用在横截面上Ϭr作用在圆柱面上Ϭθ作用在纵截面上平衡方程(沿径向列平衡方程)()()112sin 102r r r d d r dr d rd dr θθσσθσθσ++⋅−⋅−⋅=sin 22d d θθ≈略去高阶无穷小,并使得到平衡方程r r d r drθσσσ−=几何方程()r w dw wdwdr drε+−==径向应变周向应变()r w d rd wrd r θθθεθ+−==上述表达式是Lame 在1833年推得的,又称为Lame 公式。
当仅有内压时,p o =0,有()222222211111112i o i o r z i z r p R K r p R K r p K θθσσσσσσ⎧⎛⎞=⋅−⎪⎜⎟−⎝⎠⎪⎪⎛⎞⎪=⋅+⎜⎟⎪−⎝⎠⎨⎪⎛⎞=⋅⎪⎜⎟−⎝⎠⎪⎪=+⎪⎩246810010********σθ R i / σθ R oK可见,当K 越大时,应力的分布就越不均匀。
05_压力容器应力分析_厚壁圆筒弹性应力分析压力容器是广泛应用于石油、化工、冶金、医药等行业的重要设备,用于存储和运输气体或液体。
在使用过程中,由于内外压差的存在,压力容器的壁会产生应力,如果超过了材料的极限承载能力,就会发生破裂事故。
因此,对压力容器的应力分析非常重要,通过分析容器内壁的应力分布情况,可以判断容器的安全性能,从而采取相应的措施保证其安全运行。
厚壁圆筒作为一种常见的压力容器结构,其应力分析是非常有代表性的。
在进行弹性应力分析时,首先需要确定内压力和外压力的大小。
通常情况下,我们假设容器的内部和外部都是完全承受压力的,即容器内部压力和外部压力均匀分布。
其次,我们需要了解容器的内径、外径、壁厚等几何参数,以及容器所使用的材料的弹性模量和泊松比等弹性性质参数。
在厚壁圆筒的弹性应力分析中,一般采用极限状态设计方法进行计算。
首先,可以根据容器内外压力差的大小,计算容器内部的径向应力和环向应力,这两个应力分量是产生破裂的主要因素。
然后,通过应力的叠加原理,将径向应力和环向应力合成为合成应力,进一步计算合成应力与容器材料的屈服强度之间的比值,根据这个比值可以评估容器的安全性能。
在实际应用中,为了保证压力容器的安全性能,通常会将容器的设计和制造有一定的安全裕量。
在计算容器的弹性应力时,需要将其与容器材料的屈服强度进行比较,以确保应力值处于安全范围内。
如果计算得到的应力值超过了材料的屈服强度,就需要重新设计容器的结构或者更换更高强度的材料,以满足安全性能的要求。
总之,压力容器的应力分析是确保容器安全运行的重要手段之一、通过对容器内壁的应力分布进行分析,可以评估容器的安全性能,并采取相应的措施保证其安全运行。
在进行压力容器的设计和制造过程中,应该遵循相应的规范和标准,确保容器的结构和材料能够承受内外压力的作用,从而保证容器在工作过程中不会发生破裂事故,保障工业生产和人身安全。