物理化学:第07章_统计热力学基础
- 格式:ppt
- 大小:1.57 MB
- 文档页数:14
第七章统计热力学基础一、选择题1、统计热力学主要研究()。
(A) 平衡体系(B)单个粒子的行为案(C) 非平衡体系(D) 耗散结构2、能量零点的不同选择,在下面诸结论中哪一种说法是错误的:( )(A) 影响配分函数的计算数值(B) 影响U,H,F,G 的数值(C) 影响Boltzmann分布数N 的数值(D) 影响能级能量εi的计算数值3、最低能量零点选择不同,对哪些热力学函数值无影响:( )(A) U (B) S (C) G (D) H4、统计热力学研究的主要对象是:()(A) 微观粒子的各种变化规律(B) 宏观体系的各种性质(C) 微观粒子的运动规律(D) 宏观系统的平衡性质5、对于一个U,N,V确定的体系,其微观状态数最大的分布就是最可几分布,得出这一结论的理论依据是:()(A) 玻兹曼分布定律(B) 等几率假设(C) 分子运动论(D) 统计学原理6、以0到9这十个数字组成不重复的三位数共有()(A) 648个(B) 720个(C) 504个(D) 495个7、各种不同运动状态的能级间隔是不同的,对于同一种气体分子,其平动、转动、振动和电子运动的能级间隔的大小顺序是:()(A) t > r > v > e(B) t < r < v < e(C) e > v > t > r(D) v > e > t > r8、在统计热力学中,对物系的分类按其组成的粒子能否被分辨来进行,按此原则:()(A) 气体和晶体皆属定域子体系(B) 气体和晶体皆属离域子体系(C) 气体属离域子体系而晶体属定域子体系(D) 气体属定域子体系而晶体属离域子体系9、对于定域子体系分布X所拥有的微观状态t x为:()(A) (B)(C) (D)10、当体系的U,N,V确定后,则:()(A) 每个粒子的能级 1, 2, ....., i一定,但简并度g1, g2, ....., g i及总微观状态数 不确定。
第柒章 统计热力学根底根本公式1. N 个定位粒子〔可别粒子〕壹种分布的微观状态数 !!iN i i i g t N N =∏总微观状态数 (),,!!iN i j i ig U V N N N Ω=∑∏2. N 个非定位粒子〔等同粒子〕壹种分布的微观状态数 !iN i i i g t N =∏总微观状态数 (),,!iN i j i i g U V N N Ω=∑∏3. Boltzman 分布在i,j 两个能级上粒子数之比 ()()exp /exp /j j i j i i g kT n n g kT εε⎡⎤-⎣⎦=-⎡⎤⎣⎦4. 能级公式平动 2222t 2228y xz n n n h m a b c ε⎛⎫=++ ⎪ ⎪⎝⎭转动 ()2r 218h J J Iεπ=+振动 v 12h ευυ⎛⎫=+ ⎪⎝⎭5.配分函数配分函数的别离 n t e r v q q q q q q =平动配分函数线型分子转动配分函数 2r 2r 8IkT Tq hπσσ==Θ 同核双原子分子σ=2,异核双原子分子σ=1.转动特征温度 2r 28h TkπΘ=非线性分子转动配分函数 ()()3/221/2r 382x y zkT q I I I h ππσ=双原子分子振动配分函数 ()()()()v v v exp /2exp /21exp /1exp /h kT T q T h kT υυ--Θ⎡⎤⎡⎤⎣⎦⎣⎦==--Θ--⎡⎤⎣⎦基态能量为零时振动特征温度 v /h k υΘ=电子配分函数假设只考虑基态,且将电子基态能量规定为零,则()v e,021q g J ==+,J 为电子总角动量量子数.核配分函数假设只考虑基态,且将核基态能量规定为零,则,S 为核自旋量量子数.单原子理想气体的热容 ,m 32V C R = 双原子理想气体的热容 ()(),m v ,m v 57=22V V C R T C RT=ΘΘ,单原子理想气体的内能 m 0,m 32U RT U =+ 双原子理想气体的内能 ()()m 0,m v m 0,mv 57=22U R U TU R U T=+Θ+Θ,平动熵〔Sackur -Tetrode 公式〕 转动熵 r,m r r =lnln T T S Nk Nk R R σσ+=+ΘΘ 振动熵 ()()v,m /ln 1exp exp /1h kT h S Nk RT h kT υυυ⎧⎫⎡-⎤⎪⎪⎛⎫=--+⎨⎬ ⎪⎢⎥-⎡⎤⎝⎭⎣⎦⎪⎪⎣⎦⎩⎭()()v v v /ln 1exp /exp /1T R T T ⎧⎫Θ⎪⎪=---Θ+⎡⎤⎨⎬⎣⎦Θ-⎪⎪⎩⎭电子运动熵 e,m e,0e,0ln ln S Nk g R g == Gibbs 自由能 m 0,m lnqG RT U L=-+8.自由能函数 9.热函函数 10.平衡常数对于D+E =G 的反响式中,f 为提出V 以后的配分函数,0ε∆为反响前后分子最低能级的差值.习题讲解1. 设有壹个由叁个定位的单维简谐振子组成的系统,这叁个振子分别在各自的位置上振动,系统的总能量为112h ν.试求系统全部可能的微观状态数. 解 振子的能量为 1ε(1,2,3,...)2h ννν⎛⎫=+= ⎪⎝⎭设系统中叁个单维简谐振子按以下能量方式分配至各能级:满足以上条件的分布有以下几种:(1) N 0=1, N 1=2微观状态数(2) N 0=1, N 1=1,N 3=1 微观状态数 236111t ==⨯⨯!!!!〔3〕N 0=2,N 4=1微观状态数 33321t ==⨯!!! 〔4〕N 1=2,N 2=1微观状态数 43321t ==⨯!!! 系统总的微观状态数2.假设有壹个热力学系统,当其熵值增加·K -1时,试求系统的微观状态的增加数占原有微观状态数的比值〔用1∆ΩΩ表示〕. 解 系统始态的熵 11ln S k =Ω 式中,k 就是Boltzmann 常数,2311.3810 J K k --=⨯⋅.系统终态的熵 22ln S k =Ω所以 21 ln ln 21S = S - S k k ∆=Ω-Ω代入数据 2320.4181.3810ln 1-Ω=⨯Ω 解得3102e 1⨯Ω=Ω系统微观状态数增加倍数为3102e 11⨯∆ΩΩ≈=ΩΩ 3.在海平面上大气的组成用体积分数可表示为:N 2(g)为0.78,O 2(g)为0.21,其他其他为0.01.设大气中各气体都符合Boltzmann 分布,假设大气柱在整个高度内的平均温度为220K.试求这叁类气体分别在海拔10 km 、60 km 和500 km 处的分压.已知道重力加速度为29.8 m s -⋅. 解 设大气再海平面的压力为p 0,在高度为h 处的压力为p ,则 式中,M 为气体的摩尔质量,g 为重力加速度.由气体的体积分数可得到各气体在海平面上的分压各气体的摩尔质量 ()()3131222810 kg mol ,O 3210 kg mol M N M ----=⨯⋅=⨯⋅ 假定其他气体全部为Ar,则()31Ar 39.94810 kg mol M --=⨯⋅在海拔10km 处可见,在海拔10 km 处,各气体的分压和摩尔分数和在海平面上的不相同.同理可得到在60 km 处,各气体的分压和摩尔分数 在500km 处,各气体的分压和摩尔分数4.对于双原子气体分子,设基态的振动能量为零,1x e x ≈+.试证明:〔1〕r U NkT =;〔2〕v U NkT =.证 双原子分子转动配分函数2r 28IkT q h πσ=双原子气体分子基态的振动能量为零时,振动配分函数5.设某分子的壹个能级的能量和简并度分别为-2111=6.110 J, 3g ε⨯=;另壹个能级的能量和简并度分别为-2122=8.410 J, 5g ε⨯=.请分别计算在300 K 和3 000 K 时,这两个能级上分布的粒子数之比12/N N .解 300 K 时[][]-21-21111112-232222exp /()36.1108.410exp exp 1.046exp /()5 1.3810300g kT N g N g kT g kT εεεε-⎛⎫-⨯-⨯⎛⎫==-=-= ⎪ ⎪-⨯⨯⎝⎭⎝⎭3 000K 时6.