物理化学Ⅱ13统计热力学基础(三)-分子配分函数和正则系综(范康年) 2
- 格式:pdf
- 大小:789.91 KB
- 文档页数:23
热力学配分函数热力学中,配分函数是一个非常重要的概念。
它是一种函数,用于描述一个系统处于不同的能量状态下的概率分布。
在统计物理学中,配分函数通常用于计算热力学量,如内能、熵和自由能等。
配分函数的定义与系统的哈密顿量有关。
对于一个具有N个粒子的系统,其哈密顿量可以表示为H = ∑i=1N hi其中,hi是每个粒子的能量。
假设系统总能量为E,那么系统的所有可能状态数可以用下面的式子计算:Ω(E) = ∫···∫d3Nq1···d3NqNδ(EH(q1,...,qN))其中,q1,...,qN是系统所有粒子的位置和动量,δ是狄拉克δ函数。
这个式子的意义是,系统总能量为E的所有可能状态数,等于所有粒子的位置和动量满足哈密顿量为E的状态数之和。
在统计物理学中,我们通常更关注系统的宏观性质,而不是具体的粒子位置和动量。
因此,我们需要将Ω(E)转化为一个更容易处理的函数。
这个函数就是配分函数Z,它定义为Z = ∫···∫d3Nq1···d3NqNeβH(q1,...,qN)其中,β=1/kBT,T是系统的温度,kB是玻尔兹曼常数。
配分函数的物理意义是,它描述了系统处于不同能量状态的概率分布。
具体来说,系统处于能量为E的状态的概率可以用下面的式子计算:P(E) = Ω(E) eβE / Z其中,Ω(E)是系统总能量为E的所有可能状态数。
配分函数的作用是将所有可能的状态数归一化,使得概率分布满足归一化条件。
配分函数不仅可以用来计算概率分布,还可以用来计算热力学量。
例如,系统的内能可以用下面的式子计算:U = lnZ/β系统的熵可以用下面的式子计算:S = kB lnZ + βU系统的自由能可以用下面的式子计算:F = U TS = kB T lnZ配分函数是热力学中非常重要的一个概念,它在理论物理、化学、材料学等领域都有广泛的应用。
热力学与统计物理复习总结及相关试题(5篇范例)第一篇:热力学与统计物理复习总结及相关试题《热力学与统计物理》考试大纲第一章热力学的基本定律基本概念:平衡态、热力学参量、热平衡定律温度,三个实验系数(α,β,κT)转换关系,物态方程、功及其计算,热力学第一定律(数学表述式)热容量(C,CV,Cp的概念及定义),理想气体的内能,焦耳定律,绝热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵、熵增加原理及应用。
综合计算:利用实验系数的任意二个求物态方程,熵增(ΔS)的计算。
第二章均匀物质的热力学性质基本概念:焓(H),自由能F,吉布斯函数G的定义,全微公式,麦克斯韦关系(四个)及应用、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp)的关系,绝热膨胀过程及性质,特性函数F、G,空窖辐射场的物态方程,内能、熵,吉布函数的性质。
综合运用:重要热力学关系式的证明,由特性函数F、G求其它热力学函数(如S、U、物态方程)第三章、第四章单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S、F、G判据),单元复相系的平衡条件,多元复相系的平衡条件,多元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律标准表述,绝对熵的概念。
统计物理部分第六章近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态,代表点,三维自由粒子的μ空ρρ间,德布罗意关系(ε=ηω,P=ηk),相格,量子态数。
等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数的计算公式,最概然分布,玻尔兹曼分布律(al=ωle (Z1=-α-βεl)配分函数NZ1∑ωlel-βεl=∑se-βεs),用配分函数表示的玻尔兹曼分布(Z1=1hr0al=ωel-βεl),fs,Pl,Ps的概念,经典配分函数()麦态斯韦速度分布律。
