材料力学(拉压,剪切,扭转,弯曲)
- 格式:pdf
- 大小:44.23 MB
- 文档页数:161
目录一、拉伸实验二、压缩实验三、拉压弹性模量E测定实验四、低碳钢剪切弹性模量G测定实验五、扭转破坏实验六、纯弯曲梁正应力实验七、弯扭组合变形时的主应力测定实验八、压杆稳定实验一、拉伸实验报告标准答案实验目的:见教材。
实验仪器见教材。
实验结果及数据处理:例:(一)低碳钢试件试验前试验后最小平均直径d=10.14mm 最小直径d= 5.70mm 截面面积A=80.71mm 2截面面积A 1=25.50mm 2计算长度L=100mm计算长度L 1=133.24mm试验前草图试验后草图强度指标:P s =__22.1___KN 屈服应力σs =P s /A __273.8___MP a P b =__33.2___KN 强度极限σb =P b /A __411.3___MP a塑性指标:1L -L100%Lδ=⨯=伸长率33.24%1100%A A Aψ-=⨯=面积收缩率68.40%低碳钢拉伸图:(二)铸铁试件试验前试验后最小平均直径d=10.16mm最小直径d=10.15mm截面面积A=81.03mm2截面面积A1=80.91mm2计算长度L=100mm计算长度L1≈100mm 试验前草图试验后草图强度指标:最大载荷Pb=__14.4___KN强度极限σb =Pb/A=_177.7__M Pa问题讨论:1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同?答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外).2、分析比较两种材料在拉伸时的力学性能及断口特征.答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。
一、拉(压)杆强度条件:--------(1)二、(剪切)切应力条件和挤压强度条件1.切应力强度条件:τ --------(2)2.挤压强度条件:--------(3)三、圆轴扭转时的强度和刚度条件资料个人收集整理,勿做商业用途1.扭转强度条件:-----------(4)----------------(5)2.扭转刚度条件:-----------(6)----------------(7)四:弯曲正应力强度条件:------(8)符号释义:1.:正应力2. τ:切应力3.T:扭矩4.:轴力5.:剪切力6.7.A:剪切截面面积8.:抗扭截面系数9.:横截面对圆心的极惯性矩10.y: 正应力到中性轴的距离11.ε:正应变(线应变) 三个弹性材料的关系:1.E:弹性模量(GN/m²)2. μ:为泊松比(钢材的μ为0.25-0.33)3.G:剪切弹性模量(GN/m²)剪切胡可定律:τ=Gγ16.E:抗拉刚度17.胡可定律:σ=Eεσ=E18.ρ:曲率半径19.:梁弯曲变形后的曲率20.M:弯矩轴力、剪切力、均为内力求内力的方法-截面法:1.假想沿m-m横截面将杆件切开2.留下左半端或右半段3.将弃去部分对留下部分的作用(力)用内力代替4.对留下部分写平衡方程,求出内力的值。
当你选择好研究对象时,建立坐标系,这个对象的所有受力的x方向的代数和,和y方向的代数和为零,这就建立平衡方程,【me=o】,就是你在研究对象上选取一个点作为支点,然后所有力对这个点取矩,顺时针和逆时针方向的代数和为零,这样就分别建立三个平衡方程,可以联立接触其中未知数,这种情况只是用于解决静定结构的。
12.γ:切应变(角应变)21.:外力偶矩13.EA:抗拉强度(钢材的EA约为200GPa)14.δ:断后伸长率15.ψ:断面收缩率/相对扭转角梁受力有:轴力、剪切力和弯矩M。
一、材料力学的几个基本感念1.构件:工程结构或机械的每一组成部分。
杠杆变形有四种基本形式分别是拉伸或压缩、剪切、扭转、弯曲。
根据材料力学的内容,长度远大于截面尺寸的构件称为杆件,杆件的受力有各种情况,相应的变形就有各种形式。
1.拉伸或压缩:这类变形是由大小相等方向相反,力的作用线与杆件轴线重合的一对力引起的。
在变形上表现为杆件长度的伸长或缩短。
截面上的内力称为轴力。
横截面上的应力分布为沿着轴线反向的正应力。
整个截面应力近似相等。
2.剪切:这类变形是由大小相等、方向相反、力的作用线相互平行的力引起的。