设有壹个由极大数目的叁维平动子组成的粒子系统,运动于边长为a 的立方容器内,系统的体积、粒子质量和温度的关系为220.108h kT ma =.现有两个能级的能量分别为221222927 , 48h h ma maεε==,试求处于这两个能级上粒子数的比值12N N . 解 叁维平动子的能级公式为只要满足222 18xy z n n n ++=,1ε值都相同,1ε能级的简并态 =1=14x y z n n n +=,,;=1=41x y z n n n +=,,;=4=11x y z n n n +=,,.简并度1=3g .只要满足222 27xy z n n n ++=,2ε值都相同,2ε能级的简并态 =1=15x y z n n n +=,,;=1=51x y z n n n +=,,;=5=11x y z n n n +=,,.简并度2=4g .根据Boltzmann 分布,粒子在两能级上的比值为7.将2(g)N 在电弧中加热,从光谱中观察到,处于振动量子数=1υ的第壹激发态上的分子数(=1)N υ,和处于振动量子数=0υ的基态上的分子数(=0)N υ之比为(=1)0.26(=0)N N υυ=.已知道2(g)N 的振动频率为1316.9910s -⨯.试计算:〔1〕2(g)N 的温度;〔2〕2(g)N 分子的平动、转动和振动能量;〔3〕振动能量在总能量中所占的分数.解 〔1〕量子数为υ的振子能量12h ευν⎛⎫=+ ⎪⎝⎭=0ν时 012h ευ==1υ时 032h ευ=即 3413236.62610 6.99100.26exp 1.3810/K T --⎛⎫⨯⨯⨯=- ⎪⨯⎝⎭2(g)N 的温度 2491.5 K T =〔2〕平动能 转动能 震动能将11342311318.3145 J mol K , 6.62610 J s , 1.3810 J K , 6.9910 s ,R h k v ------=⋅⋅=⨯⋅=⨯⋅=⨯ 2491.5 K T =,代入上式,得〔3〕振动能量在总能量中所占的分数8.设有壹个极大数目叁维平动子组成的粒子系统,运动于边长为a 的立方容器中,系统的体积,例子质量和温度的关系为试计算平动量子数为1,2,3和1,1,1两个状态上粒子分布数的比值.解 平动量子数为1,2,3时,其对应量子态有1,2,31,3,22,1,32,3,13,1,23,2,1,,,,,,ψψψψψψ即此能级的简并度16g =.此状态的能量为平动量子数为1,1,1时,其对应量子态只有1,1,1ψ,简并度为01g =,能量为所以,两个能级上的分布数之比为9.设某理想气体A,其分子的最低能级就是非兼并的,取分子的基态作为能量零点,相邻能级的能量为ε,其简并度为2,忽略更高能级.〔1〕写出A 分子的总配分函数的表达式;〔2〕设kT ε=,求出相邻两能级上最概然分子数之比10/N N 的值;〔3〕设kT ε=,试计算在298K 时,1molA 分子气体的平均能量.解 〔1〕分子的基态能量00ε=,相邻的能级的能量1εε=,只考虑基态和相邻能级,忽略更高能级,分子的配分函数为 〔2〕()()()()1111000exp /2exp /20.73581exp 0exp /g kT kT kT N e N g kT εε---⎡⎤⎡⎤⎣⎦⎣⎦====⨯-⎡⎤⎣⎦〔3〕1mol 气体分子数为1010.7358,,10.7358L N N L N L +==+10.〔1〕某单原子理想气体的配位函数q 具有的函数形式为()q Vf T =,试导出理想气体的状态方程;〔2〕假设该单原子气体的配位函数q 的函数形式为3/222mkT q V h π⎛⎫= ⎪⎝⎭,试导出压力p 和热力学能U 的表达式,以及理想气体的状态方程.解 〔1〕()()(),,ln ln N T N TVf T f T q NkT q NkT NkT NkT V V Vf T V ⎧⎫∂⎡⎤∂⎪⎪⎛⎫⎣⎦====⎨⎬⎪∂∂⎝⎭⎪⎪⎩⎭ 上式即为理想气体的状态方程对1mol 理想气体,,N L Lk R ==则.m pV RT =〔2〕配分函数3/222mkT q V h π⎛⎫= ⎪⎝⎭,令()3/222mkT f T h π⎛⎫= ⎪⎝⎭,即()q Vf T =.所以即理想气体的状态方程.11.某气体的第壹电子激发态比基态能量高1400 kJ mol -⋅,试计算:〔1〕在300 K 时,第壹电子激发态所占的分数;〔2〕假设要使激发态分子所占的分数为10%,则这时的温度为多少. 解 〔1〕设基态能量为零,并忽略更高激发态,则 (2) 依题意,有由上式解出 42.1910 K T =⨯12.在300K 时,已知道F 原子的电子配分函数 4.288e q =,试求 〔1〕标准压力下的总配分函数〔忽略核配分函数的奉献〕;〔2〕标准压力下的摩尔熵值.已知道F 原子的摩尔质量为118.998 g mol M -=⋅. 解 〔1〕n e t q q q q =,忽略核配分函数n q ,电子配分函数 4.288e q =,平均配分函数 式中,m 为F 原子的质量,V 为体积.将231341.3810 J K , 6.62610 J S k h ---=⨯⋅=⨯⋅及m 、T 、m V 等数据代入平动配分函数表达式即得 总配分函数 〔2〕m t,m e,m S S S =+ 根据Sack -Tetrode 公式()3/2325ln 2mkT S Nk V Nh π⎧⎫⎡⎤⎪⎪=+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭23123134/,/, 6.02210 mol , 1.3810 J K , 6.62610 J S,m m M L V RT p N L k h ----====⨯=⨯⋅=⨯⋅18.3145 J K ,R -=⋅代入上式化简得摩尔平动熵表达式将53110 Pa,18.99810 kg mol ,300 K p p M T --===⨯⋅=代入上式得电子运动熵标准摩尔熵 13. 零族元素氩〔Ar 〕可看做理想气体,相对分子质量为40,取分子的基态〔设其简并度为1〕作为能量零点,第壹激发态和基态的能量差为∈,忽略其他高能级.〔1〕写出Ar 分子的总配分函数表达式;〔2〕设5kT ∈=,求在第壹激发态上最概然分布的分子数占总分子数的分数;〔3〕计算1mol Ar(g)在标准状态下的统计熵值.设Ar 分子的核和电子的简并度均等于1. 解 〔1〕[]()()0011exp /()exp /exp /i i iq g kT g kT g kT =-∈=-∈+-∈⎡⎤⎡⎤⎣⎦⎣⎦∑(2)()()()111exp /2exp 5 1.3312exp 5g kT N N q -∈⎡⎤-⎣⎦===+-% (3)Sack -Tetrode 公式对于1 mol 理想气体,粒子数,/,/,m N L m M L V RT p ===代入上式得将23123134116.02210 mol , 1.3810 J K , 6.62610 J s,8.3145 J mol K L k h R ------=⨯=⨯⋅=⨯⋅=⋅⋅等有关常数代入上述表达式,化简得()3/2m n,o e,o 15/32352ln ln ln ln ln ln 20.72322K Pa kg mol M T p k S R g g R L h π-⎡⎤⎛⎫⎛⎫=++-+++⎢⎥ ⎪ ⎪⋅⎝⎭⎢⎝⎭⎥⎣⎦将531n,o e,o 10 Pa,4010 kg mol ,300 K,1,1p p M T g g --===⨯⋅===代入上式,得14.设Na 原子气体〔设为理想气体〕凝聚成壹外表膜.(1)假设Na 原子可以在膜内自由运动〔即贰维平动〕,试写出此凝聚过程的摩尔平动熵变的统计表达式;〔2〕假设Na 原子在膜内不能运动,其凝聚过程的摩尔平动熵变的统计表达式又将如何" 解 (1)Na 原子气体凝聚成外表膜,由叁维运动变为贰维运动.