统计热力学课件1. 引言统计热力学是热力学的一个分支领域,它通过统计方法来研究物质的宏观性质。
统计热力学在物理学、化学等领域都有着广泛的应用。
本课件将介绍统计热力学的基本概念和主要内容。
2. 统计热力学基本概念2.1 系综统计热力学的基本概念之一是系综(Ensemble)。
系综是指一个包含一组相同物理性质的系统的集合。
常见的系综有微正则系综、正则系综、巨正则系综等。
2.2 平衡态在统计热力学中,平衡态是指系统的宏观性质不随时间改变或在长时间内保持不变的状态。
平衡态的性质可以通过统计平均值来描述。
2.3 统计力学统计力学是统计热力学的基本方法,它通过建立系统与外界的相互作用关系,研究宏观性质与微观粒子运动规律之间的关系。
统计力学的核心是概率论和统计学的应用。
3. 统计热力学的主要内容3.1 玻尔兹曼分布玻尔兹曼分布是统计热力学中最基本的分布函数之一,它描述了自由粒子在一定温度下的分布状态。
3.2 能量与熵能量和熵是统计热力学中两个重要的物理量。
能量是系统状态的核心属性,熵则是系统的无序程度。
统计热力学通过研究能量和熵的关系来揭示物质的宏观行为。
3.3 统计平均值统计平均值是描述系统平衡态性质的基本指标,例如内能、熵等。
通过对系统微观状态进行统计,可以得到系统宏观性质的平均值,从而揭示系统的宏观行为。
3.4 相变与临界现象相变和临界现象是统计热力学的一个重要研究内容。
相变是指物质在一定条件下从一个相向另一个相的转变。
临界现象则是相变过程中出现的特殊现象,例如临界点和临界指数等。
4. 应用领域4.1 物理学在物理学领域,统计热力学被广泛应用于凝聚态物理、磁学、高能物理等研究中。
例如,统计热力学可以用来解释物质的相变行为、电磁波的统计行为等。
4.2 化学在化学领域,统计热力学可以用来研究化学平衡、化学反应速率等问题。
例如,通过统计方法可以计算出化学反应的平衡常数和反应速率常数。
4.3 生物学统计热力学在生物学领域的应用越来越广泛。
统计力学中的巨正则系综与巨配分函数统计力学是研究宏观物理量与微观粒子状态之间的关系的学科,而巨正则系综和巨配分函数则是统计力学中的重要概念。
本文将对巨正则系综和巨配分函数的定义、性质以及在统计力学中的应用进行探讨。
一、巨正则系综的定义与性质在统计力学中,巨正则系综是描述开放系统与外界交换粒子和能量的系综。
巨正则系综可以由巨正则配分函数表示,记作Ξ。
巨正则配分函数Ξ定义为:Ξ = ∑exp(-β(E - μN))其中,β = 1 / (kT) 是热力学温度的倒数,E是系统的能量,μ是化学势,N是粒子数。
巨正则配分函数Ξ可以进一步用于计算热力学量,如系统的平均能量、粒子数以及其他宏观物理量。
巨正则系综的性质如下:1. 系统与外界可以交换粒子和能量,保持化学势与温度不变。
2. 巨正则系综中的每个微观态出现的概率由配分函数Ξ决定。
3. 系统的平均粒子数可以由巨正则配分函数Ξ的导数计算得到。
4. 通过巨正则系综可以推导出各种热力学量之间的联系,如熵与自由能的关系。
二、巨配分函数的物理意义与计算方法巨配分函数是统计力学中描述巨正则系综的重要工具,它用于计算开放系统的平均性质。
巨配分函数的物理意义在于,它是描述开放系统在给定温度和化学势条件下的统计权重。
通过对巨配分函数的求导,可以得到系统的各种平均性质,如平均能量、平均粒子数等。
计算巨配分函数的方法主要有以下几种:1. 离散能级的方法:对系统的能级进行离散化处理,通过求解巨配分函数的递推关系,可以得到巨配分函数的解析表达式。
2. 统计求解的方法:通过模拟系统的粒子分布状态,统计得到不同状态下的出现概率,从而计算巨配分函数。
3. 积分变换的方法:巨正则配分函数Ξ可以通过对系统的所有可能的粒子状态进行积分得到。
通过适当的积分变换,可以将巨配分函数表示为更容易计算的形式。
三、巨正则系综和巨配分函数的应用巨正则系综和巨配分函数在统计力学中有广泛的应用,包括对粒子分布、相变和热力学性质的研究。
第三章统计系综3.1 引言宏观性质B 应是系统辗转经历各种微观态时所表现的该性质的时间平均值。
∫=τττ0),(1d p r B B i i Gibbs 系综方法:系统性质对时间的平均等价于大量标本系统性质的平均。
这些标本系统的集合称之为系综(ensemble)。