在变形上表现为受剪杆件的两部分沿外力作用方向发生相对错动。
截面上的内力称为剪力。
横截面上的应力分布为沿着杆件截面平面内的的切应力。
整个截面应力近似相等。
3.扭转:这类变形是由大小相等、方向相反、作用面都垂直于杆轴的两个力偶引起的。
表现为杆件上的任意两个截面发生绕轴线的相对转动。
截面上的内力称为扭矩。
横截面上的应力分布为沿着杆件截面平面内的的切应力。
越靠近截面边缘,应力越大。
4.弯曲:这类变形由垂直于杆件轴线的横向力,或由包含杆件轴线在内的纵向平面内的一对大小相等、方向相反的力偶引起,表现为杆件轴线由直线变成曲线。
截面上的内力称为弯矩和剪力。
在垂直于轴线的横截面上,弯矩产生垂直于截面的正应力,剪力产生平行于截面的切应力。
另外,受弯构件的内力有可能只有弯矩,没有剪力,这时称之为纯剪构件。
越靠近构件截面边缘,弯矩产生的正应力越大。
第1章材料力学的基本概念 2、轴向拉伸及压缩 3、剪切 4、扭转 5、弯曲内力6、弯曲应力 7、弯曲变形 8、应力状态理论和强度理论 9、组合变形 10、压杆稳定11、能量法 1 2、静不定系统 13动栽荷 14、疲劳《材料力学》教学大纲(4.5 学分,72 学时。
课堂教学64学时,实验教学8学时)适用专业:过程装备与控制工程(必修)材料力学是过程装备与控制工程专业(即专业目录修订前的化工设备与机械专业)的一门重要技术基础课。
它是机械设计、过程机械、成套装备优化设计、压力容器安全评估、典型过程设备设计等各门后续专业课程的基础,并在许多工程技术领域中有着广泛的应用。
本课程的任务是使学生掌握材料力学的基本概念、基本知识;训练学生对基本变形问题进行力学建模和基本计算的能力;使学生熟悉材料力学分析问题的思路和方法;培养学生自觉运用力学观点看待工程和日常生活中实际事物的意识。
目的在于为学习本专业相关后继课程打好力学基础。
二、课程内容、基本要求与学时分配1.引言。
材料力学基本概念、教学任务、研究方法以及背景知识介绍。
(2学时)2.轴向拉伸和压缩。
熟练掌握轴向拉伸与压缩的内力计算,截面法,轴力,轴力图。
轴向拉伸(压缩)时横截面及斜截面上的应力。
拉(压)杆的变形计算,胡克定律,叠加原理,杆系结点的位移计算。
了解拉压杆的应变能及应变能密度的概念,材料在拉伸和压缩时的力学性质,掌握拉(压)杆的强度条件。
(6学时)3.剪切。
熟练掌握剪切胡克定律,学会画剪力图。
掌握用剪切强度和挤压强度条件进行简单设计和实用计算。
(3学时)4. 扭转。
熟练掌握薄壁圆筒的扭转,外力偶矩,扭矩,扭矩图,等直圆杆扭转时横截面上的应力,切应力互等定理,等直圆杆扭转时的变形计算,了解斜截面上的应力及应变能计算,掌握强度条件和刚度条件的建立。
(4学时)5.弯曲内力。
熟练掌握平面弯曲的概念,指定截面的剪力和弯矩计算,剪力方程和弯矩方程,剪力图和弯矩图,剪力-弯矩与分布荷载之间的微分关系,叠加法做弯矩图。
一基本概念1.工程构件正常工作必须满足强度、刚度和稳定性的要求。
杆件的强度代表了杆件抵抗破坏的能力;杆件的刚度代表了杆件抵抗变形的能力;杆件的稳定性代表了杆件维持原有平衡形态的能力。
2.变形固体的基本假设是连续性假设、均匀性假设、各向同性假设。
连续性假设认为固体所占据的空间被物质连续地充满而毫无空隙;均匀性假设认为材料的力学性能是均匀的;各向同性假设认为材料沿各个方向具有相同的力学性质。
3.截面法的三个步骤是截取、代替和平衡。
4.杆件变形的基本形式有:拉压,扭转,剪切,弯曲。
5.截面上一点处分布内力的集度,称为该截面该点处的应力。
6.截面上的正应力方向垂直于截面,切应力的方向平行于截面。
7.在卸除荷载后能完全消失的变形称为弹性变形,不能消失而残留下来的变形称为塑性变形。
8.低碳钢受拉伸时,变形的四个阶段为弹性阶段、屈服阶段、强化阶段和局部变形阶段。
9.由杆件截面骤然变化而引起的局部应力骤增的现象称为应力集中。
10.衡量材料塑性的两个指标是伸长率和断面收缩率。
11.受扭杆件所受的外力偶矩的作用面与杆轴线垂直。
12.低碳钢圆截面试件受扭转时,沿横截面破坏;铸铁圆截面试件受扭转时,沿45度角截面破坏。
13.梁的支座按其对梁在荷载作用平面的约束情况,可以简化为三种基本形式,即固定端、固定铰支座、可(活)动铰支座。
14.工程上常用的三种基本形式的静定梁是:简支梁、悬臂梁、外伸梁。
15.平面弯曲梁的横截面上有两个内力分量,分别为剪力和弯矩。