壹个平动自由度的配分函数叁维平动配分函数 3/2t,322mkT q V h π⎛⎫= ⎪⎝⎭ 叁维平动熵 t,3t,m,35ln 2q S R L ⎛⎫=+ ⎪⎝⎭贰维平动配分函数 t,222mkT q A h π⎛⎫= ⎪⎝⎭贰维平动熵 t,2t,m,2ln2q S R L ⎛⎫=+ ⎪⎝⎭(2) 假设Na 原子在膜内不能运动,其摩尔平动熵为零,则15.试分别计算转动、振动和电子能级间隔的Boltzmann 因子exp kT ⎛⎫- ⎪⎝⎭£各为多少.已知道各能级间隔的值为:电子能级间隔约为100 kT,振动能级间隔约为10 kT,转动能级间隔约为 kT. 解 电子能级间隔的Boltzmann 因子 振动能级间隔的Boltzmann 因子 转动能级间隔的Boltzmann 因子16.设J 为转动量子数,取整数,转动简并度为〔2J +1〕.在240K 时,CO 〔g 〕最可能出现的量子态的转动量子数J 的值为多少"已知道CO(g)的转动特征温度t 2.8K Θ= 解 转动特征温度 2t 28h IkπΘ=转动能级公式 ()()2r 2ε118h J J J J kIπΘ=+=+ 根据Boltzmann 分布0j dN dJ=时的J 值就是CO 最可能出现的J 值,则17. H B r 分子的核间平衡距离 nm,试计算: ⑴ H B r 的转动特征温度;⑴ 在298 K 时,H B r 分子占据转动量子数J =1的能级上的分数; ⑴ 298 K 时,H B r 理想气体的摩尔转动熵. 解 ⑴ H B r 的折合质量 转动惯量⑵ HB r 转动配分函数 2r 2r8Ik q T hTπ=Θ= 转动能级 ()r r 1/J J k ε=+Θ转动简并度 21J +HB r 分子占据转动量子数J=1的能级上的分数 ⑶HBr 转动熵和I 的摩尔质量、转动特征温度和振动特征温度分别为)1mol - 3- 310-石球在298K 时:⑴H 2和I 2分子的平动摩尔热力学能、转动摩尔热力学能和振动摩尔热力学能; ⑵H 2和I 2分子的平动摩尔定容热容、转动摩尔定容和振动摩尔定容热容和总的摩尔定容热容〔忽略电子的核运动对热容的奉献〕. 解 ⑴r ,2ln V Nq NkT U T ∂⎛⎫=⎪∂⎝⎭H 2和I 2分子的平动摩尔热力学能 H 2和I 2分子的转动摩尔热力学能 振动摩尔热力学能⑵H 2和I 2分子的平动摩尔定容热容 H 2和I 2的转动摩尔定容r,m 11r ,m 2(H )8.3145 J mol K ,V U C R T--∂==⋅⋅∂振动摩尔定容热容 总的摩尔定容热容19.在298 K 和100 kPa 时,1 mol O 2〔g 〕(设为理想气体)放在体积为V 的容积中,试计算: ⑴O 2〔g 〕的平均配分函数q t ;⑵O 2〔g 〕的转动配分函数q r ,已知道其核间距为1207 nm;⑶O 2〔g 〕的电子配分函数q e ,已知道电子基态的简并度为3,忽略电子激发态的奉献; ⑷O 2〔g 〕的标准摩尔熵值.解⑴O 2〔g 〕的平均配分函数 3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭O 2分子的质量将231341.3810 J K , 6.62610 J s,=298 K k h T ---=⨯⋅=⨯⋅及m 、V m 等数平动配分函数表达式即得3/230t 22 4.3410mkT q V h π⎛⎫==⨯ ⎪⎝⎭⑵O 2〔g 〕的折合质量71.7= (同核双原子分子,对称数σ=2) ⑶q e =g e,0=3⑷忽略振动激发态时,常温下,双原子分子的振动熵数值非常小,可以忽略,即 根据Sackur -Tetrode 公式 将232334m /,/, 6.02210mol , 1.3810 J K , 6.62610 J s,R=8.3145 J mol K m M L V RT p N L k h -1--1--1-1====⨯=⨯⋅=⨯⋅⋅⋅代入上式化简得 t,m 135ln ln ln 20.72322K Pa kg mol M T pS R -⎡⎤⎛⎫=+-+⎢⎥⎪⋅⎝⎭⎣⎦ 将5-3-110 Pa,=3110 kg mol p p M ==⨯⋅代入上式得转动熵 ,ln ln ln r r r r V Nq S Nk q NkT Nk q Nk T ∂⎛⎫=+=+⎪∂⎝⎭电子运动熵〔忽略电子激发态〕 标准摩尔熵K 和100 K P a 时,求1 molNO(g)(设为理想气体)的标准摩尔熵值.已知道NO(g)的转动特征温度为2.42K,振动特征温度为2690K,电子基态和第壹激发态的简并度均为2,两能级间的能量差21ε 2.47310 J -∆=⨯ 解 平动熵 转动熵 振动熵 电动运动熵NO(g)在298K 及100kPa 时的摩尔熵K 和100 kPa 时,求1 molNO(g)(设为理想气体)的标准摩尔剩余熵值和标准摩尔量热熵值.由题20算出的统计熵值.已知道NO(s)晶体就是由N 2O 2贰聚分子组成,在晶体中有两种排列方式.解 量热熵就是以为在T→0K 时,分子只有壹种取向,对应S 0=0,然而N 2O 2分子有两种不同取向,1 molNO(即12 molN 2O 2)晶体就有2L/2种取向,所以热力学概率Ω=2L/2, 即标准摩尔剩余熵值为 向,1 mol NO,〔即12molN 2O 2〕,晶体中就有2L/2 种取向,所以热力学概率Ω=2L/2, 即标准摩尔剩余熵值为由20题算出NO 〔g 〕的统计熵值 所以NO 得标准摩尔量热熵值22.在298 K 和100 kPa 时,求1mol SO 2 (g)(设为理想气体)的标准摩尔热力学能,焓,Gibbs 自由能,Helmhotls 自由能、熵、定压摩尔热能和定容摩尔热能等热力学函数.已知道SO 2的摩尔质量M 〔SO 2〕=3×10- 3 kg·mol - 1,σ1 =1151.4 cm - 1, σ2 =517.7 cm - 1 , σ3 =1361.8 cm - 1; 叁个转动惯量分别为I X ×10- 46 kg∙ m 2, I y ×10- 46 kg∙ m 2, I z ×10- 46 kg∙ m 2 SO 2 (g)分子的对称数为2,忽略电子和核的奉献. 解: SO 2 分子的质量 平动配分函数SO 2分子就是非线性分子,其转动配分函数 T =298 K 时 q r 振动局部利用c νσ=〔c =3×108 m •s -1〕将波数转换成频率,131 3.4510ν=⨯ s -1,132 1.5510ν=⨯s -1,133 4.0810ν=⨯ s -1.令112233/(),/(),/()x h kT x h kT x h kT ννν===.[]3112311111.004 1.090 1.001 1.0951exp /()1exp()1exp()1exp()v i i q h kT x x x ν====⨯⨯=--------∏[]3v,m 1ln 1exp() 2.875 J mol K exp()1i i i i x S R x x -1-1=⎧⎫=---+=⋅⋅⎨⎬-⎩⎭∑=v,m V,m,0631.01 J mol K U U -1-1-=⋅⋅ 总的热力学函数11mt,m r,m v,m 248.2 J mol K SS S S --=++=⋅⋅311v,m v,m,0t,m r,m v,m v,m,08.06410 J mol K U U U U U U ---=++-=⨯⋅⋅=411v,m v,m,0t,m r,m v,m v,m,0 1.05410 J mol K H U H H H U ---=++-=⨯⋅⋅K 时HI , H 2, I 2的标准Gibbs 自由能函数.已知道HI 的转动特征温度为9. 0 K,振动特征温度为3200 K ,摩尔质量M (HI)=127.9 X 10-3 kg·mol -1. I 2在零点时的总配分函数为q 0(I 2)=q t,0q r,0q v,0=4.143 X 1035, H 2在零点时的总配分函数为q 0(H 2)= q t,0q r,0q v,0=1.185 X 1029. 