苏教版高中数学高一必修二2.2《圆与圆的位置关系》导学案
- 格式:doc
- 大小:159.50 KB
- 文档页数:4
2.5.2 圆与圆的位置关系【学习目标】1.能描述圆与圆的位置关系.2.能根据给定两圆的方程判断两个圆的位置关系.◆ 知识点 圆与圆的位置关系1.两圆的位置关系主要包括:外离、 、 、 和内含.2.两圆的位置关系的判断:(1)代数法:已知圆C 1:x 2+y 2+D 1x+E 1y+F 1=0(D 12+E 12-4F 1>0),圆C 2:x 2+y 2+D 2x+E 2y+F 2=0(D 22+E 22-4F 2>0),由{x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,消元后得到一元二次方程(若得到的是一元一次方程,则要求出方程组的解进行判断),计算判别式Δ的值,按下表中判断标准进行判断.(2)几何法:两圆的半径分别为r 1,r 2,计算两圆的圆心距d ,按下表中判断标准进行判断. (3)判断标准:位置关系 外离外切相交内切内含图示公共点个数 0 121 0 Δ的值 Δ<0Δ=0Δ<0 d 与r 1,r 2 的关系d= r 1+r 2d< |r 1-r 2|【诊断分析】 判断正误.(请在括号中打“√”或“×”) (1)两圆的方程联立,若方程组有两个解,则两圆相交. ( )(2)若两个圆没有公共点,则两圆一定外离. ( )(3)若两圆外切,则两圆有且只有一个公共点;反之也成立. ( ) (4)当两圆的方程组成的方程组无解时,两圆一定外离.( )◆ 探究点一 两圆位置关系的判断及应用例1 (1)已知圆C 1:x 2+y 2-2x+4y+4=0和圆C 2:4x 2+4y 2-16x+8y+19=0,则这两个圆的公切线的条数为( )A .1或3B .4C .0D .2(2)已知圆O1:(x+1)2+(y-1)2=1与圆O2:(x-3)2+(y+2)2=r2(r>0)相内切,则r= ( )A.4B.5C.6D.√13变式 (1)若圆C1:x2+y2=4与圆C2:x2+y2-2mx+m2-m=0外切,则实数m的值为( )A.-1B.1C.1或4D.4(2)已知圆C1:x2+y2=m2(m>0)与圆C2:x2+y2-2x-4y-15=0恰有两条公切线,则实数m的取值范围是.◆探究点二两圆公共弦问题例2 (1)已知圆C1:x2+(y-2)2=5和C2:(x+2)2+y2=5交于A,B两点,则|AB|=( )A.√3B.2√3C.√23D.2√23(2)已知圆O1:x2+y2=1与圆O2:x2+y2-2x+2y+F=0(F<1)相交所得的公共弦的长为√2,则圆O2的半径r=( )A.1B.√3C.√5或1D.√5变式已知圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0.(1)求两圆公共弦所在直线的方程;(2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.[素养小结]解决两圆公共弦问题的方法如下:(1)当两圆相交时,利用两圆方程相减,可得公共弦所在直线的方程;(2)在由半径、弦心距、弦长的一半为三边边长的直角三角形中,利用勾股定理可求弦长;(3)根据公共弦的中垂线过两圆圆心,可得公共弦的中垂线所在直线的方程.◆探究点三圆与圆的位置关系的综合问题例3 (1)(多选题)在平面直角坐标系中,已知点A(2,0),B(0,2),圆C:(x-a)2+y2=1.若圆C上存在点M,使得|MA|2+|MB|2=12,则实数a的值可能是( )A.-1B.0C.1+2√2D.-2(2)已知圆C与两圆C1:x2+(y+4)2=1,C2:x2+(y-2)2=1均外切,求圆C的圆心的轨迹方程.变式已知线段AB的端点B的坐标是(6,5),端点A在圆C1:(x-4)2+(y-3)2=4上运动.(1)求线段AB的中点P的轨迹C2的方程;(2)设圆C1与曲线C2的两个交点为M,N,求线段MN的长.[素养小结]1.圆与圆的位置关系的综合问题常见的类型有公切线问题、公共弦问题、轨迹问题等,要注意利用图形的几何性质优化思路、减少运算量.2.圆与圆的位置关系问题有时需要通过建立适当的平面直角坐标系,求得满足条件的动点的轨迹方程,从而得到动点的轨迹,通过研究它的轨迹方程与圆的方程的关系,判断所得的轨迹与圆的位置关系.。
