错解:以点 C 为原点,分别以, , 1 的方向为x 轴、y 轴、z
轴正方向建立空间直角坐标系,如图.
设 BC=2,CC1=a(a>0),
则 A(4,0,0),A1(4,0,a),B(0,2,0),B1(0,2,a).
由 A1B⊥B1C,得1 ·1 = 2 − 4 = 0,
∴a=2.
用向量方法求空间中的角
空间中的角的向量求法
设直线 l,m 的方向向量分别为 a,b,平面 α,β 的法向量分别为 u,v,
则
(1)两条直线 l,m 的夹角为 0 ≤ ≤
则 cos = |cos <a,b>|=
|·|
;
||||
π
2
,
(2)直线 l 与平面 α 所成的角为 0 ≤ ≤
θ=sin φ.
|·|
或cos
||||
3.二面角
剖析:(1)二面角的取值范围是[0,π].
(2)用向量求二面角的平面角有两种方法:
①几何法:若 AB,CD 分别在二面角 α-l-β 的两个半平面内,且是
与棱 l 垂直的异面直线,则二面角的大小就是向量与的夹角(
或其补角)(如图①).
示的空间直角坐标系,又 E,F 分别为 BC,PC 的中点,
所以 A(0,0,0),B
3, −1,0 ,
3, 1,0 , 0,2,0 , 0,0,2 ,
3 1
( 3, 0,0),
, ,1 ,
2 2
所以 = ( 3, 0,0), =
3 1
, ,1
2 2
.
设平面 AEF 的一个法向量为 m=(x1,y1,z1),
设 n=(x,y,z)是平面 A1ABB1 的一个法向量,则