解HI 分子的质量平动配分函数 3/231t 22 3.4610mkT q h π⎛⎫==⨯ ⎪⎝⎭HI 分子就是线性分子,其转动配分函数振动局部()()()2V ν8111.000021exp /1exp /1exp 3200/298IkT q h kT T πν====----Θ--⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦HI 的总配分函数 ()0t,0r,0ν,03133HI 3.461033.111 1.14610q q q q ==⨯⨯⨯=⨯HI 的标准Gibbs 自由能函数()()33m m 1111230 1.14610ln 8.3145ln J mol K 177.65 J mol K ?6.02210G T H q R TL ----⎡⎤-⎛⎫⨯=-=-⨯⋅⋅=-⋅⋅⎢⎥ ⎪⨯⎝⎭⎣⎦I 2在零点时的总配分函数为 ()2t,0r,0ν,03535I =10=4.14310q q q q ⨯⨯I 2的标准Gibbs 自由能函数H 2在零点时的总配分函数为()2t ,0r,0ν,029H 1.18510q q q q ==⨯H 2的标准Gibbs 自由能函数24. 计算298K 时HI , H 2, I 2的标准热焓函数.已知道HI , H 2, I 2的振动特征温度分别为3200K 、6100K 和610K.解()(),mm 0ln N VH T U q RT R TT -∂⎛⎫=+ ⎪∂⎝⎭ 平动局部3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭,t ,ln 32N V q T T ∂⎛⎫= ⎪∂⎝⎭,()()t,m t,m 052H T U R T -= 转动局部振动局部HI:()()()()()mm 03200/298exp 3200/298521exp 3200/298H T U R RR T-⨯-=++-- H 2:()()()()()m m 06100/298exp 6100/298521exp 6100/298H T U R RR T-⨯-=++-- I 2:()()()()()m m 0610/298exp 610/298521exp 610/298H T U R RR T-⨯-=++--25.计算298K 时,如下反响的标准摩尔Gibbs 自由能变化值和标准平衡常数. H 2(g)+I 2(g)2HI(g)已知道298K 时,HI , H 2, I 2的有关数据如下:m,T m,0 K 11)/ J mol K G H T ---⋅⋅m,T m,0 K 11)/ J mol K H T ---⋅⋅m,T 1mol - 0解26. 计算300K 时,如下反响的标准平衡常数. H 2(g)+D 2(g)2HD(g)已知道298K 时,1656.9 J mol r m U -∆=⋅,HD 、H 2、D 2的有关数据如下:解 对于反响前后分子数不变的反响,则式中,f 就是提出V 以后的分子总配分函数,()t r v n e f q q q q q ='.提出V 以后的平动配分函数其间只有摩尔质量M 和物质种类有关,和其他的量对各物质都相同,可以在平衡常数表达式中消去,所以平动局部为转动配分函数 2r 28IkTq h πσ=只有I 和σ和物质种类有关,所以转动局部成为 振动配分函数根据v c σ=,将题给的波数σ转换成频率291H 1.3110s v -=⨯,91HD 1.1410s v -=⨯,281D 9.2810s v -=⨯将数据代入振动配分函数,计算得核配分函数在化学反响中可不考虑,大多数电子处于基态,配分函数1e q =.H 2(g) + D 2(g)2HD(g)的1r m656.9J mol U -∆=⋅.所以27.计算298K 时,如下两个反响的标准平衡常数.已知道自由能函数和0 K 时的焓变如下:)m,m,0K 11/J mol KTH T---⋅(m,0K /KJ mol ⋅解 (1) CH 4(g) + H 2O(g)CO(g) + 3H 2(g)28.计算298 K 时,如下反响的标准平衡常数.已知道热力学数据如下:(m,0K /)m,m,0K 11/J mol K TU T---⋅⋅)m,m,0K 11/J mol K TH T---⋅⋅解 ()m m,0K 1102.19182.23168.82155.53J mol G H T -⎛⎫-∆=-+--⋅ ⎪⎪⎝⎭29.用配分函数计算298 K 时,如下反响的标准平衡常数.已知道反响的()1r m 08.03kJ mol U -∆=-⋅,在298 K 时的参数如下表所示,忽略电子和核的奉献.解对于反响前后分子数不变的反响,则式中,f 就是提出V 以后的分子的总配分函数,()t r v n e f q q q q q ='.忽略核和电子的奉献,则 提出V 以后的平动配分函数其间只有摩尔质量M 和物质种类有关,其他的量对各物质都相同,所以平动局部成为 转动配分函数σ就是分子对称数,所以转动局部成为 振动配分函数H 2 (g) + I 2 (g)2HI(g)的()1r m 08.03kJ mol U -∆=-⋅.所以30. 计算5000 K 时,反响 N2(g)2N(g) 的标准平衡常数.已知道 N2(g) 分子的转动特征温度r 2.84K Θ=,振动特征温度v 3350K Θ=,解离能1708.35kJ mol D -=⋅,N2(g)的电子基态就是非简并的,而N 原子基态的简并度为4.解 ()()()()2m m 2N N 2m m m N N 2N N 2ln ln U U q q G G G RT L RT L RT ⎧⎫⎡⎤⎪⎪∆=-=---+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭所以 ()2222N N m m p N N /1exp exp /q L q U U K q L RT q RT L⎛⎫⎛⎫∆∆=-=- ⎪ ⎪⎝⎭⎝⎭ N 就是单原子,只需考虑电子和平动配分函数.2N 分子为双原子分子,所以要考虑电子、平动和振动配分函数,2N 的对称数2σ=. 将510,5000p Pa T K ==及其他常数代入,计算得自 测 题1. 在N 个NO 分子组成的晶体中,每个分子都有两种可能的排列方式,即NO 和ON,在 0 K 时该体系的熵值为 ( )A. 00S =B. 0ln 2S k =C. 0ln 2S Nk =D. 02ln S k N =2. 分子的平动、转动和振动的能级间隔的大小顺序就是 〔 〕A .振动能>转动能>平动能 B. 振动能>平动能>转动能 C. 平动能>振动能>转动能 D. 转动能>平动能>振动能3. 在以下热力学函数的单粒子配分函数q 统计表达式中,和系统的定位或非定位无关的就是 ( )A. G 、F 、SB. U 、H 、SC. U 、H 、v CD. H 、G 、v C4. 能量零点的不同选择对热力学量不产生影响的就是 〔 〕A. U 、H 、GB. U 、H 、S 、v CC. S 、v CD. S 、F 、v C5. 在298 K 和100kPa 时,摩尔平动熵最大的气体就是 〔 〕 A. H 2 B. CH 4 C. NO D. CO 26. 叁维平动子的平动能就是2t 2/368h E mV =,能级的简并度为 〔 〕A. 1B. 2C. 3D. 67. 双原子分子以平衡位置为能量零点,其振动的零点能等于 〔 〕 A. kT B.12kT C. h υ D. 12h υ 8. 当两能级差21kT εε-=,且简并度121,3g g ==,两能级上最概然分布时分子数之比21/N N 为 〔 〕 A .3kT e B. 3kT e - C. 13e - D. 13e9. 300 K 时,分布在J =1转动能级上的分子数就是J =0能级上的0.1e -倍,则分子的转动特征温度就是 〔 〕 A . 