16.拉(压)刚度、扭转刚度和弯曲刚度的表达式分别是EA、GI p和EI z。
17.当梁上有横向力作用时,梁横截面上既有剪力又有弯矩,该梁的弯曲称为横力弯曲。
梁横截面上没有剪力(剪力为0),弯矩为常数,该梁的弯曲称为纯弯曲。
18.在弯矩图发生拐折处,梁上必有集中力的作用。
19.在集中力偶作用处,剪力图将不变。
20.梁的最大正应力发生在最大弯矩所在截面上离中性轴最远的点处。
判断题1. 杆件的基本变形是拉压、剪切、扭转、弯曲,如果还有另外的变形,必定是这四种变形的某种组合。
(√ ) 2. 材料力学的基本假设包括连续性假设、均匀性假设、各向异性假设。
( ) 3. 主应力作用面上的剪应力必然为零,剪应力取极值面上的正应力也必然为零。
(× ) 4. 压杆失稳的主要原因是由于外界干扰力的影响。
(×) 5.如下图所示,AB 从左至右将分别产生弯曲变形,轴向压缩变形和扭转变形。
(√)5. 常用的四种强度理论,只适用于复杂的应力状态,不适用于单向应力状态。
(×)6. 铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰却不会破坏,这是因为冰的强度比铸铁的强度高。
(×)7. 一点沿某一方向上的正应力为零,则沿该方向的线应变也为零。
( ) 8. 梁的最大挠度不一定是发生在梁的最大弯矩处。
(√ ) 9. 微体上的最大切应力与材料无关。
(√ ) 10. 连接件的主要变形形式是剪切、挤压与扭转。
(×) 11. 塑性材料无论处于什麽应力状态,都应采用第三或第四强度理论,而不能采用第一或第二强度理论。
(×) 12. 纯剪状态是二向应力状态。
(√ ). 13. 在单元体的某个方向上有应变就一定有应力,没有应变就一定没有应力。
(×) 14. 由不同材料制成的两圆轴,若长L 、轴径D 及作用的扭转力偶均相同,则其最大剪应力就必相同。
(√ ) 15. 分散载荷或尽可能使载荷作用点靠近支座可减小弯曲变形。
(√ ) 16. 连接件的主要变形形式是剪切、挤压与弯曲。
( ) 17. 材料力学只限于研究等截面直杆。
(×)18. 相对扭转角的计算公式φ= 适用于任何受扭构件。
( )19. 平面弯曲时,梁横截面与中性层的交线即为中性轴。
(√) 20.图所示受拉直杆,其中AB 段与BC 段内的轴力及应力关系为BCAB N N =,BC AB σσ<。
1.强度:抵抗破坏的能力;刚度:抵抗变形的能力;稳定性:构建抵抗失稳、维持原有平衡状态的能力。
2.材料的三个根本假设:连续性假设、均匀性假设、各向同性假设变形的两个根本假设:小变形假设、线弹性假设3.根本变形:轴向拉伸〔压缩〕、剪切、扭转、弯曲。
4.内力:因外力作用而引起的物体内部各质点相互作用的内力的该变量,即由外力引起的“附加内力〞,简称内力。
5.应力:受力杆件在截面上各点处的内力的大小和方向〔一点处分布内力的集度〕,来说明内力左右在该点处的强弱程度。
6.低碳钢拉伸四个阶段:弹性阶段、屈服阶段〔滑移线〕、强化阶段、紧缩阶段。
7.冷作硬化:在常温下降钢材拉伸超过屈服阶段,卸载再重新加载时,比例极限提高而塑性降低的现象〔提高强度,降低塑性〕。
8.应力集中:由于截面尺寸突然改变而引起的局部应力急剧增大的现象。
9.轴:工程中常把以扭转为主要变形构件。
10.扭转;杆件两端受到两个作用面垂直于杆轴线的力偶的作用,两力偶大小相等,转向相反,使杆的各截面绕轴线做相对转动产生的变形。
11.切应力互等定理:在单元体相互垂直的两个平面上,沿垂直于两面交线作用的切应力必然成对出现,且大小相等,方向共同指向或背离该两面的交线。
12.梁:但凡以弯曲变形为主要变形的构件通常称为梁。
13.弯曲:在一对转向相反,作用在杆的纵向平面内的外力偶作用下,直杆将在该轴向平面内发生弯曲,变形后的杆轴线将弯成曲线,这种变形形式称为弯曲。
14.叠加原理:几个外力共同作用所引起的某一量值〔支座反力,内力,应力,变形,位移值〕等于每个外力单独作用所引起的该量量值的代数和,这是力学分析的一个普遍原理,称为叠加原理。
15.纯弯曲:平面弯曲梁的横截面上,只有弯矩,而无剪力。
横力弯曲:既有弯矩又有剪力的弯曲。
16.中性层:由于变形的连续性,纵向纤维从受压缩到受拉伸的变化之间,必然存在着一层既不受压缩、又不受拉伸的纤维,这层纤维称为中性层。
17.挠度:用垂直于梁轴线的线位移代表横截面形心的线位移。