r i (t ), p i (t ) 为质点的坐标和动量i = 1, 2, 3…N (~1024)需知,,6N 个一阶微分方程。
dtdp dt dr ii ,3.2 正则系综一、正则系综定义:若有一个体积为V,粒子数为N的热力学系统,置于一温度为T的大热浴中(保持恒温),为计算这个恒温封闭系统的热力学性质,需设计一个如下图的系综。
T, V, N指定的标本系统将大量(数目为)的体积为V,粒子N数为N,温度为T的标本系统堆积在一起,这些标本系统之间有导热壁隔开,可以彼此传递热量但不许粒子通过,这样的样本系统集合称之为正则系综,系综由绝热壁所包围。
一、正则分布EE n N n ii i ==∑∑(1)(2)设这些标本体系能够取得的能量状态为:E 1,, E 2,, E 3,,…E i …处于各能量状态(即量子态,包括了简并度)的相应体系数目为:n 1 ,n 2, n 3, …n i …设整个系综的总能量为E ,则限制条件为:由于系综中每一个标本系统彼此可以辨别,所以给出系综的一个分布n 1 ,n 2, n 3, …n i …的排列方法数-即系综的微观状态数Ω为:)!!...!/(!21i n n n N =Ω举例说明上式:abcd箱2bcd acd abd abc 箱14321排列序号共4种,即:4!1!3/!4==Ω(3)将a ,b ,c ,d 四个粒子放入两个箱中的方法各种各样,现求出n 1 = 3, n 2= 1这种方法的数目:(3)式可产生各种分布{n i },当最可几分布时,愈易出现Ωn i * n i(3)式两边首先取对数,并应用Stirling 公式,ln !ln ,ln ln ln i iiN N N N N N n n =−Ω=−∑则(5)则Ω或ln Ω应为极值(4)ln ln i i i i i i in n n n ⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠∑∑∑由式(1)与(2)可知,求最可几分布问题是一个求条件极值问题,按照求条件极值的拉格朗日(Lagrange)未定乘数法将式(1)左端乘以因子-α,式(2)左端乘以因子-β,再与式(5)相加,最后对n i 求导可得:ln 0,1,2i i i i i i n n E i n αβ∂⎛⎞Ω−−==⎜⎟∂⎝⎠∑∑Lln ln 0i i i i i i i i i i i i in n n n n n E n αβ⎛⎞∂⎛⎞⎛⎞−−−=⎜⎟⎜⎟⎜⎟∂⎝⎠⎝⎠⎝⎠∑∑∑∑∑ln 1ln 10i i i i n n E αβ⎡⎤⎛⎞+−−−−=⎢⎥⎜⎟⎝⎠⎣⎦∑(6)(7)(8)iE i i i ee N n E n N βαβα−−=∴=−−−0ln ln (10)将式(10)代入式(1)中,可消去α,得:∑−=iE iee βα(11)∑−−=iE E i iiee N n ββ(12)∑−−==iE E i i iiee Nn p ββ(13)(9)∴式(10)变为:∴一个体系取能量状态E i 的几率为:即亦称状态和)(),,(∑−=iE ieN V T Z β(14)∑==iii p E E U (15)N i i iii V E P P p P P ⎟⎠⎞⎜⎝⎛∂∂−===∑(17)三、正则配分函数定义正则配分函数Z 为:下面求β的意义:由前述的力学量的时间平均等于系综平均的假定,热力学中的内能相当于系综的平均能量<E>,即压力对于压力来说,(16)将式(15)微分:i i i i i ii ii i i i i i i N i i idU d E p E dp p dE E E dp p dVV E dp P dV⎛⎞==+⎜⎟⎝⎠∂⎛⎞=+⎜⎟∂⎝⎠=−∑∑∑∑∑∑(18)与(19)对比得:∑=iii dp E S Td (19)(20)(18)dU Td S P dV=−Q把(21)代入式(20)中,得:()Z p E Z E p i i i i ln ln 1ln ln +−=∴−−=ββ(21)()()∑∑+−=+−=ii i i ii iZdp dp p dp Z p S Td ln ln 1ln ln 