10 K B. 15 K C. 30 K D. 300 K10. CO 和2N 分子的质量m 及转动特征温度r Θ根本相同,振动特征温度v Θ均大于298 K,电子又都处于非简并的基态,298 K 时这两种气体的标准摩尔统计熵的差()()m m 2CO N S S -约为 〔 〕 A .0 B. ln2R C. ()ln 1/2R D. ()v r ln /R ΘΘ11. 1 mol 纯物质的理想气体,设分子的某内部运动形式只有叁个可及的能级,它们的能量和简并度分别为1122330,0;/100K,g 3;/300K,g 5g k k εεε======.其间k 为Boltzmann 常数. 〔1〕 计算200 K 时的分子配分函数;〔2〕 计算200 K 时能级2ε上的最概然分子数;〔3〕 当T →∞,求出叁个能级上的最概然分子数的比.12. 系统中假设有2%的2Cl 分子有振动基态跃迁到第壹振动激发态,分子的振动波数115569cm υ-=,试估算系统的温度.13.设某独立定域子系统的分子只有两个能级0和ε,请计算当T →∞时 1 mol 该物质的平均能量和熵 14.用统计力学方法求 1 mol 氦气由1T 、1V 变化到2T 、2V 的S ∆和U ∆〔设电子不激发〕. 15. 某混合理想气体系统由x N 个X 分子和Y N 个Y 分子组成,X 、Y 分子的配分函数各为X q 和Y q .〔1〕 试导出该混合系统的Helmholtz 自由能〔2〕用统计热力学方法导出该混合理想气体的状态方程和Dalton 分压定律. 16. 证明对双原子分子,在p=101.25 KPa 时()v,m ln 11x x x S R e e -⎛⎫=-- ⎪-⎝⎭〔式中 h x kT υ=〕自 测 题 参 考 答 案1. C.2. A.在通常温度下,平动、转动、振动的能级间隔分别约为1910kT -、210kT -、10kT .3. C.在热力学函数中,凡和S 无关的函数,其值均和体系的定位或非定位关系,H 、S 、v C 和 S 无关,G 和S 有关.4. C.能量零点的不同选择,对U 及和U 有关的函数都有影响.选择不同的能量零点,每摩尔有影响的状态函数相差0U L ε=.5. D.根据Sackur -Tetrode 公式可知,平动熵()3/2325ln 2mkT S Nk V Nh π⎧⎫⎡⎤⎪⎪=+⎢⎥⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭,m 越大,平动熵越大. 6. C. ()2222222t2/3,68xy z x y z nn n h E n n n mV++=++=,叁种简并态分别为1,1,2;x y z n n n ===1,2,1;x y z n n n === 2,1,1;x y z n n n ===.7. D. 8. C.1222111exp 3N g e N g kT εε--⎛⎫=-= ⎪⎝⎭ 9. B. ()()2r r 2118h J J J J k Iεπ=+=+Θ10. B.CO 和2N 分子的质量m 大体相同,平动熵大体相同,振动熵非常小,也大体相同,两物质的转动特征温度也根本相同,但不同的就是转动特征数σ,因此两物质的统计熵差值为 11. 〔1〕 ()()()112233exp /exp /exp /q g kT g kT g kT εεε=-+-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 〔2〕 ()()2223232exp /3exp 100/2006.02210 2.785103.935g kT N Nqε-⎡⎤-⎣⎦==⨯⨯=⨯〔3〕 T →∞时 ,()()exp /exp 01kT ε-→=⎡⎤⎣⎦ 所以 123123::::1:3:5N N N g g g == 12. 由Boltzmann 分布定律得()()1100exp /0.020.98exp /kT N N kT εε-⎡⎤⎣⎦==-⎡⎤⎣⎦,由振动能级公式知12h ευυ⎛⎫=+ ⎪⎝⎭,基态到第壹振动激发态的能级间隔为h υ,所以将有关数据代入上式,解出 2062K T =13. ()()()12exp /exp /1exp /q kT kT kT εεε=-+-=+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦当T →∞时当T →∞时14. He 就是单原子气体,当电子不激发时,其内部运动只有平动运动. 平动熵 热力学能15. 〔1〕理想气体就是非定位子系统,()ln /!N A kT q N =-,混合体系的Helmholtz 自由能()()()()X Y X X Y Y X X Y Y ln /!ln /!ln /!/!N N N NA A A kT q N kT q N kT q N q N ⎡⎤=+=--=-⎣⎦〔2〕转动、振动配分函数和体积无关,只有平动配分函数对压力有奉献,则 因为 X Y N N N =+ 所以 X Y X Y N kT N kTNkT p p p V V V==+=+ 即Dalton 分压定律.16. 平动配分函数 3/2t 22mkT q V h π⎛⎫= ⎪⎝⎭将231231346.02210mol , 1.3810J K , 6.62610J s,L k h ----=⨯=⨯⋅=⨯⋅11R 8.3145J mol K --=⋅⋅,101.25kPa p =代入上式得当100kPa p =时 t,m 135ln ln 1.15422K kg mol MT S R -⎡⎤⎛⎫=+-⎢⎥⎪⋅⎝⎭⎣⎦ 转动配分函数 2t 28IkTq h πσ=振动配分函数 ()v 1111exp /xq e h kT υ-==---⎡⎤⎣⎦ 电子配分函数 0e e,0exp q g kT ε-⎛⎫=⎪⎝⎭。
第七章:统计热力学基础2. 若一个热力学系统,当其熵值增加0.418 J.K -1时,试求系统微观状态的增加占原有微观状态数的比值(用ΔΩ/Ω1)分析:根据公式S=klnΩ,计算熵值变化时系统微观状态的变化。
解:S 1=klnΩ1, S 2=klnΩ2, S 2-S 1=kln(Ω2/Ω1)ln(Ω2/Ω1)=(S 2-S 1)/k=(0.418J·K -1)/(1.38×10-23J·K -1)=3.03×1022 ΔΩ/Ω1=(Ω2-Ω1)/Ω1=(Ω2/Ω1)-1≈Ω2/Ω1= exp(3.03×1022)5. 设某分子的一个能级的能量和简并度分别为ε1=6.1×10-21 J,g 1=3,另一个能级的能量和简并度分别为ε2 = 8.4×10-21 J,g 2=5。
请分别计算在300 K 和3000 K 时,这两个能级上分布的离子数之比N 1/N 2。
分析:根据玻尔兹曼分布公式求算 解:300K 时=3/5exp(-!.#×#%&'()*.+×#%&'(#.,*×#%&'-×,%%)=1.0463000K 时=3/5exp(-!.#×#%&'()*.+×#%&'(#.,*×#%&'-×,%%%)=0.6346. 设有一个由极大数目的三维平动子组成的粒子系统,运动于边长为a 的立方容器中,系统的体积、离子质量和温度的关系为:h 2/8ma 2 = 0.10kT. 现在两个能级的能量分别是ε1 = 9h 2/4ma 2,ε2 = 27h 2/8ma 2,试求处于这两个能级上粒子数的比值N 1/N 2。
分析:首先根据三维平动子的能级公式ε=h 2/8ma 2(n x 2+n y 2+n z 2)得到各个能级的简并度g,在根据玻尔兹曼分布公式计算离子在两个能级上分部数的比值。
