【最新】版高中全程复习方略配套课件:11.3利用空间向量求空间角(苏教版·数学理)
- 格式:ppt
- 大小:2.37 MB
- 文档页数:4
第8讲 向量法求空间角1.掌握空间向量的应用.2.会用空间向量求空间角.考试要求01聚焦必备知识知识梳理1.异面直线所成的角设异面直线l1,l2所成的角为θ,其方向向量分别是u,v,则cos θ=___________________=_________.2.直线与平面所成的角如图,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直线AB的方向向量为u,平面α的法向量为n,则sin θ=________________=_________.3.平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n1和n2,则平面α与平面β的夹角即为向量n1和n2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n1,n2〉|=__________.提醒常用结论1.思考辨析(在括号内打“ √”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(3)两个平面的法向量所成的角是这两个平面的夹角.( )夯基诊断×××√A(2)设M,N分别是正方体ABCD -A′B′C′D′的棱BB′和B′C′的中点,则直线MN与平面A′BCD′所成角的正弦值为________.(3)两个平面的法向量分别为n1=(0,-1,1),n2=(1,0,-1),则两个平面夹角的余弦值为________.02突破核心命题考 点 一异面直线所成的角D用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系.(2)用坐标表示两异面直线的方向向量.(3)利用向量的夹角公式求出向量夹角的余弦值.反思感悟A考 点 二直线与平面所成的角例2 (2023·全国甲卷)如图,在三棱柱ABC -A1B1C1中,A1C⊥平面ABC,∠ACB=90°,AA1=2,A1到平面BCC1B1的距离为1.(1)证明:A1C=AC;(2)已知AA1与BB1的距离为2,求AB1与平面BCC 1B 1所成角的正弦值.解:(1)证明:∵A1C⊥平面ABC,BC,AC⊂平面ABC,∴A1C⊥BC,A1C⊥AC.又∠ACB=90°,∴AC⊥BC.∵A1C∩AC=C,A1C,AC⊂平面ACC1A1,∴BC⊥平面ACC1A1.∵BC⊂平面BCC1B1,∴平面ACC1A1⊥平面BCC1B1.如图,过点A1作A1D⊥CC1于点D,∵平面ACC1A1⊥平面BCC1B1,向量法求直线与平面所成角的主要方法(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.反思感悟因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,PD,AD⊂平面PAD,所以BD⊥平面PAD.又PA⊂平面PAD,所以BD⊥PA.(2)由(1)知,DA,DB,DP两两垂直,如图,以点D为原点建立空间直角坐标系,考 点 三 平面与平面的夹角例3 (2023·新课标Ⅰ卷)如图,在正四棱柱ABCD -A1B1C1D1中,AB=2,AA1=4.点A2,B2,C2,D2分别在棱AA1,BB1,CC1,DD1上,AA2=1,BB2=DD2=2,CC2=3.(1)证明:B2C2∥A2D2;(2)点P在棱BB1上,当二面角P A2C2D2为150°时,求B 2P.别为x,y,z轴,建立空间直角坐标系.因为AB=2,AA1=4,AA2=1,BB2=DD2=2,CC2=3,所以A2(2,2,1),B2(0,2,2),C2(0,0,3),D2(2,0,2),反思感悟利用空间向量求平面与平面夹角的解题步骤(1)证明:EF∥平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D -AO -C的正弦值.所以AO⊥平面BEF.又AO⊂平面ADO,所以平面ADO⊥平面BEF.(3)以B为原点,BA所在直线为x轴,03限时规范训练(五十四)(1)求异面直线A1B与AC1夹角的余弦值;(2)求平面A1BD与平面A1AD夹角的正弦值.。