1.构件的承载能力包括WI星、刚度、稳定性。
2.材料力学的基本假设是一均匀性假设、连续性假设、各向同性假设。
3.材料力学研究的变形的范围是弹性范围内的小变形。
4.材料力学的基本变形包括:轴向拉伸(压缩)、剪切、扭转、弯⅛ O5.承受轴向拉伸(压缩)的杆件,只有在距加力端一定距离以外长度范围内,变形才是均匀的。
6.根据强度条件b≤Ll可以进行强度校核、设计截面、确定许亘莅虬三方面的强度计算。
7.低碳钢材料由于冷作硬化,会使比例极限提高,可使塑性降低。
8.铸铁试件的压缩破坏和剪应力有关。
9.构件由于截面的形状尺寸的突变会发生应力集中现象。
10.低碳钢拉伸的应力一应变曲线的第四个阶段是局部变形阶段,会发生颈缩现象。
11.圆杆扭转时,根据剪应力互等定理原理,其纵截面上也存在剪应力。
12.蒋铁圆杆发生扭转破坏的破断线如图,试画出圆杆所受外力偶方向。
∩13.画出圆杆扭转时,两种截面的剪应力分布图。
14.铸铁材料的抗压(填“抗压”或“抗拉”或“抗剪”)能力最强,铸铁材料圆杆扭转破坏时的破断面与轴线约成3^角。
15.对钢制圆轴作扭转校核时,发现强度和刚度均比规定的要求低了20%,若安全系数不变,改用屈服极限提高了30%的钢材,则圆轴的强度足够,刚度不够(填“足够”或“不够16.组合图形对某一轴的静矩等于各组成图形对同一轴静矩的代数和。
17.图形对任意一对正交轴的惯性矩之和,恒等于图形对两轴交点的极惯性矩。
18.图形对于若干相互平行轴的惯性矩中,其中数值最小的是对争形心最近的轴的惯性矩。
19.如果一对正交轴中有一根是图形的对称轴,则这一对轴为图形的主惯性轴Q20.过图形形心且图形对其惯性积等于零的一对轴为图形的形心主惯性矩Q21.当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在逐中力作用截面的一侧。
22 .两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同, 则两梁的剪力图和弯矩 (填“相同”或“不同23 .梁在中间较链处,较链任何一侧的外力对较链外力矩之和为 材料和小变形。
材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面:1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆::拉为“+”,压为“-”:使单元体顺时针转动为“+”:从x 轴逆时针转到截面的法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=xyστατD'D AcB(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-= [])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论xσ破坏条件 b σσ=1s ττ=max fs f u u =强度条件 []σσ≤1[]σσσ≤-31适用条件脆性材料 脆性材料塑性材料塑性材料*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r 六、材料的力学性质脆性材料 <5% 塑性材料≥5%低碳钢四阶段: (1)弹性阶段 (2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ, E tg ==εσα 拉压扭低碳钢断口垂直轴线 剪断τs τb铸铁拉断 断口垂直轴线b σ 剪断拉断断口与轴夹角45ºτb七.组合变形bσsσαe σρσεσ4545º滑移线与轴线45,剪只有s,无b类型 斜弯曲 拉(压)弯 弯扭 弯扭拉(压)简 图公 式 )sin cos (yZ I z I y M ϕϕσ+=WMA P ±±=σ][4223στσσ≤+=r ][3224στσσ≤+=r][4)(223στσσσ≤++=N M r ][3)(224στσσσ≤++=N M r强度 条 件 )sin cos (max max yZWW M ϕϕσ+=][σ≤ WM A P m axm ax m ax ±±=σ][σ≤圆截面][223σσ≤+=Z W T M r][75.0224σσ≤+=ZW TM r22)(4)(3tZ W