第七章 热力学基础7-1 假设火箭中的气体为单原子理想气体,温度为2000 K ,当气体离开喷口时,温度为1000 K ,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率2v .已知一个原子质量单位=1.6605×10-27 kg ;(2)假设气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.分析 气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度.当气体的内能转化为定向运动的动能时,即表现为平均平动动能的减少,也就是温度的降低.解 (1)由气体动理论的能量公式kT m 23212=v ,得m/s 3530.7m/s 106605.1420001038.13327232=⨯⨯⨯⨯⨯==--m kTv (2)气体总的能量不变,气体内能的减少应等于定向运动动能的增量,就气体分子而言,即分子的平均平动动能的减少应等于定向运动动能的增量.若分子定向运动速度为d v ,则有212d 232321kT kT m -=v m/s 2496.6m/s 106605.14)10002000(1038.13)(3272321d =⨯⨯-⨯⨯⨯=-=--m T T k v7-2 单原子理想气体从状态a 经过程abcd 到状态d ,如图7-2所示.已知Pa 10013.15⨯==d a p p ,Pa 10026.25⨯==c b p p ,L 1=a V ,L 5.1=b V ,L 3=c V ,(1)试计算气体在abcd 过程中作的功,内能的变化和吸收的热量;(2)如果气体从状态d 保持压强不变到a 状态,如图中虚线所示,问以上三项计算变成多少?(3)若过程沿曲线从a 到c 状态,已知该过程吸热257 cal ,求该过程中气体所作的功.分析 理想气体从体积1V 膨胀到体积2V 的过程中所作的功为⎰21d )(V V V V p ,其量值为V p -图上过程曲线下的面积.如果过程曲线下是规则的几何图形,通常可以直接计算面积获得该过程中气体所作的功.解 (1)气体在abcd 过程中作的功应等于过程曲线下的面积,得Pa531.8 Pa 10)5.13(10013121103100131 353514=⨯+⨯⨯⨯+⨯⨯⨯=+=--..S S W adcbda abcd 内能改变为J455.9J )101104(10013.123)(23)(23)(335m V,=⨯-⨯⨯⨯⨯=-=-=-=---a d a a d a d a d V V p T T R M m T T C M m E E应用热力学第一定律,系统吸热为J 987.7J 455.9J 8.531=+=-+=a d abcd E E W Q(2)气体在等压过程da 中作的功为J -303.9J 10)41(10013.1)(35=⨯-⨯⨯=-=-d a a da V V p W0 1 1.5 3 4 V /L图7-2内能改变为 J 455.9-=-a d E E系统吸热为 J 9.875J 455.9-J 9.303-=-=-+=d a da E E W Q(3)若沿过程曲线从a 到c 状态,内能改变为J8.759J 1010013.1)1132(23)(23)(23)(35m V,=⨯⨯⨯⨯-⨯⨯=-=-=-=--a a c c a c a c a c V p V p T T R M m T T C M m E E应用热力学第一定律,系统所作的功为J 5.314J 759.8-J 18.4257=⨯=-+=a c ac ac E E Q W7-3 2 mol 的氮气从标准状态加热到373 K ,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?分析 根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 K ,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.解 (1)氮气可视为双原子理想气体,5=i .在等体过程中,系统吸热为J 4155J )273373(31.8252)(212V =-⨯⨯⨯=-=T T R i M m Q(2)在等压过程中,系统吸热为J 5817J )273373(31.8272)(2212p =-⨯⨯⨯=-+=T T R i M m Q7-4 10 g 氧在p = 3×105 Pa 时温度为t = C 10︒,等压地膨胀到10 L ,求(1)气体在此过程中吸收的热量;(2)内能的变化;(3)系统所作的功.分析 气体在等压过程中吸收的热量为)(2212p T T R i M m Q -+=,其中1T 已知,2T 可以通过气体状态方程由已知的该状态的压强和体积求出.用同样的方法可以计算内能的变化.再应用热力学第一定律计算出系统所作的功.解 (1)气体在等压过程中吸收的热量为J8792J )28331.832101010103(27 )(22)(22351212p =⨯⨯-⨯⨯⨯⨯=-+=-+=-RT MmpV i T T R i M m Q(2)内能的变化为J5663J )28331.832101010103(25 )(2)(235121212=⨯⨯-⨯⨯⨯⨯=-=-=--RT MmpV i T T R i M m E E(3)应用热力学第一定律,系统所作的功为J 2265J 5663-J 792812==-+=E E Q W7-5 双原子理想气体在等压膨胀过程中吸收了500 cal 的热量,试求在这个过程中气体所作的功.解 双原子理想气体在等压膨胀过程中吸热为)(22)(221212p V V p i T T R i M m Q -+=-+=所作的功为J 597J 18.450025222)(p 12p =⨯⨯+=+=-=Q i V V p W 7-6一定质量的氧气在状态A 时V 1 = 3 L ,p 1 = 8.2×105 Pa ,在状态B 时V 2 = 4.5 L ,p 2 = 6×105 Pa ,分别计算在如图7-6所示的两个过程中气体吸收的热量,完成的功和内能的改变:(1)经ACB 过程;(2)经ADB 过程.分析 在热力学中,应该学会充分利用V p -图分析和解题.从图7-6所示的V p -图可以看出,AC 和DB 过程为等体过程,AD 和CB 过程为等压过程.理想气体的内能是温度的单值函数,在常温和常压下氧气可视为理想气体,只要始末状态相同,无论经过什么样的准静态过程,其内能的变化都相同.但是气体吸收的热量和完成的功则与过程有关,在等压过程中吸收的热量为)(2212p T T R i M m Q -+=,在等体过程中吸收的热量为)(212V T T R iM m Q -=,其中温度值可以利用状态方程代换为已知的压强和体积参量.解 (1)经ACB 过程,即经等体和等压过程,气体吸热为J1500 J103106J 103102.825J 105.4106225 222 )(22)(2353535121122p V =⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯+=--+=-++-=+=---V p V p iV p i V p V p i V p V p i Q Q Q C C B B A A C C ACB 所作的功为J 900J 10)35.4(106)(35122=⨯-⨯⨯=-==-V V p W W CB ACB应用热力学第一定律,系统内能改变为J 600J 900-J 1500==-=-ACB ACB A B W Q E E(2)经ADB 过程,所作的功为J 1230J 10)35.4(102.8)(35121=⨯-⨯⨯=-==-V V p W W AD ADB系统内能改变为 J 600=-A B E Ep pO V 1 V 2 V图7-6应用热力学第一定律,气体吸热为J 1830J 600J 123012=+=-+=E E W Q ADB ADB7-7 1 g 氮气在密封的容器中,容器上端为一活塞,如图7-7所示.求(1)把氮气的温度升高10°C 所需要的热量;(2)温度升高10°C 时,活塞升高了多少?已知活塞质量为1 kg ,横截面积为10 cm 2,外部压强为Pa 10013.15⨯.分析 可以上下自由运动的活塞加在气体上的压强为大气压与气体上表面单位面积上承受的活塞重力之和.利用理想气体状态方程,气体对外所作的功,也可以用温度的变化表示,即T R MmV p ∆=∆. 