圆与圆的位置关系(探究)一.教学目标知识与能力目标:1、通过探究,了解圆与圆有哪些位置关系;2、通过探究,得到判断圆与圆的位置关系的方法;3、通过探究,得到求出相交圆公共弦所在直线的方法;过程与方法目标:在探究的过程中,渗透数形结合思想;形成严谨的数学逻辑思维;学会发现问题,解决问题.情感态度与价值观:在探究过程中感受数学的魅力,提高数学学习兴趣.二.课程内容探究一:圆与圆有哪些位置关系?1、请根据上面5组圆的方程,完成表1第一列 圆心与半径 位置关系 圆心距dr r '+(1)C 1(, ),r 1=________;(2)C 2( , ),r 2=________ (3)C 3( , ),r 3=________;(4)C 4( , ),r 4=________ (5)C 5( , ),r 5=________;(6)C 6( , ),r 6=________ (7)C 7( , ),r 7=________;(8)C 8( , ),r 8=________ (9)C 9( , ),r 9=________;(10)C 10( , ),r 10=________2、请在下面5个坐标系中分别画出以上5组圆(每个坐标系中画出两个圆) (请按比例尺取长度 )(1) (2)⎪⎩⎪⎨⎧=+++=-+-1)2()2(:4)2()1(:1222221y x C y x C )(⎪⎩⎪⎨⎧=++=+2)2-()2(:2:2224223y x C y x C )(⎪⎩⎪⎨⎧=+=++9)1-(:1)1(:4228227y x C y x C )(⎪⎩⎪⎨⎧=++=+9)1()1-(:1:52210229y x C y x C )(⎪⎩⎪⎨⎧=++=++4)1-(2:11:3226225y x C y x C )()()(1表2(3) (4)(请完成表1第二列)(5)3、小结:圆与圆的位置关系有5种。
分别是外离、外切、相交、内切、内含探究二、如何使用代数法判断圆与圆的位置关系?1、如何判断一元二次方程解的个数?2、实例探究练习:已知圆C 1:x 2+y 2+2x +8y -8=0和圆C 2:x 2+y 2-4x -4y -2=0,试判断圆C 1与圆C 2的位置关系. 方法分析:联立方程,作差,消元3、 方法小结:①联立方程、消元得到一元二次方程②利用△判断解的个数局限性:无法区分内切与外切,内含与外离探究三、如何从几何的角度判断圆的位置关系?1、 完成表1 后3列;有什么猜想?2、 根据猜想,完成表2. 验证猜想位置关系 数量关系位置关系 数量关系外离 内切 外切 内含 相交3、使用几何法判断两个圆位置关系的步骤:(1)将两圆的方程化为标准方程;(2)求两圆的圆心坐标和半径R 、r ; (3)求两圆的圆心距d 及|R-r|,R +r ; (4)比较d 与|R-r|,R +r 的大小关系:4、练习:已知圆C 1:x 2+y 2+2x +8y -8=0和圆C 2:x 2+y 2-4x -4y -2=0,试判断圆C 1与圆C 2的位置关系.2表探究四、两圆相交时,如何求出公共弦所在直线方程?1、 练习探究:已知圆C 1:x 2+y 2+2x +8y -8=0和圆C 2:x 2+y 2-4x -4y -2=0,两圆相交于A 、B 两点,求出A 、B两点所在直线方程。
圆和圆的位置关系保定市第二中学时磊教学背景:高一学生正处于形象思维向抽象思维过渡的阶段,过分抽象的问题,学生往往感到乏味而难以准确的理解。
而多媒体具有形象、直观的特点,利用它为学生构建思维想象的平台,营造良好的学习气氛,充分调动学生学习的自觉性,引导学生积极地开展思维活动,主动地获取知识。
符合学生认知规律。
从具体事物到抽象理论。
通过学生的直接感知去理解知识,用以到达以快乐的形式去追求知识的目的。
设计理念:学生的开展是新课程标准实施的出发点和归宿,课程改革的重点是面向全体学生,以学生的开展为主体,转变学生的学习方式。
“圆与圆的位置关系〞这一课题,以全新的自主的学习方式让学生接受问题挑战,充分展示自己的观点和见解,给学生创设一种宽松、愉快、和谐、民主的科研气氛,让学生感受“两圆位置关系〞的探究发现过程,体验成功的快乐,为终身学习与开展打下根底。
教学目标:1、掌握通过圆心距d和两圆半径R、r的关系来确定两圆的位置关系,2、解决在两圆不同的位置关系下,有关圆的问题。
能力目标:1、通过本节课的学习,可培养学生空间想象能力,观察能力、探索能力、数形结合能力、归纳概括能力,并以以上能力为载体培养学生思维能力及创新能力。
2、培养学生运用运动变化的观点来分析、探讨问题的能力。