TA N W M r ++=σ][σ≤22)(4)(4tZ W T A N W M r ++=σ][σ≤中 性 轴ϕαtg I I Z ytg yZ -==y Zy Z e i Ae I y 2*-=-=八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,cr<p,>p柔度:iul=λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓>p——大柔度杆:22λπσE cr =o<<p——中柔度杆:cr=a-b<0——小柔度杆:cr=s稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP中性轴Zα ϕMpcroPcr=22λπσE cr =cr=a-b临界应力提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学复习题1 .构件在外荷载作用下具有抵抗破坏的能力为材料的(强度);具有一定的抵抗变形的能力为材料的(刚度);保持其原有平衡状态的能力为材料的(稳定性)。
2.构件所受的外力可以是各式各样的,有时是很复杂的。
材料力学根据构件的典型受力情况及截面上的内力分量可分为(拉压)、(剪切)、(扭转)、(弯曲)四种基本变形。
3.轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是(截面法)。
4.工程构件在实际工作环境下所能承受的应力称为(许用应力),工件中最大工作应力不能超过此应力,超过此应力时称为(失效)。
5.在低碳钢拉伸曲线中,其变形破坏全过程可分为(四)个变形阶段,它们依次是(弹性变形)、(屈服)、(强化)、和(颈缩)。
6.用塑性材料的低碳钢标准试件在做拉伸实验过程中,将会出现四个重要的极限应力;其中保持材料中应力与应变成线性关系的最大应力为(比例极限);使材料保持纯弹性变形的最大应力为(弹性极限);应力只作微小波动而变形迅速增加时的应力为(屈服极限);材料达到所能承受的最大载荷时的应力为(强度极限)。
7.通过低碳钢拉伸破坏试验可测定强度指标(屈服极限)和(强度极限);塑性指标(伸长率)和(断面收缩率)。
8.当结构中构件所受未知约束力或内力的数目n多于静力平衡条件数目m时,单凭平衡条件不能确定全部未知力,相对静定结构(n=m),称它为(静不定结构)。
9.圆截面杆扭转时,其变形特点是变形过程中横截面始终保持( 平面 ),即符合( 平面)假设。
非圆截面杆扭转时,其变形特点是变形过程中横截面发生( 翘曲),即不符合( 平面 )假设。
10.多边形截面棱柱受扭转力偶作用,根据( 切应力互等 )定理可以证明其横截面角点上的剪应力为( 0 )。
11.以下关于轴力的说法中,哪一个是错误的。
(C ) (A ) 拉压杆的内力只有轴力; (B ) 轴力的作用线与杆轴重合; (C ) 轴力是沿杆轴作用的外力; (D ) 轴力与杆的横截面和材料无关12.变截面杆AD 受集中力作用,如图所示。
材料力学中的四种基本变形举例
1.拉伸变形:
拉伸变形是指在外力的作用下,物体的长度增加或变长的过程。
这种
变形常见于拉伸试验中的拉力加载中,例如在拉伸试验机上施加外力,拉
伸材料直至材料的断裂点。
一个常见的例子是橡皮筋,当我们拉伸橡皮筋时,它的长度会增加。
2.压缩变形:
压缩变形是指在外力的作用下,物体的长度减少或变短的过程。
这种
变形常见于承受压力的构件中,例如梁柱结构承受竖向荷载时会产生压缩
变形。
一个典型的例子是弹簧,当我们用力将弹簧压缩时,它的长度会变短。
3.剪切变形:
剪切变形是指在外力的作用下,物体的平行侧面发生相对位移的过程。
这种变形常见于切削和金属加工中,例如在使用剪切机切割金属板材时,
金属板材的平行侧面会产生相对的移动。
另一个例子是在泥土工程中,当
土壤受到剪切力时,会发生剪切变形。
4.扭转变形:
扭转变形是指在外力作用下,物体沿纵轴发生旋转的过程。
这种变形
常见于旋转机械中,例如在使用螺旋桨驱动船只前进时,船体会发生扭转
变形。
另一个例子是在汽车悬挂系统中,当车辆转弯时,车身会发生扭转
变形。
这四种基本变形在材料力学中都具有重要的意义,并广泛应用于工程设计和材料选型过程中。
通过对这些变形的认识和理解,我们能够更好地预测和控制材料的行为和性能。