解 (1)因外部压强和活塞质量不变,系统经历等压过程,压强为Pa 101.111Pa 10108.91Pa 10013.1545⨯=⨯⨯+⨯=-p J 4.10J 1031.822528122p =⨯⨯+⨯=∆+=T R i M m Q(2)系统作功为T R Mmh pS V p W ∆=∆=∆=p 则 m 102.67m 101010111.11031.82812-45⨯=⨯⨯⨯⨯⨯=∆=∆-pS T R m m h 7-8 10 g 某种理想气体,等温地从V 1膨胀到V 2 = 2 V 1,作功575 J ,求在相同温度下该气体的2v .分析 气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度,而且定义了方均根速率2v .只要温度不变,无论经历什么样的过程,方均根速率都不变.本题中,可以通过等温过程中系统所作的功的表达式确定该过程中系统的温度.图7-7解 等温过程中系统所作的功为12T ln V V RT M mW =m/s 499m/s 2ln 10105753ln33312T2=⨯⨯⨯===-V V m W MRTv 7-9 2 m 3的气体等温地膨胀,压强从Pa 10065.551⨯=p 变到Pa 10052.451⨯=p ,求完成的功.解 等温过程中系统所作的功为J 102.26J 10052.410065.5ln210065.5 ln ln 5555121112T ⨯=⨯⨯⨯⨯⨯===p p V p p p RT M mW7-10 在圆筒中的活塞下密闭空间中有空气,如图7-10所示.如果空气柱最初的高度h 0 = 15 cm ,圆筒内外的压强最初均为Pa 10013.150⨯=p ,问如要将活塞提高h = 10 cm ,需作多少功?已知活塞面积S = 10 cm 2,活塞质量可以忽略不计,筒内温度保持不变.分析 因筒内温度保持不变,这是一个等温过程.由于过程必须是准静态过程,则在过程进行中的任一时刻,系统都处于平衡状态.过程进行中,活塞受到向上的拉力F ,筒外空气向下的压力S p 0,筒内气柱向上的压力pS ,在这些力的作用下处于平衡状态.由力的平衡条件,可以确定活塞向上位移外力所作的元功,并联系气体等温过程方程求解.解 取圆筒底面为原点,竖直向上为x 轴正向,如图7-10所示.设活塞位于x 处时,筒内压强为p ,筒内外的压强差为p p -0,在准静态过程中提高活塞O图7-10所需的向上外力为S p p F )(0-=,此时活塞向上位移x d 外力所作的元功为x S p p x F W d )(d d 0-==因等温过程有00V p pV =,Sx V =,则要将活塞提高h ,需作的功为J2.37J )15.015.010.0ln15.010.0(10101.013 )ln (d )1(d )(3500000000=+-⨯⨯⨯=+-=-=-=-++⎰⎰h h h h h S p x x h S p x S p p W h h h h h h7-11 今有温度为27°C ,压强为Pa 10013.15⨯,质量为2.8g 的氮气,首先在等压的情况下加热,使体积增加一倍,其次在体积不变的情况下加热,使压强增加一倍,最后等温膨胀使压力降回到Pa 10013.15⨯,(1)作出过程的p —V 图;(2)求在三个过程中气体吸收的热量,所作的功和内能的改变.分析 本题中涉及到三个等值过程,利用已导出的各等值过程中系统作功、吸热和内能变化表达式和热力学第一定律求解.解 (1)过程的p —V 图如图7-11所示. (2)1~2,等压过程J249J 30031.8288.2 )(111121p =⨯⨯===-=RT MmV p V V p WJ872J 2492252222 )(22)(22p 112112p =⨯+=+=+=-+=-+=W i pV i V V p i T T R i M m QJ 623J 249J 872p p =-=-=∆W Q E2~3,等体过程, 0V =WpppO V 1 V 2 V 4 V图7-11J 1245J 24952)(2)(2p 112121323V =⨯====-=-==∆iW V p i V p iV p p iT T R i M m Q E3~4,等温过程, 0=∆EJ690J 2ln 24942ln 4 2ln 42ln 2lnp 11131333T T =⨯⨯======W V p V p p p V p W Q7-12 双原子气体V 1 = 0.5 L ,Pa 10065.541⨯=p ,先绝热压缩到一定的体积V 2和一定的压强p 2,然后等容地冷却到原来的温度,且压强降到Pa 10013.150⨯=p .(1)作出过程的p -V 图;(2)求V 2 = ?p 2 = ?分析 对于双原子理想气体,热容比4.1=γ.不论经历什么过程,只要初终态气体的温度相同,就可以应用理想气体状态方程,建立类似于等温过程中初态和终态压强和体积之间的关系.解 (1)过程的p —V 图如图7-12所示.(2)因初态和终态温度相同,应用理想气体状态方程,有1120V p V p =L 0.25L 10013.15.010065.5540112=⨯⨯⨯==p V p V 由绝热过程方程γγ1122V p V p =,得Pa 101.337Pa 25.05.010065.554.142112⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛=γVV p p 7-13 推证质量为m ,摩尔质量为M 的理想气体,由初状态(p 1、V 1、T 1)pp p pO V 2 V 1 V图7-12绝热膨胀到p 2、V 2时气体所作的功为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--=-1211221111)(11γγγV V RT M m V p V p W 分析证 对于绝热过程,有⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=--=-=-=∆-=-121121121112211221122112111111 11)(11)(2)(2γγγγγγV VRT M m V V V V RT M mV p V p V p V p V p V p V p iT T R i M m E W7-14 32 g 氧气处于标准状态,后分别经下二过程被压缩至5.6×10-3 m 3,(1)等温压缩;(2)绝热压缩,试在同一个p -V 图上作出两过程曲线,并分别计算两过程最终的温度以及所需要的外功.分析 32 g 氧气恰好为1 mol ,标准状态下体积和温度都有确定值. 解 两过程的p —V 图如图7-14所示. (1)32 g 氧气为 1 mol ,体积为331m 104.22-⨯=V ,温度为K 2731=T ,且等温压缩过程K 27312==T T ,所作的功为J -3146J 4.226.5ln104.2210013.1 ln351211T =⨯⨯⨯⨯==-V V V p W(2)绝热压缩过程γγ1122V p V p =,得K 475K )106.5()104.22(31.810013.14.034.1351211222=⨯⨯⨯⨯===---γγV V R p R V p Tpp 1O V 2 V 1 V图7-14利用上题结果,绝热压缩过程所作的功为J -4204J 6.54.2214.0104.2210013.1 114.03512111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-⨯⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--γγVV V p W7-15 体积为V 1 = 1 L 的双原子理想气体,压强p 1 =Pa 10013.15⨯,使之在下述条件下膨胀到V 2 = 2 L ,(1)等温膨胀;(2)绝热膨胀,试在同一p -V 图中作出两过程曲线,并分别计算两种情况下气体吸收的热量,所作的功及内能的变化.分析 等温过程中气体内能不变,所吸收的热量等于对外所作的功;绝热过程中气体吸热为零,对外所作的功等于内能的减少.解 两过程的p —V 图如图7-15所示.(1)等温膨胀 0=∆EJ 2.70J 2ln 1010013.1 ln351211T T =⨯⨯⨯===-V V V p W Q(2)绝热膨胀 0=QJ61.3J )5.01(4.01010013.1 114.03512111=-⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--γγV V V p W J 3.61-=-=∆W E7-16 0.1 mol 单原子理想气体,由状态A 经直线AB 所表示的过程到状态B ,如图7-16所示,已知V A = 1 L ,V B = 3 L ,p A =Pa 10039.35⨯,p B =Pa 10013.15⨯。