情感目标:1、通过合作交流、自主评价,改良学生的学习方式,及学习质量,激发学生的兴趣,唤起他们的好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动地去获取知识。
2、让学生在猜测与探究的过程中,体验成功的快乐,培养他们主动参与、合作意识,勇于创新和实践的科学精神。
教学重点:1、圆与圆位置关系的发现及确定方法。
2、解决在两圆不同的位置关系下,有关圆的问题。
教学难点:圆与圆位置关系的数量关系的发现及应用。
教学过程:一新课导入1.展示“日食〞的图片。
2.提问这种现象是怎样产生的。
让学生们讨论在变化过程中有哪些几何变化,并画下来。
三探索新知1、如果把月亮与太阳看成在同一平面内的两个圆,那么两个圆在作相对运动的过程中有几种位置关系产生呢?请同学们答复。
听课随笔第二章平面解析几何初步第二节圆与方程第14课时圆与圆的位置关系2.了解用代数法研究圆的关系的优点;3.了解算法思想.自学评价1.圆与圆之间有,,,,五种位置关系.,r r,圆心距为d,2.设两圆的半径分别为12当时,两圆外离,当时,两圆外切,当时,两圆相交,当时,两圆内切,当时,两圆内含.3.思考:用代数方法,通过联立方程组,用判别式法可以判断两个圆的位置关系吗?为什么?【精典范例】例1:判断下列两圆的位置关系:2222++-=-+-=与x y x y(1)(2)(2)1(2)(5)162222()与x y x x y y++-=++-=26706270【解】例2:求过点(0,6)A 且与圆22:10100C x y x y +++=切于原点的圆的方程.【解】追踪训练一1.判断下列两个圆的位置关系:2222(1)(3)(2)1(7)(1)36x y x y -++=-+-=与;2222(2)2232030x y x y x y x y +-+=+--=与3.2. 若圆22x y m +=与圆2268x y x y ++- 110-=相交,求实数m 的取值范围.【选修延伸】例3: 已知圆221:2610C x y x y ++-+=,圆222:42110C x y x y +-+-=,求两圆的公共弦所在的直线方程及公共弦长.【解】例5:求过两圆22640x y x ++-=和 226280x y y ++-=的交点,且圆心在直线40x y --=上的圆的方程.【解】思维点拔:解题时要充分利用两圆位置关系的几何性质.追踪训练二1.一个圆经过圆221:890C x y x +--=和圆222:8150C x y y +-+=的两个交点,且圆心在直线210x y --=上,求该圆的方程.听课随笔2.已知一个圆经过直线240x y ++=与圆222410x y x y ++-+=的两个交点,并且有最小面积,求此圆的方程.。
0∆>
11
r
-= 2;
教师提问:观察五种位置关系,可以看到两圆内切或外切时产生了一个公共点,这个公共点与两圆心 有何位置关系?
设计意图:为例2做铺垫一方面,引入时有图形关系在前,趁热打铁,学生思维清晰,很容易观察到两圆相习切时的性质;另一方面,讲解例2时再使用该性质学生不会有突兀之感
教师总结:我们把这种通过比较圆心距与半径和、差之间来判断圆与圆位置关系的方法叫做几何方法。
Ste3 典例剖析,理解新知
例1、判断下列两圆的位置关系
(1)16)5()2(1)2()2(2222=-+-=-++y x y x 与 (2)02760762
2
2
2
=-++=-++y y x x y x 与 教师提问:如何判断两圆的位置关系? 学生口述,教师板演
共同师生归纳出判断两圆位置关系的一般步骤: 写圆心、半径—求出圆心距—比较圆心距与两圆半径的和与差—得出位置关系
设计意图:考察两圆位置关系的判定方法
教师提问:你还有别的方法判断圆与圆的位置关系吗?
3 无公共点时,由d>r1r2,
得5>2a1,则0<a<2
B 层学生:能够说出圆心应在已知圆的圆心与原点的连线y x =上.
B 层学生:能够说出所求圆经过原点和
(0,6)A ,用待定系数法求解.
B 层学生:能够说出圆心还在线段OA 的中垂线3y =上
C 层学生:能够说出圆心与O 点之间的距离。
直线与圆、圆与圆的位置关系导学案
一、知识梳理1.直线与圆的位置关系:设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),
为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.