1ββ(22)将式(13)取对数得:由(23)式可见,β与热力学温度T成反比⎟⎠⎞⎜⎝⎛−=−=∴=∴=∑∑∑∑i i i iiiii i p p d dp p S Td dp p ln 1ln 11(1iββ),几率和为ΘkT1=β∑−=∴ikTE i eZ /(23)(24)k 为比例常数,即Boltamann 常数3.2正则配分函数与热力学函数的关系()/ln ln /ln ln i E kTi i i iii i i iiS k p p k p eZ p E Uk p Z k k Z kT T−=−=−=+=+∑∑∑∑(26)(27)/ln /−∂⎛⎞===⎜⎟∂⎝⎠∑∑2i E kTi i i iiVZ U E p E eZ kT T 由式(23)得:由式(15)得:,,ln T V T VF Z kT N N μ∂∂⎛⎞⎛⎞==−⎜⎟⎜⎟∂∂⎝⎠⎝⎠(29)(30)ln F U TS kT Z=−=−ln T TF Z P kT V V ∂∂⎛⎞⎛⎞=−=⎜⎟⎜⎟∂∂⎝⎠⎝⎠(28)作业:已知VDW 方程:求范德华型配分函数。
三、统计热力学基础(313题)一、选择题 ( 共38题 )1. 1 分 (1301)玻耳兹曼熵定理一般不适用于: ( )(A) 独立子体系 (B) 理想气体 (C) 量子气体 (D) 单个粒子2. 1 分 (1302)非理想气体是: ( )(A) 独立的全同粒子体系 (B) 相依的粒子体系(C) 独立的可别粒子体系 (D) 定域的可别粒子体系3. 2 分 (1304)下列各体系中属于独立粒子体系的是: ( )(A) 绝对零度的晶体 (B) 理想液体混合物(C) 纯气体 (D) 理想气体的混合物4. 1 分 (1362)玻耳兹曼分布 _______ 。
(A) 是最概然分布,但不是平衡分布(B) 是平衡分布,但不是最概然分布(C) 即是最概然分布,又是平衡分布(D) 不是最概然分布,也不是平衡分布5. 1 分 (1363)对于近独立非定位体系,在经典极限下能级分布 D 所拥有的微观状态数t 为:( )(A) ∏=i i i n !!i N N N t g (B) ∏=i i i n !!iN g N t n (C) ∏=ii n !!iN N N t g (D) ∏=i i n !!i N g N t n 6. 1 分 (1364)对于服从玻耳兹曼分布定律的体系,其分布规律为: ( )(A) 能量最低的单个量子状态上的粒子数最多(B) 第一激发能级上的粒子数最多(C) 视体系的具体条件而定(D) 以上三答案都不对7. 2 分 (1369)近独立定域粒子体系和经典极限下的非定域粒子体系的 ( )(A) 最概然分布公式不同(B) 最概然分布公式相同(C) 某一能量分布类型的微观状态数相同(D) 以粒子配分函数表示的热力学函数的统计表达示相同8. 2 分 (1370)如果我们把同一种分子分布在二个不同能级ε与ε'上的n 与n ' 个分子看成是“不同种”的分子 A 与 A',则这“两种分子”将可按 A' A 进行转化而达到平衡。
第九章统计热力学基础一、基本公式玻尔兹曼公式:Ωk S ln =玻尔兹曼分布:∑--=ikTi kTi i e g e g N n //εε两个能级上的粒子数之比kT j kTi j i ji e g e g n n //εε--=分子的配分函数:kT ii ie g q /ε-∑=(能级求和)kTjj eq /ε-∑=(量子态求和)能级能量公式:平动⎪⎪⎭⎫ ⎝⎛++=22222228c n b n a n m h z y x i ε转动Ih J J r 228)1(πε+=振动νεh v v⎪⎭⎫⎝⎛+=21平动配分函数:一维L h mkT q t 2122⎪⎭⎫ ⎝⎛=π;二维A h mkT q t ⎪⎭⎫ ⎝⎛=22π;三维Vh mkT q t 2322⎪⎭⎫ ⎝⎛=π转动配分函数:线型分子rr ΘTh IkT q σσπ==228,转动特征温度Ik h Θr 228π=非线型分子zy x r I I I hkT q 3232)2(8σππ=振动配分函数:双原子分子T ΘTΘkT h kT h v v v e e e e q /2//2/11-----=-=νν,振动特征温度v Θh h ν多原子线型∏-=---=531/2/1n