第七章统计热力学基础热力学:基础:三大定律研究对象:(大量粒子构成的)宏观平衡体系研究方法:状态函数法手段:利用可测量量p-T-V+C p,m和状态方程结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。
但是,热力学本身无法确定体系的状态方程,需借助实验。
很显然,体系的宏观热力学性质取决于其微观运动状态,是大量粒子微观运动的统计平均结果。
热力学宏观性质体系的微观运动状态统计热力学统计热力学:基础:微观粒子普遍遵循的(量子)力学定律对象:大量粒子所构成的体系的微观运动状态工具:统计力学原理目的:大量粒子某一性质的微观统计平均的结果(值)与系统的热力学宏观性质相关联。
7.1概述统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann给出了宏观性质—熵(S)与微观性质—热力学几率(Ω)之间的定量关系:S k=Ω。
ln热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的lnΩ≈ln W D,max。
所以,S=k ln W D,max这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
第七章 统计热力学基础习题详解1. (1) 10个可分辨粒子分布于 n 0=4,n 1=5,n 2=1 而简并度 g 0=1,g 1=2,g 2=3 的 3 个能极上的微观状态数为多少?(2) 若能级为非简并的,则微观状态数为多少?。
解: (1)451D g 123W =N =10=120960451i n i i n ⋅⋅Π⋅⋅!!!!!!(2)D 110W =N ==1260451i n Π⋅⋅!!!!!!2. 某一分子集合在100 K 温度下处于平衡时,最低的3个能级能量分别为 0、2.05×10-22J 和 4.10×-22J ,简并度分别为1、3、5。
计算3个能级的相对分布数 n 0:n 1:n 2。
解:-22-2202.051011.38101001==1:2.593N N e⎛⎞−×⎜⎟⎜⎟××⎝⎠⋅()-22-222.05 4.10101.3810100123==0.6965N e N ⎡⎤−×−⎢⎥××⎢⎥⎣⎦⋅123=1:2.59:3.72N N N ::3. I 2分子的振动能级间隔是0.42×10-20 J ,计算在25℃时,某一能级和其较低一能级上分子数的比值。
已知玻尔兹曼常数k =1.3806×10-23 J·cm -1。
解:根据Boltzmann 分布对于一维谐振子,能级为非简并的,即+1==1i i g g ,因此 I 2分子-201+1-230.4210=exp =exp =0.360T1.380610298i+i i i N g N g k ε⎛⎞−∆−×⎛⎞⎜⎟⎜⎟××⎝⎠⎝⎠4. 一个含有N 个粒子的系统只有两个能级,其能级间隔为ε,试求其配分函数q 的最大可能值是多少?最小值是多少?在什么条件下可能达到最大值和最小值?设ε=0.1 k T 。
物理化学第五版统计热力学第七章统计热力学初步练习题一、判断题:1.当系统的U,V,N一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统的总微态数Ω不能确定。
2.当系统的U,V,N一定时,由于各粒子都分布在确定的能级上,且不随时间变化,因而系统的总微态数Ω一定。
3.当系统的U,V,N一定时,系统宏观上处于热力学平衡态,这时从微观上看系统只能处于最概然分布的那些微观状态上。
4.玻尔兹曼分布就是最概然分布,也是平衡分布。
5.分子能量零点的选择不同,各能级的能量值也不同。
6.分子能量零点的选择不同,各能级的玻尔兹曼因子也不同。
7.分子能量零点的选择不同,分子在各能级上的分布数也不同。
8.分子能量零点的选择不同,分子的配分函数值也不同。
9.分子能量零点的选择不同,玻尔兹曼公式也不同。
10.分子能量零点的选择不同,U,H,A,G四个热力学函数的数值因此而改变,但四个函数值变化的差值是相同的。
11.分子能量零点的选择不同,所有热力学函数的值都要改变。
12.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道qt这一配分函数值就行了。
13.根据统计热力学的方法可以计算出U、V、N确定的系统熵的绝对值。
14.在计算系统的熵时,用lnWB(WB最可几分布微观状态数)代替1nΩ,因此可以认为WB与Ω大小差不多。
15.在低温下可以用qr=T/σΘr来计算双原子分子的转动配分函数。
二、单选题:1.下面有关统计热力学的描述,正确的是:(A)统计热力学研究的是大量分子的微观平衡系统;(B)统计热力学研究的是大量分子的宏观平衡系统;(C)统计热力学是热力学的理论基础;(D)统计热力学和热力学是相互独立互不相关的两门学科2.在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列说法正确的是:(A)晶体属离域物系而气体属定域物系;(B)气体和晶体皆属离域物系;(C)气体和晶体皆属定域物系;(D)气体属离域物系而晶体属定域物系·1·3.在研究N、V、U有确定值的粒子系统的统计分布时,令∑ni=N,∑niεi=U,这是因为所研究的系统是:(A)系统是封闭的,粒子是独立的;(B)系统是孤立的,粒子是相依的;(C)系统是孤立的,粒子是独立的;(D)系统是封闭的,粒子是相依的4.某种分子的许多可能级是εo、ε1、ε2,简并度为g0=1、g1=2、g2=1。
第七章 统计热力学基础7.1概述统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann 给出了宏观性质—熵(S)与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。
热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的ln Ω ≈ ln W D,max ,所以,S = k ln W D,max 。
这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。
用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。
配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。
因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。
确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。
本章7.2主要考点7.2.1统计系统的分类:独立子系统与相依子系统:粒子间无相互作用或相互作用可忽略的系统,称为独立子系统,如理想气体;粒子间相互作用不可忽略的系统,称为相依子系统。