2.圆与圆的位置关系:设圆1:(-1)+(-1)=1(1>0),圆2:(-2)+(-2)2=r22(r2>0).
3.辨明两个易误点
(1)对于圆的切线问题,尤其是圆外一点引圆的切线,易忽视切线斜率k不存在的情形.
(2)两圆相切问题易忽视分两圆内切与外切两种情形.
[熟记常用结论]
1.圆系方程:(1)同心圆系方程:(x-a)2+(y-b)2=r2(r>0),其中a,b是定值,r是参数;
(2)过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程:x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);
(3)过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(该圆系不含圆C2,解题时,注意检验圆C2是否满足题意,以防漏解).。
圆与圆的位置关系
阜宁县第一高级中学张文
学习目标:1了解圆与圆的位置关系。
2了解判断圆与圆的位置关系的方法。
3掌握圆与圆位置关系的应用。
教学重点:圆与圆位置关系的判断方法。
教学过程:
一,回顾
1.求圆224
+=的过点(1,3)的切线方程。
x y
2.求过原点且与圆22
(1)(2)1
-+-=相切的直线方程。
x y
注意:切线斜率不存在的情况
上节课我们学习的直线与圆的位置关系,那么圆与圆又有哪些位置关系呢?
二.新课探究
判断两圆的位置关系的步骤及其判断方法如下:第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距O1O2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系
两圆的位置关系:
外离外切相交内切内含
d>Rr d=Rr|R-r|<d<Rr d=|R-r|d<|R-r|
(1)+22+-22=1与-22+-52=16;
(2)2+2+6-7=0与2+2+6-27=0.
1分别根据下列条件,判断两个圆的位置关系
(1)2222(3)(2)1(7)(1)36x y x y -++=-+-=与
2若圆 22x y m += 与圆 2268110x y x y ++--= 相交,求实数m 的取值范围。
3已知圆 与圆 没有公共点,求正数a 的取值范围
4.两圆2+2+4-4+7=0和2+2-4-10+13=0的公切线的条数为 .
三.小结
(1)两圆的位置关系
(2)已知位置关系求参数范围
(3)注意其中措辞:“相切”,“没有公共点” 22()1x a y -+=2225x y +=。
高一数学必修2导学案 主备人: 备课时间: 备课组长:圆的标准方程一、学习目标学问与技能:1、驾驭圆的标准方程,能依据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
过程与方法:进一步培育学生能用解析法探讨几何问题的实力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,留意培育学生视察问题、发觉问题和解决问题的实力。
情感看法与价值观:通过运用圆的学问解决实际问题的学习,从而激发学生学习数学的热忱和爱好。
二、学习重点、难点: 学习重点: 圆的标准方程学习难点: 会依据不同的已知条件,利用待定系数法求圆的标准方程。
三、运用说明及学法指导:1、先阅读教材118—120页,然后细致审题,细致思索、独立规范作答。
2、不会的,模棱两可的问题标记好。
3、对小班学生要求完成全部问题,试验班完成90℅以上,平行班完成80℅以上 四、学问链接: 1.两点间的距离公式?2.具有什么性质的点的轨迹称为圆?圆的定义?平面内与肯定点的距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径. 五、学习过程:(自主探究)A 问题1阅读教材118页内容,回答问题已知在平面直角坐标系中,圆心A 的坐标用(a ,b )来表示,半径用r 来表示,则我们如何写出圆的方程?问题2圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?例1:1写出下列各圆的方程:(1)圆心在原点,半径是3; (2) 圆心在C(3,4),半径是5 (3)经过点P(5,1),圆心在点C(8,-3); 2、写出下列各圆的圆心坐标和半径:(1) (x -1)2 + y 2 = 6 (2) (x +1)2+(y -2)2= 9(3) 222()()x a y a ++=例2:写出圆心为(2,3)A -半径长等于5的圆的方程,推断12(5,7),(1)M M --是否在这个圆上。
问题3点M 0(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上、内、外的条件是什么?例3△ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程例4已知圆心为C 的圆经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程.注:比较例3、例4可得出△ABC 外接圆的标准方程的两种求法:1.依据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程.2.依据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 六、达标检测1、已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程,试推断点M(6,9)、N(3,3)、 Q(5,3)是在圆上,在圆内,还是在圆外?2、求圆心C 在直线 x+2y+4=0 上,且过两定点A(-1 , 1)、B(1,-1)的圆的方程。