i kTh kT h v i ie e q νν多原子非线型∏-=---=631/2/1n i kT h kTh v iie e q νν电子运动配分函数kTe e j q /0)12(ε-+=原子核运动配分函数kT n e e S q /0)12(ε-+=热力学函数与配分函数的关系N q kT A ln -=(定位)!ln N q kT A N -=(非定位)N V N T q NkT q k S ,ln ln ⎪⎭⎫ ⎝⎛∂∂+=(定位)N V N T q NkT N q k S ,ln !ln ⎪⎭⎫ ⎝⎛∂∂+=(非定位)N T N V q NkTV q kT G ,ln ln ⎪⎭⎫ ⎝⎛∂∂+-=(定位)N T N V q NkTV N q kT G ,ln !ln ⎪⎭⎫ ⎝⎛∂∂+-=(非定位)NV T q NkT U ,2ln ⎪⎭⎫ ⎝⎛∂∂=N T N V V q NkTV T q NkT H ,,2ln ln ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=NT T q NkT p ,ln ⎪⎭⎫ ⎝⎛∂∂=VN V V T q NkT T c ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂=,2ln 4.设有一个极大数目的三维平动子组成的粒子体系,运动于边长为a 的立方容器中体系的体积、粒子质量和温度有如下关系:kT ma h 10.0822=,求处于能级22149ma h =ε和222427mah =ε上粒子数目的比值是多少?解:kTkTe g e g n n 212121εε--=kT ma h ma h 8.18184922221===ε18222=++z y x n n n 31=g kT ma h 7.2827221==ε42=g 84.1437.28.121==--e e n n 5.将N 2气在电弧中加热,从光谱中观察到处于第一激发振动态的相对分子数26.001===ννN N ,式中ν为振动量子数N ν=0为基态占有的分子数,N ν=1为第一激发振动态占有的分子数,已知N 2的振动频率ν=6.99×1013s -1。
配分函数的定义配分函数是统计物理学中的一个重要概念,它描述了一个系统在不同能量状态下的概率分布。
在热力学中,配分函数是计算热力学性质的基础,如热容、自由能等。
本文将从配分函数的定义、性质和应用三个方面进行介绍。
配分函数是描述一个系统在不同能量状态下的概率分布的函数。
它的定义如下:Z = Σe^(-Ei/kT)其中,Z表示配分函数,Ei表示系统在第i个能量状态下的能量,k 是玻尔兹曼常数,T是系统的温度。
配分函数的物理意义是,它描述了系统在不同能量状态下的概率分布,即系统处于某个能量状态的概率与该状态的能量有关。
配分函数越大,表示系统处于高能量状态的概率越大。
二、配分函数的性质1. 对于一个系统,配分函数是一个常数,与系统的具体状态无关。
2. 配分函数与系统的能级数有关,能级数越多,配分函数越大。
3. 配分函数与系统的温度有关,温度越高,配分函数越大。
4. 配分函数可以用来计算系统的各种热力学性质,如内能、熵、自由能等。
三、配分函数的应用1. 计算内能系统的内能可以用配分函数来计算,公式如下:U = ΣEiP(Ei) = ΣEie^(-Ei/kT)/Z其中,P(Ei)表示系统处于第i个能量状态的概率。
2. 计算熵系统的熵可以用配分函数来计算,公式如下:S = klnZ + kT(∂lnZ/∂T)其中,k是玻尔兹曼常数。
3. 计算自由能系统的自由能可以用配分函数来计算,公式如下:F = -kTlnZ其中,F表示系统的自由能。
4. 计算热容系统的热容可以用配分函数来计算,公式如下:Cv = (∂U/∂T) = (1/kT^2)(ΣEi^2e^(-Ei/kT)/Z - (ΣEie^(-Ei/kT)/Z)^2)其中,Cv表示系统的热容。
配分函数是热力学中一个非常重要的概念,它描述了系统在不同能量状态下的概率分布,可以用来计算系统的各种热力学性质。
在实际应用中,我们可以通过计算配分函数来研究各种物理系统的性质,如固体、液体、气体等。