材料力学2 拉压剪(包括简单超静定、应变能)
- 格式:ppt
- 大小:37.29 MB
- 文档页数:2
第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。
教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。
教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。
教具:多媒体。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。
教学学时:8学时。
教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。
(2)变形特点:主要变形是纵向伸长或缩短。
(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。
2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。
材料力学2-第二章拉伸、压缩与剪切第二章拉伸、压缩与剪切§2-1 拉伸与压缩的概念等直杆的两端作用一对大小相等、方向相反、作用线与杆件轴线重合的力,这种变形叫轴向拉伸或压缩。
一、工程实例悬索桥,其拉杆为典型受拉杆件;桁架,其杆件受拉或受压。
二、受力特点杆件受到的外力或其合力的作用线沿杆件轴线。
三、变形特点发生轴线方向的伸长或缩短。
§2-2 拉伸或压缩时横截面上的内力和应力一、轴力(1)对于轴向拉伸(压缩)杆件,用截面法求横截面m-m上的内力。
(2)轴力正负规定:拉力为正(方向背离杆件截面);压力为负(方向指向杆件截面)。
二、轴力图(1)轴力图:轴力沿轴线方向变化的图形,横坐标表示横截面位置,纵坐标表示轴力的大小和方向。
(2)轴力图作用:通过它可以快速而准确地判断出最大内力值及其作用截面所在位置,这样的截面称为危险截面。
轴向拉(压)变形中的内力图称为轴力图,表示轴力沿杆件轴线方向变化的情况。
(3)作下图所示杆件的轴力图三、横截面上的应力(1)平面假设:变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线,只是各横截面间发生沿杆轴的相对平移。
通过对称性原理,平面假设可得以证明。
(2)由平面假设可得,两截面间所有纵向纤维变形相同,且横截面上有正应力无切应力。
(3)由材料的均匀连续性假设,可知所有纵向纤维的力学性能相同。
所以,轴向拉压时,横截面上只有正应力,且均匀分布。
即 N AF dA A σσ==? ANF =σ ,(2-1)为拉(压)杆横截面上的正应力计算公式。
正应力的正负号与轴力正负号相同,拉应力为正,压应力为负。
当轴力与横截面的尺寸沿轴线变化时,只要变化缓慢,外力与轴线重合,外力与轴线重合,如左图,式(2-1)也可使用。
这时某一横截面上的正应力为()()x A x x N F =)(σ (2-2)例题一等直杆受力情况如图a 所示,试作杆的轴力图。
解:(1)先求约束力直杆受力如图b 所示,由杆的平衡方程0F =∑x 得()k Nk N RA F =+-=50104020 (2)求杆中各段轴力AB 段:沿任意截面1-1将杆截开,取左段为研究对象,1-1截面上的轴力为N1F ,设N1F 为正,由左段的平衡方程0F =∑x 得:σ()x σ0F F RA N1=-, N1RA F F 20kN ==BC 段:沿任意截面2-2将杆截开,取左段为研究对象,设轴力N2F 为正,由左段的平衡方程0F =∑x 得:N2RA F F kN 0-+=50, N2F 0kN =-3 结果为负,说明N2F 的指向与所设方向相反,实为压力。
第二章 拉伸、压缩与剪切2-1 求图示各杆指定截面的轴力,并作轴力图。
2-2图示杆的横截面面积为A ,弹性模量为E 。
作轴力图,并求杆的最大正应力及伸长。
N(x)=x lP21l l l ∆+∆=∆ =⎰+l 0lEA PxdxEA 2Pl =EAPl.2-3 图示一正方形截面的阶梯形混凝土柱。
设重力加速度g=9.8m/s 2, 混凝土的密度为33m /kg 1004.2⨯=ρ,P=100kN ,许用应力[]MPa 2=σ。
试根据强度条件选择截面宽度a 和b 。
选a :62233102a4a 8.91004.210100⨯=⨯⨯⨯+⨯ a=0.2283m. 选b:6223233102bb8.91004.242283.08.91004.24101003⨯=⨯⨯⨯+⨯⨯⨯⨯+⨯⨯ b=0.3980m.2-4 图示一面积为100mm ⨯200mm 的矩形截面杆,受拉力P=20kN 的作用,试求:(1)6π=θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。
max 3MPa 12.01.01020σ==⨯⨯=σMPa 75.030cos 1o 6=⨯=σπMPa 433.060sin 21o 6==τπ MPa 5.0121045max =⋅=τ=τ.2-5 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。
BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。
为使杆系使用的材料最省,试求夹角θ的值。
;sin PN 1θ-= θ=cot P N 2 材料最省时,两杆可同时达到许用应力 [];cot P A 1σθ=[]σθ=sin PA 2 结构的总体积为[]⎪⎪⎭⎫⎝⎛θθθ+⋅σ=+=cos sin cos 1Pl l A l A V 22211 0d dV=θ0cos 2sin 22=θ-θ ∴ o 73.54=θ.2-6 图示一三角架,在结点A 受P 力作用。
材料力学拉伸压缩与剪切材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
在材料力学中,拉伸、压缩和剪切是三种常见的受力方式。
本文将对这三种受力方式进行详细的讨论。
一、拉伸拉伸是将材料的两个端点向相反方向施加力,使材料产生变形和应力的一种受力方式。
在拉伸过程中,应力沿受力方向逐渐递增,直到材料达到其抗拉极限,引起断裂。
拉伸强度是指材料在拉伸过程中所能承受的最大伸长应力,常用于评价材料的抗拉性能。
材料在拉伸过程中会发生塑性变形和弹性变形。
当应力较小时,材料发生弹性变形,即材料在去除应力后能恢复原状。
当应力较大时,材料发生塑性变形,即材料变形后无法完全恢复原状。
材料的塑性变形通常伴随着颈缩现象,即材料在拉伸过程中发生细颈,最终引起断裂。
在拉伸过程中,材料的变形主要通过断裂面的拉伸和滑移来实现。
断裂面的拉伸是指材料在拉伸过程中,沿断裂面发生直接断裂的现象。
滑移是指材料分子、原子或晶粒之间发生相对滑动的行为。
材料的拉伸性能主要由断裂面的塑性变形和滑移行为共同决定。
二、压缩压缩是将材料的两个端点向相同方向施加力,使材料产生变形和应力的一种受力方式。
在压缩过程中,材料的体积减小,应力沿受力方向逐渐递增,直到材料达到其抗压极限,引起破坏。
抗压强度是指材料在压缩过程中所能承受的最大应力,常用于评价材料的抗压性能。
与拉伸不同,材料在正常应力下的压缩变形主要是弹性变形。
材料在压缩过程中会呈现出不同的弹性阶段,即初期弹性阶段、线弹性阶段和屈服弹性阶段。
初期弹性阶段材料呈现出线性弹性变形;线弹性阶段材料呈现出弹性变形,但变形量不再是线性增加;屈服弹性阶段材料呈现出应力和应变之间非线性关系。
三、剪切剪切是指材料在外力作用下,造成平行于断裂面的错切运动和应力的一种受力方式。
在剪切过程中,材料发生剪切变形,即材料平行于受力方向发生错开运动。
剪切强度是指材料在剪切过程中所能承受的最大剪应力,常用于评价材料的剪切性能。
材料的剪切变形属于塑性变形,主要发生在晶体或晶体之间的滑移面上。
第2章 拉伸、压缩与剪切1、轴向拉伸与压缩概念:作用于杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
2、直杆轴向拉伸或压缩时横截面上的内力与应力内力:把拉伸时的轴力(轴力背向截面)为正,压缩时轴力(轴力指向截面)为负。
应力:平面假设(变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。
)规定:拉应力为正,压应力为负。
AF A dA F N A N =⇒==⎰σσσ 式中N F 为轴力,A 为横截面面积,σ为正应力。
3、直杆轴向拉伸或压缩时斜截面上的应力ασσα2cos = αστα2sin 2= 式中ασ和ατ分别为斜截面的正应力和切应力,σ为横截面的正应力,α为斜截面与横截面的夹角。
4、材料拉伸时的力学性能 应变:ll ∆=ε l ∆为伸长量,l 为原始长度。
(1)弹性阶段:应力σ与应变ε成正比,即εσE =。
其中E 为与材料有关的比例常数,为弹性模量。
直线部分的最高点a 所对应的应力p σ为比例极限。
b 点所对应的应力e σ为弹性极限。
(2)屈服阶段:通常把下屈服极限称为屈服极限或屈服点,用s σ表示。
其是衡量材料强度的重要指标。
(3)强化阶段:强化阶段中的最高点e 所对应的应力b σ是材料能承受的最大应力,称为强度极限。
其是衡量材料强度的另一重要指标。
(4)局部变形阶段:某一局部的横向尺寸急剧缩小,形成缩颈现象。
伸长率:%1001⨯-=ll l δ 塑性材料:%5>δ 脆性材料:%5<δ 断面收缩率:%1001⨯-=A A A ψ A 为原始横截面积,1A 为最小横截面积 5、材料压缩时的力学性能低碳钢压缩时的弹性模量E 和屈服极限s σ与拉伸时相同。
但是得不到强度极限。
铸铁的抗压强度极限比抗拉极限高5~4倍。
6、失效、安全因数和强度计算脆性材料断裂时的应力是强度极限b σ,塑性材料屈服时的应力是屈服极限s σ,这二者是构件失效时的极限应力。